Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020] |
Descrizione fisica | 1 online resource (1242 pages) |
Disciplina | 660.284245 |
Soggetto topico | Nanofiltration |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-82497-9
3-527-82496-0 3-527-82498-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword (Second Edition, 2020) -- Foreword (First Edition, 2005) -- Acknowledgements -- Dedication -- Introduction -- Part I Principles -- Chapter 1 History of Nanofiltration Membranes from 1960 to 1990 -- 1.1 Overview -- 1.2 Introduction -- 1.3 First‐Generation NF Membranes -- 1.3.1 Cellulose Acetate Asymmetric Membranes -- 1.3.2 Deficiencies in Cellulosic Membranes -- 1.3.3 Polyelectrolyte Complexes -- 1.3.4 Polyamide Membranes -- 1.3.5 Polysulfones and Other Polymer Membranes -- 1.4 Early Studies of Charged Reverse Osmosis (Hyperfiltration) Membranes -- 1.4.1 Dynamic Membranes -- 1.4.2 Polyelectrolyte Membranes -- 1.5 Early Models of NF Selectivity -- 1.6 Negative Salt Rejection -- 1.6.1 Solutions of One Electrolyte -- 1.6.2 Separation by Negative Salt Rejection -- 1.7 Early Development of Industrial NF: Ionic Modification of Asymmetric Cellulose Acetate -- 1.8 Early NF Composites -- 1.8.1 General -- 1.8.2 Plasma Polymerization -- 1.8.3 Graft Polymerization -- 1.9 NF Composites of the 1980s -- 1.9.1 Piperazineamide Membranes -- 1.9.2 Other NF Interfacially Produced Composites -- 1.9.3 Modification of RO Membrane Composites to Bring Them into the NF Range -- 1.10 Composites Produced by Noninterfacial Cross‐linking -- 1.10.1 Polyvinyl Alcohol Composites -- 1.10.2 Sulfonated Engineering Plastics as Selective Barriers -- 1.10.3 Polyethyleneimine -- 1.11 Chemically Stable NF Membranes -- 1.11.1 Chemically Stable Polymeric Asymmetric Membranes -- 1.11.2 Oxidant and pH‐Stable Composite Membranes -- 1.11.3 Solvent‐Stable NF Composites -- 1.11.4 Chemically Stable Inorganic NF and Polymeric/Inorganic Hybrids -- 1.12 Conclusions -- Abbreviations -- References -- Chapter 2 Nanofiltration Membrane Materials and Preparation -- 2.1 General Introduction -- 2.2 Phase Inversion -- 2.2.1 Introduction.
2.2.2 Basic Principles -- 2.2.3 Polymer Type -- 2.2.4 Casting Solution -- 2.2.4.1 Polymer Concentration -- 2.2.4.2 Addition of Volatile Cosolvents -- 2.2.4.3 Addition of Nonsolvents -- 2.2.4.4 Addition of Other Additives -- 2.2.5 Postcasting Evaporation -- 2.2.6 Coagulation Bath -- 2.2.7 Post‐treatment -- 2.2.7.1 Annealing -- 2.2.7.2 Cross‐linking -- 2.2.7.3 Drying -- 2.3 Interfacial Polymerization -- 2.3.1 Introduction -- 2.3.2 Support Materials -- 2.3.3 Monomers -- 2.3.3.1 Amines -- 2.3.3.2 Acyl Chlorides -- 2.3.3.3 Other Polymer Types -- 2.3.4 Monomer Concentrations and Reaction Time -- 2.3.5 Solvent -- 2.3.6 Additives -- 2.3.7 New Approaches -- 2.3.8 Post‐treatment -- 2.4 Coating -- 2.4.1 Introduction -- 2.4.2 Examples -- 2.5 Surface Modification -- 2.5.1 Introduction -- 2.5.2 Plasma Treatment -- 2.5.3 Organic Reactions -- 2.5.3.1 Covalent Linking of Monomers -- 2.5.3.2 Sulfonation -- 2.5.3.3 Nitration -- 2.5.4 Polymer Grafting -- 2.5.5 Photochemical Modification -- 2.6 Ceramic Membranes -- 2.6.1 Introduction -- 2.6.2 General Synthesis Procedure -- 2.6.2.1 Sol -- 2.6.2.2 Coating -- 2.6.2.3 Gel -- 2.6.2.4 Sintering -- 2.6.3 Membrane Types -- 2.6.3.1 Titania -- 2.6.3.2 Zirconia -- 2.6.3.3 Alumina -- 2.6.3.4 Silica -- 2.6.3.5 Mixed Oxides -- 2.6.3.6 Organic Doped Ceramic Membranes -- 2.6.4 Supports -- 2.6.5 Surface Modification -- 2.7 Hollow Fiber Preparation -- 2.7.1 Introduction -- 2.7.2 General Synthesis Procedure -- 2.7.3 Composite Hollow Fiber Membranes -- 2.8 Commercial and Novel (SR)NF Membranes -- 2.8.1 Commercial (SR)NF Membranes -- 2.8.2 Novel (SR)NF Membranes -- 2.9 Outlook -- Acknowledgements -- Abbreviations -- References -- Chapter 3 Nanofiltration Module Design and Operation -- 3.1 Introduction -- 3.1.1 Role of the Module -- 3.1.2 Concentration Polarization and Cross‐Flow -- 3.1.3 Fouling -- 3.2 Module Types and Characteristics. 3.2.1 Plate and Frame -- 3.2.2 Spiral Wound -- 3.2.3 Tubular -- 3.2.4 Hollow Fiber and Capillary -- 3.2.5 Others -- 3.2.5.1 Submerged Membranes -- 3.2.5.2 High Shear Devices -- 3.2.5.3 Laboratory Modules -- 3.2.6 Module Characteristics -- 3.3 Spiral Wound Module (SWM) - Design Features -- 3.3.1 Feed Channel Spacers -- 3.3.2 Modeling and Optimization -- 3.4 Strategies to Improve Control of Concentration Polarization -- 3.4.1 Process Limitation by Concentration Polarization -- 3.4.2 High Shear - Vibrating the Membrane -- 3.4.3 High Shear - Rotor/Stator Modules -- 3.4.4 Two‐Phase Flow -- 3.4.5 Unsteady Shear Comparison -- 3.5 System Design and Operation -- 3.5.1 System Configurations -- 3.5.2 Diafiltration -- 3.5.3 Reflux‐Recycle Cascade (Combining RO and NF) -- 3.5.4 Batch Operation - Energy Saving (Closed Circuit) -- 3.6 Conclusions -- Nomenclature -- Subscripts -- Greek Symbols -- Abbreviations -- References -- Chapter 4 Nanofiltration Membrane Characterization -- 4.1 Introduction -- 4.2 Structural Characteristics -- 4.2.1 Microscopy -- 4.2.2 Pore Size -- 4.2.2.1 Solvent Permeation and Rejection of Probe Solutes -- 4.2.2.2 Spectroscopic and Scattering Methods -- 4.2.3 Thickness and Morphology of the Active Layer -- 4.2.4 Surface Characteristics -- 4.2.4.1 Atomic Force Microscopy (AFM) -- 4.2.4.2 Contact Angle -- 4.2.5 Membrane Swelling and Solvent Uptake -- 4.2.6 Chemical Structure -- 4.2.6.1 Attenuated Total Reflection-Fourier Transform InfraRed Spectroscopy (ATR-FTIR) -- 4.2.6.2 X‐ray Photoelectron Spectroscopy (XPS) -- 4.2.6.3 Rutherford Backscattering Spectroscopy (RBS) -- 4.2.7 Mechanical Properties -- 4.3 Charge Related Parameters -- 4.3.1 Electrokinetic Measurements -- 4.3.2 Titration and Ion Exchange -- 4.3.3 Membrane Potential -- 4.3.4 Electrochemical Impedance Spectroscopy -- 4.4 Nanofiltration Membranes for Nonaqueous Systems. 4.5 Conclusions -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 5 Modeling Nanofiltration of Electrolyte Solutions -- 5.1 Introduction -- 5.2 Basic Equations and Concepts -- 5.2.1 Derivation of Equations -- 5.2.1.1 Single Salts -- 5.2.1.2 Trace Ions -- 5.2.2 Solution of Transport Equations for Macroscopically Homogeneous Membranes: Single Salts and Trace Ions -- 5.2.2.1 Spiegler-Kedem Approximation -- 5.2.2.2 Trace Ions -- 5.2.3 Specification of Phenomenological Coefficients Within the Scope of a Model of Straight, Narrow Capillaries -- 5.3 Nanopore Models of NF -- 5.3.1 Steric Exclusion and Hindrance -- 5.3.2 Local Equilibrium Partitioning Mechanisms -- 5.3.2.1 Donnan Exclusion -- 5.3.2.2 Superposition of Donnan Exclusion and Steric Hindrance/Exclusion -- 5.3.2.3 Dielectric Exclusion -- 5.4 Solution‐Diffusion‐Electromigration Models of Nanofiltration -- 5.4.1 An Analytical Solution to Transport of Three Ions with Different Charges -- 5.4.2 Determining Single‐Ion Permeances Using NF with Trace Ions -- 5.4.3 "Under‐Osmotic" Operation -- 5.4.4 Deviations from Local Electrical Neutrality in Ultrathin Barrier Layers -- 5.5 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 6 Chemical Speciation Effects in Nanofiltration Separation -- 6.1 Introduction -- 6.2 Chemical Speciation -- 6.2.1 Effect of Ionic Strength on Chemical Speciation -- 6.2.2 Effects of Temperature and Pressure on Chemical Speciation -- 6.3 Review of Effects of Solute Size, Charge, and Concentration on Rejection by NF Membranes -- 6.4 Solution Processes Influencing Speciation and Rejection -- 6.4.1 Acid-Base Transformations -- 6.4.2 Complexation -- 6.4.3 Precipitation -- 6.4.4 Oxidation-Reduction -- 6.4.5 Adsorption -- 6.5 Effect of Concentration Polarization on Speciation and Rejection. 6.5.1 Exceedance of Solubility Product and Precipitation of Solids -- 6.5.2 Aggregation of Macromolecules and Precipitated Solids -- 6.5.3 Formation of Alternative Complexes and Multinuclear Species -- 6.6 Conclusions -- Nomenclature and Symbols -- Abbreviations -- References -- Chapter 7 Fouling in Nanofiltration -- 7.1 Introduction -- 7.2 Fouling Characterization -- 7.2.1 Flux Measurement and Fouling Protocols -- 7.2.1.1 Membrane Compaction -- 7.2.1.2 Variation of Membrane Permeability with Solution Chemistry -- 7.2.1.3 Fouling Study Protocols -- 7.2.2 Normalization of Membrane Performance -- 7.2.3 Water Fouling Potential -- 7.2.3.1 Water Analysis -- 7.2.3.2 Silt Density Index (SDI) -- 7.2.3.3 Modified Fouling Index (MFI0.45) -- 7.2.3.4 Modified Fouling Index UF (MFI‐UF) -- 7.2.3.5 Biofilm Formation Rate (BFR) -- 7.2.4 Membrane Autopsy -- 7.3 Fouling Mechanisms -- 7.3.1 Concentration Polarization (CP) -- 7.3.2 Osmotic Pressure -- 7.3.3 Solute Adsorption -- 7.3.4 Gel Layer Formation -- 7.3.5 Cake Formation and Pore Blocking -- 7.3.6 Critical Flux and Operating Conditions -- 7.3.7 Additional Fouling Mechanisms -- 7.4 Organic Fouling -- 7.4.1 Introduction and Definition of Organic Fouling -- 7.4.2 Common Organic Foulants -- 7.4.3 Adsorption of Organic Matter -- 7.4.4 Gel Layer Formation -- 7.4.5 Cake Formation -- 7.4.6 Pore Blocking/Plugging -- 7.4.7 Impact of Solute-Solute Interactions and Salts -- 7.4.8 Impact of Fouling on Retention -- 7.5 Scaling -- 7.5.1 Introduction and Definition of Scaling -- 7.5.2 Solubility and Supersaturation of Salts -- 7.5.3 Common Scalants -- 7.5.3.1 Calcium Sulfate (CaSO4) Scale -- 7.5.3.2 Calcium Carbonate (CaCO3) Scale -- 7.5.3.3 Barium Sulfate (BaSO4) and Strontium Sulfate (SrSO4) Scale -- 7.5.3.4 Silica Scale -- 7.5.3.5 Calcium Phosphate Scale -- 7.5.4 Characterization of Scales. 7.5.5 Mechanisms of Scale Formation. |
Record Nr. | UNINA-9910554830603321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020] |
Descrizione fisica | 1 online resource (1242 pages) |
Disciplina | 660.284245 |
Soggetto topico | Nanofiltration |
ISBN |
3-527-82497-9
3-527-82496-0 3-527-82498-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword (Second Edition, 2020) -- Foreword (First Edition, 2005) -- Acknowledgements -- Dedication -- Introduction -- Part I Principles -- Chapter 1 History of Nanofiltration Membranes from 1960 to 1990 -- 1.1 Overview -- 1.2 Introduction -- 1.3 First‐Generation NF Membranes -- 1.3.1 Cellulose Acetate Asymmetric Membranes -- 1.3.2 Deficiencies in Cellulosic Membranes -- 1.3.3 Polyelectrolyte Complexes -- 1.3.4 Polyamide Membranes -- 1.3.5 Polysulfones and Other Polymer Membranes -- 1.4 Early Studies of Charged Reverse Osmosis (Hyperfiltration) Membranes -- 1.4.1 Dynamic Membranes -- 1.4.2 Polyelectrolyte Membranes -- 1.5 Early Models of NF Selectivity -- 1.6 Negative Salt Rejection -- 1.6.1 Solutions of One Electrolyte -- 1.6.2 Separation by Negative Salt Rejection -- 1.7 Early Development of Industrial NF: Ionic Modification of Asymmetric Cellulose Acetate -- 1.8 Early NF Composites -- 1.8.1 General -- 1.8.2 Plasma Polymerization -- 1.8.3 Graft Polymerization -- 1.9 NF Composites of the 1980s -- 1.9.1 Piperazineamide Membranes -- 1.9.2 Other NF Interfacially Produced Composites -- 1.9.3 Modification of RO Membrane Composites to Bring Them into the NF Range -- 1.10 Composites Produced by Noninterfacial Cross‐linking -- 1.10.1 Polyvinyl Alcohol Composites -- 1.10.2 Sulfonated Engineering Plastics as Selective Barriers -- 1.10.3 Polyethyleneimine -- 1.11 Chemically Stable NF Membranes -- 1.11.1 Chemically Stable Polymeric Asymmetric Membranes -- 1.11.2 Oxidant and pH‐Stable Composite Membranes -- 1.11.3 Solvent‐Stable NF Composites -- 1.11.4 Chemically Stable Inorganic NF and Polymeric/Inorganic Hybrids -- 1.12 Conclusions -- Abbreviations -- References -- Chapter 2 Nanofiltration Membrane Materials and Preparation -- 2.1 General Introduction -- 2.2 Phase Inversion -- 2.2.1 Introduction.
2.2.2 Basic Principles -- 2.2.3 Polymer Type -- 2.2.4 Casting Solution -- 2.2.4.1 Polymer Concentration -- 2.2.4.2 Addition of Volatile Cosolvents -- 2.2.4.3 Addition of Nonsolvents -- 2.2.4.4 Addition of Other Additives -- 2.2.5 Postcasting Evaporation -- 2.2.6 Coagulation Bath -- 2.2.7 Post‐treatment -- 2.2.7.1 Annealing -- 2.2.7.2 Cross‐linking -- 2.2.7.3 Drying -- 2.3 Interfacial Polymerization -- 2.3.1 Introduction -- 2.3.2 Support Materials -- 2.3.3 Monomers -- 2.3.3.1 Amines -- 2.3.3.2 Acyl Chlorides -- 2.3.3.3 Other Polymer Types -- 2.3.4 Monomer Concentrations and Reaction Time -- 2.3.5 Solvent -- 2.3.6 Additives -- 2.3.7 New Approaches -- 2.3.8 Post‐treatment -- 2.4 Coating -- 2.4.1 Introduction -- 2.4.2 Examples -- 2.5 Surface Modification -- 2.5.1 Introduction -- 2.5.2 Plasma Treatment -- 2.5.3 Organic Reactions -- 2.5.3.1 Covalent Linking of Monomers -- 2.5.3.2 Sulfonation -- 2.5.3.3 Nitration -- 2.5.4 Polymer Grafting -- 2.5.5 Photochemical Modification -- 2.6 Ceramic Membranes -- 2.6.1 Introduction -- 2.6.2 General Synthesis Procedure -- 2.6.2.1 Sol -- 2.6.2.2 Coating -- 2.6.2.3 Gel -- 2.6.2.4 Sintering -- 2.6.3 Membrane Types -- 2.6.3.1 Titania -- 2.6.3.2 Zirconia -- 2.6.3.3 Alumina -- 2.6.3.4 Silica -- 2.6.3.5 Mixed Oxides -- 2.6.3.6 Organic Doped Ceramic Membranes -- 2.6.4 Supports -- 2.6.5 Surface Modification -- 2.7 Hollow Fiber Preparation -- 2.7.1 Introduction -- 2.7.2 General Synthesis Procedure -- 2.7.3 Composite Hollow Fiber Membranes -- 2.8 Commercial and Novel (SR)NF Membranes -- 2.8.1 Commercial (SR)NF Membranes -- 2.8.2 Novel (SR)NF Membranes -- 2.9 Outlook -- Acknowledgements -- Abbreviations -- References -- Chapter 3 Nanofiltration Module Design and Operation -- 3.1 Introduction -- 3.1.1 Role of the Module -- 3.1.2 Concentration Polarization and Cross‐Flow -- 3.1.3 Fouling -- 3.2 Module Types and Characteristics. 3.2.1 Plate and Frame -- 3.2.2 Spiral Wound -- 3.2.3 Tubular -- 3.2.4 Hollow Fiber and Capillary -- 3.2.5 Others -- 3.2.5.1 Submerged Membranes -- 3.2.5.2 High Shear Devices -- 3.2.5.3 Laboratory Modules -- 3.2.6 Module Characteristics -- 3.3 Spiral Wound Module (SWM) - Design Features -- 3.3.1 Feed Channel Spacers -- 3.3.2 Modeling and Optimization -- 3.4 Strategies to Improve Control of Concentration Polarization -- 3.4.1 Process Limitation by Concentration Polarization -- 3.4.2 High Shear - Vibrating the Membrane -- 3.4.3 High Shear - Rotor/Stator Modules -- 3.4.4 Two‐Phase Flow -- 3.4.5 Unsteady Shear Comparison -- 3.5 System Design and Operation -- 3.5.1 System Configurations -- 3.5.2 Diafiltration -- 3.5.3 Reflux‐Recycle Cascade (Combining RO and NF) -- 3.5.4 Batch Operation - Energy Saving (Closed Circuit) -- 3.6 Conclusions -- Nomenclature -- Subscripts -- Greek Symbols -- Abbreviations -- References -- Chapter 4 Nanofiltration Membrane Characterization -- 4.1 Introduction -- 4.2 Structural Characteristics -- 4.2.1 Microscopy -- 4.2.2 Pore Size -- 4.2.2.1 Solvent Permeation and Rejection of Probe Solutes -- 4.2.2.2 Spectroscopic and Scattering Methods -- 4.2.3 Thickness and Morphology of the Active Layer -- 4.2.4 Surface Characteristics -- 4.2.4.1 Atomic Force Microscopy (AFM) -- 4.2.4.2 Contact Angle -- 4.2.5 Membrane Swelling and Solvent Uptake -- 4.2.6 Chemical Structure -- 4.2.6.1 Attenuated Total Reflection-Fourier Transform InfraRed Spectroscopy (ATR-FTIR) -- 4.2.6.2 X‐ray Photoelectron Spectroscopy (XPS) -- 4.2.6.3 Rutherford Backscattering Spectroscopy (RBS) -- 4.2.7 Mechanical Properties -- 4.3 Charge Related Parameters -- 4.3.1 Electrokinetic Measurements -- 4.3.2 Titration and Ion Exchange -- 4.3.3 Membrane Potential -- 4.3.4 Electrochemical Impedance Spectroscopy -- 4.4 Nanofiltration Membranes for Nonaqueous Systems. 4.5 Conclusions -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 5 Modeling Nanofiltration of Electrolyte Solutions -- 5.1 Introduction -- 5.2 Basic Equations and Concepts -- 5.2.1 Derivation of Equations -- 5.2.1.1 Single Salts -- 5.2.1.2 Trace Ions -- 5.2.2 Solution of Transport Equations for Macroscopically Homogeneous Membranes: Single Salts and Trace Ions -- 5.2.2.1 Spiegler-Kedem Approximation -- 5.2.2.2 Trace Ions -- 5.2.3 Specification of Phenomenological Coefficients Within the Scope of a Model of Straight, Narrow Capillaries -- 5.3 Nanopore Models of NF -- 5.3.1 Steric Exclusion and Hindrance -- 5.3.2 Local Equilibrium Partitioning Mechanisms -- 5.3.2.1 Donnan Exclusion -- 5.3.2.2 Superposition of Donnan Exclusion and Steric Hindrance/Exclusion -- 5.3.2.3 Dielectric Exclusion -- 5.4 Solution‐Diffusion‐Electromigration Models of Nanofiltration -- 5.4.1 An Analytical Solution to Transport of Three Ions with Different Charges -- 5.4.2 Determining Single‐Ion Permeances Using NF with Trace Ions -- 5.4.3 "Under‐Osmotic" Operation -- 5.4.4 Deviations from Local Electrical Neutrality in Ultrathin Barrier Layers -- 5.5 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 6 Chemical Speciation Effects in Nanofiltration Separation -- 6.1 Introduction -- 6.2 Chemical Speciation -- 6.2.1 Effect of Ionic Strength on Chemical Speciation -- 6.2.2 Effects of Temperature and Pressure on Chemical Speciation -- 6.3 Review of Effects of Solute Size, Charge, and Concentration on Rejection by NF Membranes -- 6.4 Solution Processes Influencing Speciation and Rejection -- 6.4.1 Acid-Base Transformations -- 6.4.2 Complexation -- 6.4.3 Precipitation -- 6.4.4 Oxidation-Reduction -- 6.4.5 Adsorption -- 6.5 Effect of Concentration Polarization on Speciation and Rejection. 6.5.1 Exceedance of Solubility Product and Precipitation of Solids -- 6.5.2 Aggregation of Macromolecules and Precipitated Solids -- 6.5.3 Formation of Alternative Complexes and Multinuclear Species -- 6.6 Conclusions -- Nomenclature and Symbols -- Abbreviations -- References -- Chapter 7 Fouling in Nanofiltration -- 7.1 Introduction -- 7.2 Fouling Characterization -- 7.2.1 Flux Measurement and Fouling Protocols -- 7.2.1.1 Membrane Compaction -- 7.2.1.2 Variation of Membrane Permeability with Solution Chemistry -- 7.2.1.3 Fouling Study Protocols -- 7.2.2 Normalization of Membrane Performance -- 7.2.3 Water Fouling Potential -- 7.2.3.1 Water Analysis -- 7.2.3.2 Silt Density Index (SDI) -- 7.2.3.3 Modified Fouling Index (MFI0.45) -- 7.2.3.4 Modified Fouling Index UF (MFI‐UF) -- 7.2.3.5 Biofilm Formation Rate (BFR) -- 7.2.4 Membrane Autopsy -- 7.3 Fouling Mechanisms -- 7.3.1 Concentration Polarization (CP) -- 7.3.2 Osmotic Pressure -- 7.3.3 Solute Adsorption -- 7.3.4 Gel Layer Formation -- 7.3.5 Cake Formation and Pore Blocking -- 7.3.6 Critical Flux and Operating Conditions -- 7.3.7 Additional Fouling Mechanisms -- 7.4 Organic Fouling -- 7.4.1 Introduction and Definition of Organic Fouling -- 7.4.2 Common Organic Foulants -- 7.4.3 Adsorption of Organic Matter -- 7.4.4 Gel Layer Formation -- 7.4.5 Cake Formation -- 7.4.6 Pore Blocking/Plugging -- 7.4.7 Impact of Solute-Solute Interactions and Salts -- 7.4.8 Impact of Fouling on Retention -- 7.5 Scaling -- 7.5.1 Introduction and Definition of Scaling -- 7.5.2 Solubility and Supersaturation of Salts -- 7.5.3 Common Scalants -- 7.5.3.1 Calcium Sulfate (CaSO4) Scale -- 7.5.3.2 Calcium Carbonate (CaCO3) Scale -- 7.5.3.3 Barium Sulfate (BaSO4) and Strontium Sulfate (SrSO4) Scale -- 7.5.3.4 Silica Scale -- 7.5.3.5 Calcium Phosphate Scale -- 7.5.4 Characterization of Scales. 7.5.5 Mechanisms of Scale Formation. |
Record Nr. | UNINA-9910830097903321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanofiltration / / edited by Muhammad Akhyar Farrukh |
Pubbl/distr/stampa | London, England : , : IntechOpen, , [2018] |
Descrizione fisica | 1 online resource (162 pages) : illustrations |
Disciplina | 660.284245 |
Soggetto topico | Nanofiltration |
ISBN |
1-83881-477-9
1-78923-377-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910317807303321 |
London, England : , : IntechOpen, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanofiltration membrane for water purification / / Akil Ahmad, Mohammed B. Alshammari, editors |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (273 pages) |
Disciplina | 660.284245 |
Collana | Sustainable materials and technology |
Soggetto topico |
Nanofiltration
Water - Purification - Membrane filtration |
ISBN | 981-19-5315-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction and basic principle of Nanofiltration membrane Process -- 2. Synthesis and characterization of nanofiltration membrane -- 3. Pretreatments before the nanofiltration technique -- 4. Graphene oxide based nanofiltration membrane for wastewater treatment -- 5. Nano-filtration application in the textile industry for wastewater treatment -- 6. Dye removal from industrial water using nanofiltration membrane -- 7. Volatile organic compounds removal by nanofiltration from groundwater -- 8. Desalination through nanofiltration technique -- 9. Modified nanofiltration membrane for wastewater treatment -- 10. Performance of Ceramic Nanofiltration Membranes in Water Purification -- 11. Fouling Mechanisms in Nanofiltration Membranes -- 12. Nanofiltration Technology Applied for Peat and Wetland Saline Water -- 13. Removal of Pollutants from Wastewater through Nanofiltration: A review. . |
Record Nr. | UNINA-9910647779403321 |
Singapore : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanofiltration membranes : synthesis, characterization, and applications / / Lau Woei Jye, Ahmad Fauzi Ismail |
Autore | Jye Lau Woei |
Pubbl/distr/stampa | Boca Raton, FL : , : CRC Press, Taylor & Francis Group, , [2017] |
Descrizione fisica | 1 online resource (184 pages) : illustrations |
Disciplina | 660/.284245 |
Soggetto topico |
Membrane separation
Membrane filters Nanofiltration |
ISBN |
1-315-18147-9
1-351-72227-1 1-4987-5139-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction -- 2. Synthesis of nanofiltration membrane -- 3. Advanced materials in nanofiltration membrane -- 4. Technical challenges and approaches in nanofiltration membrane fabrication -- 5. Characterization of nanofiltration membrane -- 6. Applications of nanofiltration membrane. |
Record Nr. | UNINA-9910155241503321 |
Jye Lau Woei | ||
Boca Raton, FL : , : CRC Press, Taylor & Francis Group, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanomaterials for environmental protection / / edited by Boris I. Kharisov, Oxana V. Kharissova, H. V. Rasika Dias |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2014 |
Descrizione fisica | 1 online resource (594 p.) |
Disciplina | 628.028/4 |
Soggetto topico |
Sanitary engineering - Equipment and supplies
Environmental protection - Equipment and supplies Water - Purification - Materials Nanostructured materials Nanofiltration |
ISBN |
1-118-84554-4
1-118-84553-6 1-118-84535-8 |
Classificazione | TEC021000SCI026000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Appendix 1.B Ions (Oxides, Hydrides, Peroxides, and Hydroxides) Removed by Precipitation Due to the Alteration of Eh and pH in Groundwater by ZVMAppendix 1.C Half Reactions and Redox Potentials Associated with ZVM; References; Chapter 2 Nanostructured Metal Oxides for Wastewater Disinfection; 2.1 Introduction; 2.2 Photoactive Metal Oxides; 2.3 Kinetics and Reaction Mechanisms; 2.4 Visible Light Absorbing Semiconductors; 2.5 Slurries or Immobilized Photocatalyst; 2.6 TiO2 Particles and Nanotubes; 2.7 Photocatalysis on TiO2 Nanotubes; 2.8 Photoelectrocatalysis on TDN
2.9 Other Nanostructured Metal Oxides2.10 Conclusions; References; Chapter 3 Cu2O-Based Nanocomposites for Environmental Protection: Relationship between Structure and Photocatalytic Activity, Application, and Mechanism; 3.1 Introduction; 3.2 Structural Feature and Cu2O Modification; 3.3 Cu2O-Based Nanocomposites for Environmental Protection; 3.4 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Multifunctional Nanocomposites for Environmental Remediation; 4.1 Introduction; 4.2 Multifunctional Nanocomposites Development: From Fabrication to Processing 4.3 Characterization and Property Analysis of Multifunctional Nanocomposites4.4 Environmental Remediation through Multifunctional Nanocomposites; 4.5 Summary; References; Chapter 5 Nanomaterials for the Removal of Volatile Organic Compounds from Aqueous Solutions; 5.1 Introduction; 5.2 NMs for BTEX Removal; 5.3 Nanomaterials for Chlorobenzene Removal; 5.4 NMs for Chlorinated Alkenes Removal; 5.5 NMs for Phenol Removal; 5.6 The Impact of NMs on VOC Removal by Other Processes; 5.7 Challenges in the Use of NMs for VOC Remediation; References Chapter 6 Hybrid Metal Nanoparticle-Containing Polymer Nanofibers for Environmental Applications6.1 Introduction; 6.2 Challenges of Environmental Nanotechnology; 6.3 Electrospinning Technology; 6.4 Fabrication of Hybrid Metal NP-Containing Polymer Nanofibers; 6.5 Environmental Applications of Hybrid Metal NP-Containing Polymer Nanofibers; 6.6 Conclusions and Outlook; References; Chapter 7 Nanomaterials on the Basis of Chelating Agents, Metal Complexes, and Organometallics for Environmental Purposes; 7.1 Introduction; 7.2 Elemental Metals Functionalized with Chelating Ligands 7.3 N-Containing Ligands |
Record Nr. | UNINA-9910132190203321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanomaterials for environmental protection / / edited by Boris I. Kharisov, Oxana V. Kharissova, H. V. Rasika Dias |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2014 |
Descrizione fisica | 1 online resource (594 p.) |
Disciplina | 628.028/4 |
Soggetto topico |
Sanitary engineering - Equipment and supplies
Environmental protection - Equipment and supplies Water - Purification - Materials Nanostructured materials Nanofiltration |
ISBN |
1-118-84554-4
1-118-84553-6 1-118-84535-8 |
Classificazione | TEC021000SCI026000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Appendix 1.B Ions (Oxides, Hydrides, Peroxides, and Hydroxides) Removed by Precipitation Due to the Alteration of Eh and pH in Groundwater by ZVMAppendix 1.C Half Reactions and Redox Potentials Associated with ZVM; References; Chapter 2 Nanostructured Metal Oxides for Wastewater Disinfection; 2.1 Introduction; 2.2 Photoactive Metal Oxides; 2.3 Kinetics and Reaction Mechanisms; 2.4 Visible Light Absorbing Semiconductors; 2.5 Slurries or Immobilized Photocatalyst; 2.6 TiO2 Particles and Nanotubes; 2.7 Photocatalysis on TiO2 Nanotubes; 2.8 Photoelectrocatalysis on TDN
2.9 Other Nanostructured Metal Oxides2.10 Conclusions; References; Chapter 3 Cu2O-Based Nanocomposites for Environmental Protection: Relationship between Structure and Photocatalytic Activity, Application, and Mechanism; 3.1 Introduction; 3.2 Structural Feature and Cu2O Modification; 3.3 Cu2O-Based Nanocomposites for Environmental Protection; 3.4 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Multifunctional Nanocomposites for Environmental Remediation; 4.1 Introduction; 4.2 Multifunctional Nanocomposites Development: From Fabrication to Processing 4.3 Characterization and Property Analysis of Multifunctional Nanocomposites4.4 Environmental Remediation through Multifunctional Nanocomposites; 4.5 Summary; References; Chapter 5 Nanomaterials for the Removal of Volatile Organic Compounds from Aqueous Solutions; 5.1 Introduction; 5.2 NMs for BTEX Removal; 5.3 Nanomaterials for Chlorobenzene Removal; 5.4 NMs for Chlorinated Alkenes Removal; 5.5 NMs for Phenol Removal; 5.6 The Impact of NMs on VOC Removal by Other Processes; 5.7 Challenges in the Use of NMs for VOC Remediation; References Chapter 6 Hybrid Metal Nanoparticle-Containing Polymer Nanofibers for Environmental Applications6.1 Introduction; 6.2 Challenges of Environmental Nanotechnology; 6.3 Electrospinning Technology; 6.4 Fabrication of Hybrid Metal NP-Containing Polymer Nanofibers; 6.5 Environmental Applications of Hybrid Metal NP-Containing Polymer Nanofibers; 6.6 Conclusions and Outlook; References; Chapter 7 Nanomaterials on the Basis of Chelating Agents, Metal Complexes, and Organometallics for Environmental Purposes; 7.1 Introduction; 7.2 Elemental Metals Functionalized with Chelating Ligands 7.3 N-Containing Ligands |
Record Nr. | UNINA-9910824178903321 |
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured polymer membranes . Volume 2 Applications / / Visakh P.M. and Olga Nazarenko |
Autore | P. M Visakh |
Pubbl/distr/stampa | Beverly, Massachusetts : , : Scrivener Publishing |
Descrizione fisica | 1 online resource (555 p.) |
Disciplina | 660/.28424 |
Soggetto topico |
Membranes (Technology) - Materials
Nanostructured materials Polymers Nanofiltration Membrane separation |
ISBN |
1-118-83180-2
1-118-83179-9 1-118-83182-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | volume 1. Processing and characterization -- volume 2. Applications. |
Record Nr. | UNINA-9910134876503321 |
P. M Visakh | ||
Beverly, Massachusetts : , : Scrivener Publishing | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured polymer membranes . Volume 2 Applications / / Visakh P.M. and Olga Nazarenko |
Autore | P. M Visakh |
Pubbl/distr/stampa | Beverly, Massachusetts : , : Scrivener Publishing |
Descrizione fisica | 1 online resource (555 p.) |
Disciplina | 660/.28424 |
Soggetto topico |
Membranes (Technology) - Materials
Nanostructured materials Polymers Nanofiltration Membrane separation |
ISBN |
1-118-83180-2
1-118-83179-9 1-118-83182-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | volume 1. Processing and characterization -- volume 2. Applications. |
Record Nr. | UNINA-9910830069503321 |
P. M Visakh | ||
Beverly, Massachusetts : , : Scrivener Publishing | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pretreatment for reverse osmosis desalination / / Nikolay Voutchkov |
Autore | Voutchkov Nikolay |
Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2017 |
Descrizione fisica | 1 online resource (291 pages) : illustrations (some color) |
Disciplina | 628.167 |
Soggetto topico |
Saline water conversion - Reverse osmosis process
Membranes (Technology) Nanofiltration |
ISBN | 0-12-809945-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ; Machine generated contents note: ; 1. Introduction to Saline Water Pretreatment -- ; 1.1. Purpose of Pretreatment -- ; 1.2. Membrane-Fouling Mechanisms -- References -- ; 2. Membrane Foulants and Saline Water Pretreatment -- ; 2.1. Introduction -- ; 2.2. Particulate Foulants -- ; 2.3. Colloidal Foulants -- ; 2.4. Mineral-Scaling Foulants -- ; 2.5. Natural Organic Foulants -- ; 2.6. Microbial Foulants -- ; 2.7. Combined Effect of Various Foulants on Membrane Performance -- References -- ; 3. Diagnostics of Membrane Fouling and Scaling -- ; 3.1. Purpose of Membrane Fouling and Scaling Diagnostics -- ; 3.2. Typical Membrane-Fouling Phenomena -- ; 3.3. Typical Diagnostics Procedures -- ; 3.4. Membrane Autopsy -- References -- ; 4. Saline Water Intakes and Pretreatment -- ; 4.1. Introduction -- ; 4.2. Subsurface Intakes -- ; 4.3. Open Intakes -- References -- ; 5. Pretreatment by Screening -- ; 5.1. Introduction -- ; 5.2. Bar, Band, and Drum Screens -- ; 5.3. Microscreens -- ; 5.4. Cartridge Filters -- References -- ; 6. Conditioning of Saline Water -- ; 6.1. Introduction -- ; 6.2. Coagulation -- ; 6.3. Flocculation -- ; 6.4. Addition of Scale Inhibitors -- ; 6.5. Addition of Sodium Hydroxide -- ; 6.6. Addition of Biocides -- ; 6.7. Addition of Reducing Compounds -- ; 6.8. Planning and Design Considerations for Source Water Conditioning -- References -- ; 7. Sand Removal, Sedimentation, and Dissolved Air Flotation -- ; 7.1. Introduction -- ; 7.2. Sand Removal Systems -- ; 7.3. Sedimentation Tanks -- ; 7.4. Dissolved Air Flotation Clarifiers -- ; 7.5. Construction Costs of Lamella Settlers and DAF Clarifiers -- References -- ; 8. Granular Media Filtration -- ; 8.1. Introduction -- ; 8.2. The Filter Operation Cycle -- ; 8.3. Key Filtration System Components -- ; 8.4. Filter Types and Configurations -- ; 8.5. Filter Performance -- ; 8.6. Source Water Pretreatment Prior to Granular Media Filtration -- ; 8.7. Planning and Design Considerations -- ; 8.8. Construction Costs of Granular Media Filtration Systems -- References -- ; 9. Membrane Filtration -- ; 9.1. Introduction -- ; 9.2. The Membrane Filtration Process -- ; 9.3. Key Filtration System Components -- ; 9.4. Filter Types and Configurations -- ; 9.5. Filter Performance -- ; 9.6. Planning and Design Considerations -- ; 9.7. Overview of Membrane Products Used for Saline Water Pretreatment -- ; 9.8. Design Examples -- ; 9.9. Construction Costs of Membrane Pretreatment System -- References -- ; 10. Comparison of Granular Media and Membrane Pretreatment -- ; 10.1. Introduction -- ; 10.2. Effect of Source Water Quality on Performance -- ; 10.3. Surface Area Requirements -- ; 10.4. Quantity and Quality of Generated Residuals -- ; 10.5. Chemical Use -- ; 10.6. Power Use -- ; 10.7. Economy of Scale -- ; 10.8. Filtration Media Replacement Costs -- ; 10.9. Commoditization -- ; 10.10. Water Production Costs -- ; 10.11. Concluding Remarks -- References -- ; 11. Guidelines for Pretreatment System Selection -- ; 11.1. Introduction -- ; 11.2. Pretreatment Selection Guidelines -- ; 11.3. Additional Considerations for Selection of Pretreatment -- References -- ; 12. Reverse Osmosis System Design and Pretreatment -- ; 12.1. Overview of Typical SWRO Desalination System -- ; 12.2. SWRO Membrane Elements -- Key Types and Pretreatment Considerations -- ; 12.3. Internally Staged Membrane Configuration -- Fouling Implications -- ; 12.4. Alternative SWRO-Membrane Systems and Pretreatment -- ; 12.5. Alternatives for Control of Microbial Fouling -- References. |
Record Nr. | UNINA-9910583014303321 |
Voutchkov Nikolay | ||
Amsterdam, Netherlands : , : Elsevier, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|