top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational mathematics, nanoelectronics, and astrophysics : cmna 2018, indore, india, november 1-3 / / edited by Shaibal Mukherjee, 3 others
Computational mathematics, nanoelectronics, and astrophysics : cmna 2018, indore, india, november 1-3 / / edited by Shaibal Mukherjee, 3 others
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (202 pages) : illustrations
Disciplina 700
Collana Springer Proceedings in Mathematics and Statistics
Soggetto topico Nanoelectronics - Mathematics
Numerical analysis - Data processing
Astrophysics - Mathematics
Anàlisi numèrica
Processament de dades
Nanoelectrònica
Astrofísica
Matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 981-15-9708-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466547303316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational mathematics, nanoelectronics, and astrophysics : cmna 2018, indore, india, november 1-3 / / edited by Shaibal Mukherjee, 3 others
Computational mathematics, nanoelectronics, and astrophysics : cmna 2018, indore, india, november 1-3 / / edited by Shaibal Mukherjee, 3 others
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (202 pages) : illustrations
Disciplina 700
Collana Springer Proceedings in Mathematics and Statistics
Soggetto topico Nanoelectronics - Mathematics
Numerical analysis - Data processing
Astrophysics - Mathematics
Anàlisi numèrica
Processament de dades
Nanoelectrònica
Astrofísica
Matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 981-15-9708-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484739203321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoelectronic Materials : Fundamentals and Applications / / by Loutfy H. Madkour
Nanoelectronic Materials : Fundamentals and Applications / / by Loutfy H. Madkour
Autore Madkour Loutfy H
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XLV, 783 p. 669 illus., 543 illus. in color.)
Disciplina 620.115
Collana Advanced Structured Materials
Soggetto topico Nanoelectrònica
Nanotecnologia
Nanotechnology
Optical materials
Electronic materials
Engineering—Materials
Optical and Electronic Materials
Materials Engineering
Soggetto genere / forma Llibres electrònics
ISBN 9783030216207
9783030216214 (e-book)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Nanotechnology (Nt) and Nanomaterials (Nms) -- Principles of Computational Simulations Devices and Characterization of Nanoelectronic Materials -- Where are Nanomaterials (Nms) Found -- Benefits of Nanomaterials and Nanowire Geometry -- Why So Much Interest in Nanomaterials (Nms) -- Examples of Nanomaterials With Various Morphologies -- Carbon Nanomaterials and Two—Dimensional Transition Metal Dichalcogenides (2d Tmdcs) -- Nanoelectronics and Role of Surfaces Interfaces -- Classification of Nanostructured Materials -- Processing of Nanomaterials (Nms) -- Techniques for Elaboration of Nanomaterials -- Synthesis Methods for 2d Nanostructured Materials, Nanoparticles (Nps), Nanotubes (Nts) and Nanowires (Nws) -- Chemistry and Physics for Nanostructures Semiconductivity -- Roperties of Nanostructured Materials (Nsms) and Physicochemical Properties of (Nps) -- Applications of Nanomaterials and Nanoparticles -- Environmental Impact of Nanotechnology and Novel Applications of Nano Materials and Nano Devices -- Interfacing Biology Systems with Nanoelectronics -- Future Perspectives -- Conclusions.
Record Nr. UNINA-9910337933503321
Madkour Loutfy H  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Autore Nedjalkov Mihail
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 214 pages) : illustrations
Disciplina 574.192
Collana Modeling and simulation in science, engineering & technology
Soggetto topico Electron transport - Mathematical models
Microelectronics - Mathematical models
Nanoelectronics - Mathematical models
Charge carrier processes
Transport d'electrons
Microelectrònica
Nanoelectrònica
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67917-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space -- 3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis -- Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications -- 7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms.
7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity -- 8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing -- 10.1 Biasing of Initial and Boundary Conditions -- 10.1.1 Initial Condition -- 10.1.2 Boundary Conditions -- 10.2 Biasing of the Natural Evolution -- 10.2.1 Free Flight -- 10.2.2 Phonon Scattering -- 10.3 Self-Consistent Event Biasing -- Part III Stochastic Algorithms for Quantum Transport -- 11 Wigner Function Modeling -- 12 Evolution in a Quantum Wire -- 12.1 Formulation of the Problem -- 12.2 Generalized Wigner Equation -- 12.3 Equation of Motion of the Diagonal Elements -- 12.4 Closure at First-Off-Diagonal Level -- 12.5 Closure at Second-Off-Diagonal Level -- 12.5.1 Approximation of the fFOD+ Equation -- 12.5.1.1 Contribution from fSOD++, -- 12.5.1.2 Contribution from fSOD+,- -- 12.5.1.3 Correction from fSOD+-, -- 12.5.1.4 Correction from fSOD+,+.
Record Nr. UNINA-9910484446203321
Nedjalkov Mihail  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Autore Nedjalkov Mihail
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 214 pages) : illustrations
Disciplina 574.192
Collana Modeling and simulation in science, engineering & technology
Soggetto topico Electron transport - Mathematical models
Microelectronics - Mathematical models
Nanoelectronics - Mathematical models
Charge carrier processes
Transport d'electrons
Microelectrònica
Nanoelectrònica
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67917-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space -- 3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis -- Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications -- 7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms.
7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity -- 8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing -- 10.1 Biasing of Initial and Boundary Conditions -- 10.1.1 Initial Condition -- 10.1.2 Boundary Conditions -- 10.2 Biasing of the Natural Evolution -- 10.2.1 Free Flight -- 10.2.2 Phonon Scattering -- 10.3 Self-Consistent Event Biasing -- Part III Stochastic Algorithms for Quantum Transport -- 11 Wigner Function Modeling -- 12 Evolution in a Quantum Wire -- 12.1 Formulation of the Problem -- 12.2 Generalized Wigner Equation -- 12.3 Equation of Motion of the Diagonal Elements -- 12.4 Closure at First-Off-Diagonal Level -- 12.5 Closure at Second-Off-Diagonal Level -- 12.5.1 Approximation of the fFOD+ Equation -- 12.5.1.1 Contribution from fSOD++, -- 12.5.1.2 Contribution from fSOD+,- -- 12.5.1.3 Correction from fSOD+-, -- 12.5.1.4 Correction from fSOD+,+.
Record Nr. UNISA-996466553703316
Nedjalkov Mihail  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui