2D Materials / / edited by Chatchawal Wongchoosuk, Yotsarayuth Seekaew
| 2D Materials / / edited by Chatchawal Wongchoosuk, Yotsarayuth Seekaew |
| Pubbl/distr/stampa | London, England : , : IntechOpen, , 2019 |
| Descrizione fisica | 1 online resource (92 pages) |
| Disciplina | 620.115 |
| Soggetto topico |
Nanostructured materials
Nanocomposites (Materials) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910688587803321 |
| London, England : , : IntechOpen, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in diverse industrial applications of nanocomposites / / edited by Boreddy Reddy
| Advances in diverse industrial applications of nanocomposites / / edited by Boreddy Reddy |
| Pubbl/distr/stampa | Rijeka, Croatia : , : Intech, , [2011] |
| Descrizione fisica | 1 online resource (590 pages) : illustrations |
| Disciplina | 620.118 |
| Soggetto topico | Nanocomposites (Materials) |
| ISBN | 953-51-4511-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910138270403321 |
| Rijeka, Croatia : , : Intech, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in elastomers II Composites and nanocomposites / / P.M. Visakh
| Advances in elastomers II Composites and nanocomposites / / P.M. Visakh |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin ; ; New York, : Springer, c2013 |
| Descrizione fisica | 1 online resource (x, 428 pages) : illustrations (some color), portraits |
| Disciplina | 678 |
| Altri autori (Persone) | VisakhP. M |
| Collana | Advanced structures materials |
| Soggetto topico |
Elastomers
Composite materials Nanocomposites (Materials) |
| ISBN | 3-642-20928-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Recent Advances in Elastomers: Their composites and nanocomposites -- Elastomer Macrocomposites -- Elastomer Microcomposites -- Elastomer Nanocomposites -- Interphase modification and compatiblisation of rubber based composites -- Fully green elastomer composites -- Elastomers based bionanocomposites -- Elastomeric micro and nanocomposites for tire engineering: Past, Present and Future -- Bio-medical applications of elastomers, their blends, IPNs and composites -- Other applications -- Life cycle analysis of Their Composites and Nanocomposites. |
| Altri titoli varianti | Composites and nanocomposites |
| Record Nr. | UNINA-9910437800503321 |
| Berlin ; ; New York, : Springer, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in nanocomposites : synthesis, characterization and industrial applications / / edited by Boreddy Reddy
| Advances in nanocomposites : synthesis, characterization and industrial applications / / edited by Boreddy Reddy |
| Autore | Boreddy Reddy |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | IntechOpen, 2011 |
| Descrizione fisica | 1 online resource (982 pages) : illustrations |
| Disciplina | 620.118 |
| Soggetto topico | Nanocomposites (Materials) |
| Soggetto non controllato |
Composite Materials
Physical Sciences Engineering and Technology Materials Science Nanotechnology |
| ISBN | 953-51-4497-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910138266803321 |
Boreddy Reddy
|
||
| IntechOpen, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in polymer nanocomposite technology [[electronic resource] /] / Vikas Mittal
| Advances in polymer nanocomposite technology [[electronic resource] /] / Vikas Mittal |
| Autore | Mittal Vikas |
| Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2009 |
| Descrizione fisica | 1 online resource (455 p.) |
| Disciplina | 620.1/92 |
| Collana | Polymer science & technology series |
| Soggetto topico |
Inorganic polymers
Composite materials Nanotechnology Nanocomposites (Materials) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-61324-776-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""POLYMER NANOCOMPOSITES TECHNOLOGY:AN OVERVIEW""; ""ABSTRACT""; ""1.1. INTRODUCTION""; ""1.2. INORGANIC FILLER MATERIALS""; ""1.3. TYPE OF NANOCOMPOSITE MICROSTRUCTURES""; ""Monomer Intercalation Method""; ""Common Solvent Method or Solution Method""; ""Melt Intercalation Method""; ""1.4. POLYMER-LAYERED NANOCOMPOSITE SYSTEMS""; ""1.5. ADVANCED CLAY MODIFICATIONS""; ""1.6. PRESENCE OF EXCESS MODIFICATION & THERMALSTABILITY""; ""1.7. PREDICTION OF NANOCOMPOSITE PROPERTIES""; ""1.8. OTHER CONSIDERATIONS""
""REFERENCES""""ADVANCES IN POLARNANOCOMPOSITES TECHNOLOGY""; ""ABSTRACT""; ""2.1. INTRODUCTION""; ""2.2. NANOCOMPOSITES OF POLYAMIDES""; ""2.2.1. Effect of Polymer Molecular Weight""; ""2.2.2. Effect of Surfactant""; ""2.2.3. Effect of Polyamide Crystallization""; ""2.2.4. Other Polyamides""; ""2.2.5. Other Nanofillers""; ""2.3. NANOCOMPOSITES OF EPOXY""; ""2.3.1. Formation of Exfoliated Nanostructure""; ""2.3.2. Preparation Methods""; ""2.3.3. Effectof Carbon Nanotubes""; ""2.3.4. Plasticization Effect""; ""2.3.5. Some Properties of Epoxy Nanocomposites"" ""2.4. NANOCOMPOSITES OF POLYURETHANES""""2.4.1. Preparation Methods""; ""2.4.2. Waterborne Polyurethanes""; ""2.4.3. Polyurethane Foams""; ""2.5. NANOCOMPOSITES OF POLYIMIDES""; ""2.5.1. Preparation Methods""; ""2.5.2. Low k Nanocomposites""; ""2.5.3. Effect of Carbon Nanotubes""; ""2.6. SUMMARY""; ""REFERENCES""; ""POLYMER/CLAY NANOCOMPOSITES THROUGHEMULSION AND SUSPENSION POLYMERIZATION""; ""ABSTRACT""; ""3.1. INTRODUCTION""; ""3.2. POLYMERIZATION IN DISPERSED MEDIA""; ""3.2.1. Polymerization Techniques and Commercial Products""; ""Emulsion Polymerization""; ""Suspension Polymerization"" ""3.3. IMPLICATIONS OF THE TYPE OF CLAY IN THE SYNTHESIS OFWPCNS""""3.4.NANOCOM. SYNTHESMPOSITES USIS OF WATUSING PRISTERBORNESTINE CLAE POLYMERAY DISPERSR/CLAYSED IN WATER""; ""3.4.1. Pristine Clay in Aqueous Phase""; ""3.4.2. In-situ Modified Clay in Aqueous Phase""; ""3.4.3. In-situ Modification of Clay With Non-Cationic AmphiphilicCompounds in Aqueous Phase""; ""3.4.4. Blends of Polymeric Dispersions with Clay Dispersions""; ""3.5. SYNTHESIS OF WATERBORNE POLYMER/CLAYNANOCOMPOSITES USING ORGANICALY MODIFIED CLAYS(OMC)"" ""3.5.1. OMC Dispersed in the Water Phase and Proceeded as in EmulsionPolymerization""""3.5.2. OMC Dispersed in the Organic Phase Followed by Emulsion,Suspension or Miniemulsion Polymerization""; ""3.5.3. Molar Mass Distribution of WPCN Synthesized Using OMCs""; ""3.6. SUMMARY AND FUTURE TRENDS""; ""3.7. ACRONYMS""; ""REFERENCES""; ""STRUCTURE-PROPERTY CORRELATIONS ANDINTERACTIONS IN POLYMER/LAYERED-SILICATE NANOCOMPOSITES""; ""ABSTRACT""; ""4.1. INTRODUCTION""; ""4.2. NANOCOMPOSITE STRUCTURE""; ""4.2.1. Particle Structure""; ""4.2.2. Gallery Structureof the Silicate""; ""4.2.3. Exfoliation"" ""4.2.4. Silicate Network"" |
| Record Nr. | UNINA-9910456674803321 |
Mittal Vikas
|
||
| Hauppauge, N.Y., : Nova Science Publishers, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in polymer nanocomposite technology / / Vikas Mittal
| Advances in polymer nanocomposite technology / / Vikas Mittal |
| Autore | Mittal Vikas |
| Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2009 |
| Descrizione fisica | 1 online resource (viii, 445 pages) : illustrations (some color) |
| Disciplina | 620.1/92 |
| Collana | Polymer science & technology series |
| Soggetto topico |
Inorganic polymers
Composite materials Nanotechnology Nanocomposites (Materials) |
| ISBN | 1-61324-776-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA""; ""CONTENTS""; ""PREFACE""; ""POLYMER NANOCOMPOSITES TECHNOLOGY:AN OVERVIEW""; ""ABSTRACT""; ""1.1. INTRODUCTION""; ""1.2. INORGANIC FILLER MATERIALS""; ""1.3. TYPE OF NANOCOMPOSITE MICROSTRUCTURES""; ""Monomer Intercalation Method""; ""Common Solvent Method or Solution Method""; ""Melt Intercalation Method""; ""1.4. POLYMER-LAYERED NANOCOMPOSITE SYSTEMS""; ""1.5. ADVANCED CLAY MODIFICATIONS""; ""1.6. PRESENCE OF EXCESS MODIFICATION & THERMALSTABILITY""; ""1.7. PREDICTION OF NANOCOMPOSITE PROPERTIES""; ""1.8. OTHER CONSIDERATIONS""
""REFERENCES"" ""ADVANCES IN POLARNANOCOMPOSITES TECHNOLOGY""; ""ABSTRACT""; ""2.1. INTRODUCTION""; ""2.2. NANOCOMPOSITES OF POLYAMIDES""; ""2.2.1. Effect of Polymer Molecular Weight""; ""2.2.2. Effect of Surfactant""; ""2.2.3. Effect of Polyamide Crystallization""; ""2.2.4. Other Polyamides""; ""2.2.5. Other Nanofillers""; ""2.3. NANOCOMPOSITES OF EPOXY""; ""2.3.1. Formation of Exfoliated Nanostructure""; ""2.3.2. Preparation Methods""; ""2.3.3. Effect of Carbon Nanotubes""; ""2.3.4. Plasticization Effect""; ""2.3.5. Some Properties of Epoxy Nanocomposites"" ""2.4. NANOCOMPOSITES OF POLYURETHANES"" ""2.4.1. Preparation Methods""; ""2.4.2. Waterborne Polyurethanes""; ""2.4.3. Polyurethane Foams""; ""2.5. NANOCOMPOSITES OF POLYIMIDES""; ""2.5.1. Preparation Methods""; ""2.5.2. Low k Nanocomposites""; ""2.5.3. Effect of Carbon Nanotubes""; ""2.6. SUMMARY""; ""REFERENCES""; ""POLYMER/CLAY NANOCOMPOSITES THROUGHEMULSION AND SUSPENSION POLYMERIZATION""; ""ABSTRACT""; ""3.1. INTRODUCTION""; ""3.2. POLYMERIZATION IN DISPERSED MEDIA""; ""3.2.1. Polymerization Techniques and Commercial Products""; ""Emulsion Polymerization""; ""Suspension Polymerization"" ""3.3. IMPLICATIONS OF THE TYPE OF CLAY IN THE SYNTHESIS OFWPCNS"" ""3.4.NANOCOM. SYNTHESMPOSITES USIS OF WATUSING PRISTERBORNESTINE CLAE POLYMERAY DISPERSR/CLAYSED IN WATER""; ""3.4.1. Pristine Clay in Aqueous Phase""; ""3.4.2. In-situ Modified Clay in Aqueous Phase""; ""3.4.3. In-situ Modification of Clay With Non-Cationic Amphiphilic Compounds in Aqueous Phase""; ""3.4.4. Blends of Polymeric Dispersions with Clay Dispersions""; ""3.5. SYNTHESIS OF WATERBORNE POLYMER/CLAYNANOCOMPOSITES USING ORGANICALY MODIFIED CLAYS(OMC)"" ""3.5.1. OMC Dispersed in the Water Phase and Proceeded as in EmulsionPolymerization"" ""3.5.2. OMC Dispersed in the Organic Phase Followed by Emulsion,Suspension or Miniemulsion Polymerization""; ""3.5.3. Molar Mass Distribution of WPCN Synthesized Using OMCs""; ""3.6. SUMMARY AND FUTURE TRENDS""; ""3.7. ACRONYMS""; ""REFERENCES""; ""STRUCTURE-PROPERTY CORRELATIONS ANDINTERACTIONS IN POLYMER/LAYERED-SILICATE NANOCOMPOSITES""; ""ABSTRACT""; ""4.1. INTRODUCTION""; ""4.2. NANOCOMPOSITE STRUCTURE""; ""4.2.1. Particle Structure""; ""4.2.2. Gallery Structureof the Silicate""; ""4.2.3. Exfoliation""; ""4.2.4. Silicate Network"" |
| Record Nr. | UNINA-9910781772903321 |
Mittal Vikas
|
||
| Hauppauge, N.Y., : Nova Science Publishers, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of nanocomposite materials in dentistry / / edited by Abdullah M. Asiri, Inamuddin & Ali Mohammad
| Applications of nanocomposite materials in dentistry / / edited by Abdullah M. Asiri, Inamuddin & Ali Mohammad |
| Pubbl/distr/stampa | Duxford : , : Woodhead Publishing, , [2019] |
| Descrizione fisica | 1 online resource (368 pages) : illustrations |
| Disciplina | 617.695 |
| Collana | Woodhead Publishing series in biomaterials |
| Soggetto topico |
Dentistry
Nanocomposites (Materials) |
| ISBN | 0-12-813759-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583496303321 |
| Duxford : , : Woodhead Publishing, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of nanocomposite materials in drug delivery / / edited by Inamuddin, Abdullah M. Asiri and Ali Mohammad
| Applications of nanocomposite materials in drug delivery / / edited by Inamuddin, Abdullah M. Asiri and Ali Mohammad |
| Pubbl/distr/stampa | Duxford, England : , : Woodhead Publishing, , 2018 |
| Descrizione fisica | 1 online resource (988 pages) |
| Disciplina | 620.118 |
| Collana | Woodhead Publishing series in biomaterials |
| Soggetto topico | Nanocomposites (Materials) |
| ISBN | 0-12-813758-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583501403321 |
| Duxford, England : , : Woodhead Publishing, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad
| Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad |
| Pubbl/distr/stampa | Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] |
| Descrizione fisica | 1 online resource (332 pages) |
| Disciplina | 617.3 |
| Collana | Woodhead Publishing series in biomaterials |
| Soggetto topico |
Orthopedics
Nanocomposites (Materials) Nanocomposites (Materials) - Therapeutic use |
| ISBN | 0-12-813757-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Applications of Nanocomposite Materials in Orthopedics -- Copyright -- Contents -- List of contributors -- Preface -- 1: Biodegradable polymer matrix nanocomposites for bone tissue engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Bone tissue engineering -- 1.4 Biodegradable polymers used in the design of nanocomposites for bone tissue engineering -- 1.4.1 Natural biodegradable polymers -- 1.4.1.1 Chitosan -- 1.4.1.2 Alginates -- 1.4.1.3 Starches -- 1.4.1.4 Cellulose -- 1.4.1.5 Collagen -- 1.4.1.6 Gelatin -- 1.4.1.7 Hyaluronic acid (HA) -- 1.4.1.8 Dextran -- 1.4.2 Synthetic biodegradable polymers -- 1.4.2.1 Polylactic acid (PLA) -- 1.4.2.2 Poly(lactic-co-glycolic acid) (PLGA) -- 1.4.2.3 Poly(propylene fumarate) (PPF) -- 1.4.2.4 Poly(ε-caprolactone) (PCL) -- 1.5 Conclusion -- References -- 2: Electrospun hydrogels composites for bone tissue engineering -- 2.1 Introduction -- 2.1.1 General principles of electrospinning -- 2.2 Electrospun nanocomposites for medical applications -- 2.2.1 Electrospun nanocomposite for bone tissues regeneration via osteoconduction, osteoinduction, and osteogenesis -- 2.2.1.1 The effect of osteogenesis and osteoinduction on osteoconductive electrospun scaffolds -- 2.3 Electrospun biomaterials for bone tissue engineering -- 2.3.1 Electrospun nanofiber-reinforced hydrogels -- 2.3.2 Electrospun hydrogels with biological electrospray cells -- 2.3.3 Electrospun hydrogels with antimicrobial activity -- 2.4 Impact of various parameters on the electrospinning process for nanofiber morphology -- 2.4.1 Polymer solution parameters -- 2.4.2 Processing parameters -- 2.4.3 Ambient parameters -- 2.5 Inventions related to electrospun hydrogels for bone tissue engineering -- 2.6 Future applications of electrospun hydrogels -- 2.7 Conclusion -- References -- Further Reading.
3: Fabrication and applications of hydroxyapatite-based nanocomposites coating for bone tissue engineering -- 3.1 Introduction -- 3.2 Hydroxyapatite: Structure and properties -- 3.3 Conventional orthopedic implants -- 3.3.1 Metallic implants -- 3.3.2 Nonmetallic implants -- 3.4 Composites of hydroxyapatite with ceramics -- 3.4.1 Hydroxyapatite-Al2O3 composites -- 3.4.2 Hydroxyapatite-glass nanocomposites -- 3.4.3 Hydroxyapatite-mullite composites -- 3.4.4 Hydroxyapatite-YSZ nanocomposites -- 3.5 Composites of hydroxyapatite with metals -- 3.5.1 Hydroxyapatite-Pt nanocomposites -- 3.5.2 Hydroxyapatite-Ti nanocomposites -- 3.6 Composites of hydroxyapatite with polymers -- 3.6.1 Hydroxyapatite-epoxy composites -- 3.6.2 Hydroxyapatite-PVA nanocomposites -- 3.6.3 Hydroxyapatite-polyamide nanocomposites -- 3.6.4 Hydroxyapatite-PMMA composites -- 3.6.5 Hydroxyapatite-polylactide composites -- 3.6.6 Hydroxyapatite-PS composites -- 3.6.7 Hydroxyapatite-PE nanocomposites -- 3.6.8 Hydroxyapatite-collagen nanocomposites -- 3.6.9 Hydroxyapatite-PEEK nanocomposites -- 3.7 Conclusion -- References -- 4: Magnesium-based alloys and nanocomposites for biomedical application -- 4.1 Introduction -- 4.2 Magnesium-based biomaterials -- 4.2.1 Why magnesium and magnesium alloys? -- 4.2.2 Corrosion behavior of medical implants -- 4.2.2.1 Magnesium-Corrosion mechanism -- 4.2.3 Current research to overcome the challenges in Mg-based biomaterials -- 4.2.3.1 Corrosion -- 4.2.3.2 Effect of alloying elements on corrosion behavior of Mg materials -- 4.3 Magnesium for cardiovascular application -- 4.3.1 Limitations of bare metal stents and drug eluting stents -- 4.3.2 Biodegradable stents -- 4.3.2.1 Magnesium alloy biodegradable stents -- 4.4 Magnesium for orthopedic application. 4.4.1 Current status of Mg-based materials for orthopedic application -- 4.4.1.1 In vitro testing of Mg-based orthopedic biomaterials -- 4.4.1.2 Preclinical studies of Mg or its alloys for orthopedic application -- 4.5 Magnesium-based nanocomposites -- 4.5.1 Disintegrated melt deposition (DMD) technique -- 4.5.2 Electrochemical behavior of Mg nanocomposites -- 4.5.2.1 Potentiodynamic polarization -- 4.6 Surface modification of Mg alloys -- 4.6.1 Effect of surface modification -- 4.6.1.1 Functional coatings -- 4.6.1.2 Conversion coatings -- 4.6.1.3 Surface coating processes -- 4.7 Future aspects -- References -- 5: Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting -- 5.1 Introduction -- 5.2 Artificial bone grafting -- 5.2.1 Strategies for artificial bone grafting -- 5.3 Carbon nanotube -- 5.4 Multiwalled CNT composite biomaterials for artificial bone grafting -- 5.4.1 Multiwalled CNT-polymer nanocomposite -- 5.4.2 CNT coating on the polymeric surface -- 5.4.3 Multiwalled CNT-collagen nanocomposite -- 5.4.4 Multiwalled CNT-polylactic acid nanocomposite -- 5.4.5 Multiwalled CNT-chitosan nanocomposite -- 5.4.6 Multiwalled CNT-polycaprolactone nanocomposites -- 5.4.7 CNT-HA nanocomposite -- 5.4.8 CNT-bioglass nanocomposite -- 5.5 Challenges and future directions -- 5.6 Conclusions -- Acknowledgments -- References -- 7: Nanocomposite materials for prosthetic devices -- 6.1 Introduction -- 6.2 Preparation of nanocomposites -- 6.3 Classification of nanocomposites -- 6.3.1 Nonpolymer-based nanocomposites -- 6.3.1.1 Metal-metal nanocomposites -- 6.3.1.2 Metal-ceramic nanocomposites -- 6.3.1.3 Ceramic-ceramic nanocomposites -- 6.3.2 Polymer-based nanocomposites -- 6.4 Application of nanocomposites -- 6.5 Prosthetics -- 6.5.1 Types of prosthetics -- 6.5.2 Limb prosthetics. 6.5.3 Patient course of action -- 6.5.4 Current innovation and assembling -- 6.5.5 Body-controlled arms -- 6.5.6 Lower-extremity prosthetics -- 6.5.6.1 Hands, hips, and knees -- 6.5.6.2 Socket -- 6.5.6.3 Shank and connectors -- 6.5.6.4 Foot -- 6.5.6.5 Knee joint -- 6.5.6.6 Microprocessor control -- 6.5.7 Myoelectric prosthetics -- 6.5.8 Orthopedic prosthetics -- 6.5.9 Robotic prostheses -- 6.6 Conclusion -- References -- 7: Nanocomposites for improved orthopedic and bone tissue engineering applications -- 7.1 Introduction -- 7.2 Biomedical nanocomposites -- 7.3 Nanocomposites in orthopedic drug delivery applications -- 7.4 Nanocomposites in bone tissue engineering applications -- 7.5 Conclusion -- References -- 8: Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications -- 8.1 Introduction -- 8.1.1 Film formation by electrochemical process -- 8.1.1.1 Anodic oxidation and plasma electrolytic oxidation (PEO) -- 8.1.2 Nanotube arrays -- 8.2 Commercial applications -- 8.3 Mechanical stability of anodic layers -- 8.4 Conclusions -- References -- 9: Zirconia-alumina composite for orthopedic implant application -- 9.1 Introduction -- 9.1.1 Evolution of ceramic composite hip prostheses -- 9.2 The toughening mechanism in ceramic composite -- 9.2.1 Influence of platelets to inhibit crack propagation -- 9.2.2 Strengthening additives -- 9.3 Fabrication of ceramic composites -- 9.3.1 Densification process -- 9.3.1.1 Pressureless sintering -- 9.3.1.2 Pressure-assisted sintering -- 9.4 Wear of ceramic composite hip prosthesis -- 9.4.1 In vitro wear under standard conditions -- 9.4.2 In vitro wear under adverse conditions -- 9.5 Fracture-an ultimate challenge -- 9.6 Squeaking-a noise or concern -- 9.7 Clinical performance -- 9.8 Conclusions -- 9.9 Future aspects -- References. 10: Nanocomposites in total hip joint replacements -- 10.1 Introduction -- 10.2 Biomaterials and their essential characteristics -- 10.3 Tribological characteristics, the main issue for joint implant materials -- 10.4 Morphology and importance of hip joint replacements -- 10.5 Implantable material systems for THR -- 10.5.1 Metal-on-polymer -- 10.5.2 Metal on metal -- 10.5.3 Ceramic on ceramic -- 10.6 Nanotechnology, the innovative approach -- 10.7 Nanocomposites -- 10.8 Types of NCs used in hip implants -- 10.8.1 Polymer matrix NC -- 10.8.1.1 Ultrahigh molecular weight polyethylene -- 10.8.1.2 UHMWPE-based composites -- 10.8.1.3 Advanced NCs using graphene and nanocarbon reinforcements -- Graphene/UHMWPE NCs -- CNTs/UHMWPE NCs -- 10.8.2 Metal matrix NCs -- 10.8.2.1 Co-Cr based NCs -- 10.8.2.2 Titanium-based NCs -- 10.8.3 Ceramic matrix NCs -- 10.8.3.1 New ceramics NCs with nanocarbon reinforcements -- 10.9 Conclusion -- Acknowledgments -- References -- Further reading -- 11: Chitosan-based nanocomposites for cardiac, liver, and wound healing applications -- 11.1 Introduction -- 11.2 Tissue engineering -- 11.2.1 Chitosan nanocomposites in liver tissue engineering -- 11.2.2 Chitosan nanocomposites in cardiac tissue engineering -- 11.2.3 Chitosan nanocomposite in wound healing applications -- 11.3 Conclusion -- Acknowledgments -- References -- 12: Extracellular matrix: The ideal natural fibrous nanocomposite products -- 12.1 Introduction -- 12.2 ECM-cell interaction: Cell receptors and biochemical cues -- 12.3 ECM-cell interaction: Cell fate and biophysical cues -- 12.3.1 Stiffness and matrix elasticity -- 12.3.2 Tension and compression -- 12.3.3 Fluid shear stress -- 12.4 Cell perception of biophysical cues from the ECM microenvironment -- 12.4.1 Focal adhesions -- 12.4.2 The cytoskeletal. 12.4.3 The primary cilium. |
| Record Nr. | UNINA-9910583012803321 |
| Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Barrier properties of polymer clay nanocomposites [[electronic resource] /] / Vikas Mittal, editor
| Barrier properties of polymer clay nanocomposites [[electronic resource] /] / Vikas Mittal, editor |
| Pubbl/distr/stampa | New York, : Nova Science Publishers, c2010 |
| Descrizione fisica | 1 online resource (283 p.) |
| Disciplina | 620.1/923 |
| Altri autori (Persone) | MittalVikas |
| Collana | Nanotechnology science and technology series |
| Soggetto topico |
Nanocomposites (Materials)
Polymer clay - Barrier properties |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-61761-800-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""BARRIER PROPERTIES OFPOLYMER CLAY NANOCOMPOSITES""; ""CONTENTS""; ""PREFACE""; ""BARRIER PROPERTIESOF COMPOSITE MATERIALS""; ""ABSTRACT""; ""1.1. INTRODUCTION""; ""1.2. THEORY OF PERMEATION""; ""1.3. PERMEATION THROUGH HETEROGENEOUS MEDIA""; ""1.3.1. Laminates""; ""1.3.2. Materials with Plate-Like Inclusions""; ""1.4. MODIFIED PERMEATION MODELS""; ""1.5. MEASUREMENT OF BARRIER PERFORMANCE""; ""1.6. TRANSPORT MECHANISM ANDDIFFERENT POLYMER SYSTEMS""; ""REFERENCES""; ""COMPATIBILIZATION OF INTERFACES INNANOCOMPOSITES: ROUTE TOWARDSBETTER BARRIER PROPERTIES""; ""ABSTRACT""
""2.1. INTRODUCTION""""2.2. CONVENTIONAL NANOCOMPOSITES AND NEED OF NEW SYSTEMS""; ""2.3. GRAFTING �TO� THE SURFACE APPROACH""; ""2.4. GRAFTING �FROM� THE SURFACE APPROACH""; ""2.5. GRAFTING USING CONTROLLED LIVINGPOLYMERIZATION APPROACH""; ""2.6. POLYOLEFINS GRAFTING �FROM� THE SURFACE""; ""REFERENCES""; ""BARRIER PROPERTIES OF POLYURETHANENANOCOMPOSITES AND THEIR RELATIONSHIP TOSHAPE MEMORY PROPERTIES""; ""ABSTRACT""; ""3.1. INTRODUCTION""; ""3.2. TRANSPORT PHENOMENA IN PRISTINE POLYMERS""; ""3.2.1. Early Developments""; ""3.2.2. Basic Relationships"" ""3.2.3. Nature of the Penetrant""""3.2.4. Nature of the Polymer""; ""3.2.4.1. Effect of Chemical Constituents and the Presence of Chemical Cross-links""; ""3.2.4.2. Effect of Crystallinity""; ""3.2.4.3. Effect of Chain Orientation""; ""3.3. TRANSPORT PHENOMENA IN MICROANDNANO-COMPOSITES""; ""3.4. CONTINUUM MODELING OF TRANSPORTPROPERTIES OF POLYMER COMPOSITES""; ""3.5. PERMEABILITY OF POLYURETHANES (PU) ANDPOLYURETHANEUREAS (PUU): STRUCTURE-PROPERTYRELATIONSHIPS""; ""3.5.1. Transport Mechanisms""; ""3.5.2. Effect of Soft Segment Type, Its Composition, and Molecular Weight"" ""3.5.3. Effect of Hard Segment Content and the Extent of Phase Separation""""3.5.4. Effect of Penetrant Type""; ""3.6. PERMEABILITY OF FILLED POLYURETHANES ANDPOLYURETHANEUREAS: MICRO- AND NANOCOMPOSITES""; ""3.7. IMPORTANCE OF TRANSPORT PHENOMENONIN SHAPE MEMORY POLYMERS""; ""3.7.1. Importance of Mass Transfer in SMP:Actuation by Water Absorption in Surgical Procedures""; ""3.7.2. Importance of Mass Transfer through SMP:Textile Fabrics and Refrigerators""; ""3.8. CONCLUSIONS""; ""3.9. ACKNOWLEDGEMENTS""; ""REFERENCES""; ""PERMEATION PROPERTIESOF EPOXY NANOCOMPOSITES""; ""ABSTRACT"" ""4.1. INTRODUCTION""""4.2. MODELING OF THE PERMEABILITY OF NANOCOMPOSITES""; ""4.3. PERMEABILITY OF EPOXY NANOCOMPOSITES""; ""4.3.1. Effect of Nanoplatelet Loading""; ""4.3.2. Effect of Nanoplatelet Dispersion""; ""4.3.3. Effect of Nanoplatelet Aspect Ratio""; ""4.3.4. Effect of Nanoplatelet Orientation""; ""4.3.5. Control of Nanocomposite Morphology""; ""4.4. CONCLUSIONS""; ""4.5. ACKNOWLEDGMENTS""; ""REFERENCES""; ""BARRIER PROPERTIESOF POLYOLEFIN NANOCOMPOSITES""; ""ABSTRACT""; ""5.1. INTRODUCTION""; ""5.2. BARRIER PROPERTIES OF POLYOLEFINNANOCOMPOSITES: EFFECT OF COMPATIBILIZER"" ""5.3. ROLE OF OPTIMUM CLAY MODIFICATION"" |
| Record Nr. | UNINA-9910465415203321 |
| New York, : Nova Science Publishers, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||