top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multiple access channels [[electronic resource] ] : theory and practice / / edited by Ezio Biglieri and László Györfi
Multiple access channels [[electronic resource] ] : theory and practice / / edited by Ezio Biglieri and László Györfi
Pubbl/distr/stampa Amsterdam, Netherlands ; ; Washington, DC, : IOS Press, c2007
Descrizione fisica 1 online resource (360 p.)
Disciplina 004.6/2
Altri autori (Persone) BiglieriEzio
GyörfiLászló
Collana NATO security through science series. D, Information and communication security
Soggetto topico Multiple access protocols (Computer network protocols)
Computer network protocols
Soggetto genere / forma Electronic books.
ISBN 6610934800
1-280-93480-8
9786610934805
1-4294-9220-1
1-60750-233-X
600-00-0492-3
1-4337-0870-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Preface; Contents; Information Theoretic Aspects; Multiple Access Channels; Rate-Splitting Multiple-Access; Multiple Access Adder Channel; Multiple Access Euclidean Channel; A Survey of the Relay Channel; Source Coding for a Noiseless Broadcast Channel; Coding for Single and Multi User Channels with Constrained and Unconstrained Side Information; Multiple Access Techniques; MIMO: A Minimalist Introduction; OFDMA and Channel Coding; Braided Code Division Multiple Access; Principles of Stability Analysis for Random Accessing with Feedback
Collision Channel with Multiplicity FeedbackCoding Techniques; Coding Techniques and the Two-Access Channel; The Multi-Access Channel in a Network: Stability and Network Coding Issues; Coding for Multiple-Access Collision Channel Without Feedback; Metrics in Coding Theory; Author Index
Record Nr. UNINA-9910450563803321
Amsterdam, Netherlands ; ; Washington, DC, : IOS Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiple access channels [[electronic resource] ] : theory and practice / / edited by Ezio Biglieri and László Györfi
Multiple access channels [[electronic resource] ] : theory and practice / / edited by Ezio Biglieri and László Györfi
Pubbl/distr/stampa Amsterdam, Netherlands ; ; Washington, DC, : IOS Press, c2007
Descrizione fisica 1 online resource (360 p.)
Disciplina 004.6/2
Altri autori (Persone) BiglieriEzio
GyörfiLászló
Collana NATO security through science series. D, Information and communication security
Soggetto topico Multiple access protocols (Computer network protocols)
Computer network protocols
ISBN 6610934800
1-280-93480-8
9786610934805
1-4294-9220-1
1-60750-233-X
600-00-0492-3
1-4337-0870-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Preface; Contents; Information Theoretic Aspects; Multiple Access Channels; Rate-Splitting Multiple-Access; Multiple Access Adder Channel; Multiple Access Euclidean Channel; A Survey of the Relay Channel; Source Coding for a Noiseless Broadcast Channel; Coding for Single and Multi User Channels with Constrained and Unconstrained Side Information; Multiple Access Techniques; MIMO: A Minimalist Introduction; OFDMA and Channel Coding; Braided Code Division Multiple Access; Principles of Stability Analysis for Random Accessing with Feedback
Collision Channel with Multiplicity FeedbackCoding Techniques; Coding Techniques and the Two-Access Channel; The Multi-Access Channel in a Network: Stability and Network Coding Issues; Coding for Multiple-Access Collision Channel Without Feedback; Metrics in Coding Theory; Author Index
Record Nr. UNINA-9910784255203321
Amsterdam, Netherlands ; ; Washington, DC, : IOS Press, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiple access technologies for 5G : new approaches and insight / / edited by Jie Zeng [and three others]
Multiple access technologies for 5G : new approaches and insight / / edited by Jie Zeng [and three others]
Pubbl/distr/stampa Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , [2021]
Descrizione fisica 1 online resource (VII, 146 p.)
Disciplina 621.38456
Collana De Gruyter STEM
Soggetto topico 5G mobile communication systems
Multiple access protocols (Computer network protocols)
ISBN 3-11-066597-2
3-11-066636-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Chapter 1 Outline of Multiple Access Technology -- Chapter 2 Theoretical Basis of NMA Technology -- Chapter 3 Candidate NMA Technologies in 5G -- Chapter 4 Application of NMA Technologies in 5G -- Index
Record Nr. UNINA-9910554239303321
Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Next Generation Multiple Access
Next Generation Multiple Access
Autore Liu Yuanwei
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (624 pages)
Disciplina 004.62
Altri autori (Persone) LiuLiang
DingZhiguo
ShenXuemin
Soggetto topico 6G mobile communication systems
Multiple access protocols (Computer network protocols)
ISBN 9781394180523
1394180527
9781394180509
1394180500
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Next Generation Multiple Access Toward 6G -- 1.1 The Road to NGMA -- 1.2 Non‐Orthogonal Multiple Access -- 1.3 Massive Access -- 1.4 Book Outline -- Part I Evolution of NOMA Towards NGMA -- Chapter 2 Modulation Techniques for NGMA/NOMA -- 2.1 Introduction -- 2.2 Space‐Domain IM for NGMA -- 2.2.1 SM‐Based NOMA -- 2.2.1.1 Multi‐RF Schemes -- 2.2.1.2 Single‐RF Schemes -- 2.2.1.3 Recent Developments in SM‐NOMA -- 2.2.2 RSM‐Based NOMA -- 2.2.3 SM‐Aided SCMA -- 2.3 Frequency‐Domain IM for NGMA -- 2.3.1 NOMA with Frequency‐Domain IM -- 2.3.1.1 OFDM‐IM NOMA -- 2.3.1.2 DM‐OFDM NOMA -- 2.3.2 C‐NOMA with Frequency‐Domain IM -- 2.3.2.1 Broadcast Phase -- 2.3.2.2 Cooperative Phase -- 2.4 Code‐Domain IM for NGMA -- 2.4.1 CIM‐SCMA -- 2.4.2 CIM‐MC‐CDMA -- 2.5 Power‐Domain IM for NGMA -- 2.5.1 Transmission Model -- 2.5.1.1 Two‐User Case -- 2.5.1.2 Multiuser Case -- 2.5.2 Signal Decoding -- 2.5.3 Performance Analysis -- 2.6 Summary -- References -- Chapter 3 NOMA Transmission Design with Practical Modulations -- 3.1 Introduction -- 3.2 Fundamentals -- 3.2.1 Multichannel Downlink NOMA -- 3.2.2 Practical Modulations in NOMA -- 3.3 Effective Throughput Analysis -- 3.3.1 Effective Throughput of the Single‐User Channels -- 3.3.2 Effective Throughput of the Two‐User Channels -- 3.4 NOMA Transmission Design -- 3.4.1 Problem Formulation -- 3.4.2 Power Allocation -- 3.4.2.1 Power Allocation within Channels -- 3.4.2.2 Power Budget Allocation Among Channels -- 3.4.3 Joint Resource Allocation -- 3.5 Numerical Results -- 3.6 Conclusion -- References -- Chapter 4 Optimal Resource Allocation for NGMA -- 4.1 Introduction -- 4.2 Single‐Cell Single‐Carrier NOMA -- 4.2.1 Total Power Minimization Problem -- 4.2.2 Sum‐Rate Maximization Problem.
4.2.3 Energy‐Efficiency Maximization Problem -- 4.2.4 Key Features and Implementation Issues -- 4.2.4.1 CSI Insensitivity -- 4.2.4.2 Rate Fairness -- 4.3 Single‐Cell Multicarrier NOMA -- 4.3.1 Total Power Minimization Problem -- 4.3.2 Sum‐Rate Maximization Problem -- 4.3.3 Energy‐Efficiency Maximization Problem -- 4.3.4 Key Features and Implementation Issues -- 4.4 Multi‐cell NOMA with Single‐Cell Processing -- 4.4.1 Dynamic Decoding Order -- 4.4.1.1 Optimal JSPA for Total Power Minimization Problem -- 4.4.1.2 Optimal JSPA for Sum‐Rate Maximization Problem -- 4.4.1.3 Optimal JSPA for EE Maximization Problem -- 4.4.2 Static Decoding Order -- 4.4.2.1 Optimal FRPA for Total Power Minimization Problem -- 4.4.2.2 Optimal FRPA for Sum‐Rate Maximization Problem -- 4.4.2.3 Optimal FRPA for EE Maximization Problem -- 4.4.2.4 Optimal JRPA for Total Power Minimization Problem -- 4.4.2.5 Suboptimal JRPA for Sum‐Rate Maximization Problem -- 4.4.2.6 Suboptimal JRPA for EE Maximization Problem -- 4.5 Numerical Results -- 4.5.1 Approximated Optimal Powers -- 4.5.2 SC‐NOMA versus FDMA-NOMA versus FDMA -- 4.5.3 Multi‐cell NOMA: JSPA versus JRPA versus FRPA -- 4.6 Conclusions -- Acknowledgments -- References -- Chapter 5 Cooperative NOMA -- 5.1 Introduction -- 5.2 System Model for D2MD‐CNOMA -- 5.2.1 System Configuration -- 5.2.2 Channel Model -- 5.3 Adaptive Aggregate Transmission -- 5.3.1 First Phase -- 5.3.2 Second Phase -- 5.4 Performance Analysis -- 5.4.1 Outage Probability -- 5.4.2 Ergodic Sum Capacity -- 5.5 Numerical Results and Discussion -- 5.5.1 Outage Probability -- 5.5.2 Ergodic Sum Capacity -- 5.A.1 Proof of Theorem 5.1 -- References -- Chapter 6 Multi‐scale‐NOMA: An Effective Support to Future Communication-Positioning Integration System -- 6.1 Introduction -- 6.2 Positioning in Cellular Networks -- 6.3 MS‐NOMA Architecture -- 6.4 Interference Analysis.
6.4.1 Single‐Cell Network -- 6.4.1.1 Interference of Positioning to Communication -- 6.4.1.2 Interference of Communication to Positioning -- 6.4.2 Multicell Networks -- 6.4.2.1 Interference of Positioning to Communication -- 6.4.2.2 Interference of Communication to Positioning -- 6.5 Resource Allocation -- 6.5.1 The Constraints -- 6.5.1.1 The BER Threshold Under QoS Constraint -- 6.5.1.2 The Total Power Limitation -- 6.5.1.3 The Elimination of Near‐Far Effect -- 6.5.2 The Proposed Joint Power Allocation Model -- 6.5.3 The Positioning-Communication Joint Power Allocation Scheme -- 6.5.4 Remarks -- 6.6 Performance Evaluation -- 6.6.1 Communication Performance -- 6.6.2 Ranging Performance -- 6.6.3 Resource Consumption of Positioning -- 6.6.3.1 Achievable Positioning Measurement Frequency -- 6.6.3.2 The Resource Element Consumption -- 6.6.3.3 The Power Consumption -- 6.6.4 Positioning Performance -- 6.6.4.1 Comparison by Using CP4A and the Traditional Method -- 6.6.4.2 Comparision Between MS‐NOMA and PRS -- References -- Chapter 7 NOMA‐Aware Wireless Content Caching Networks -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 System Description -- 7.2.2 Content Request Model -- 7.2.3 Random System State -- 7.2.4 System Latency Under Each Random State -- 7.2.5 System's Average Latency -- 7.3 Algorithm Design -- 7.3.1 User Pairing and Power Control Optimization -- 7.3.2 Cache Placement -- 7.3.3 Recommendation Algorithm -- 7.3.4 Joint Optimization Algorithm and Property Analysis -- 7.4 Numerical Simulation -- 7.4.1 Convergence Performance -- 7.4.2 System's Average Latency -- 7.4.3 Cache Hit Ratio -- 7.5 Conclusion -- References -- Chapter 8 NOMA Empowered Multi‐Access Edge Computing and Edge Intelligence -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 System Model and Formulation -- 8.3.1 Modeling of Two‐Sided Dual Offloading.
8.3.2 Overall Latency Minimization -- 8.4 Algorithms for Optimal Offloading -- 8.5 Numerical Results -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Exploiting Non‐orthogonal Multiple Access in Integrated Sensing and Communications -- 9.1 Introduction -- 9.2 Developing Trends and Fundamental Models of ISAC -- 9.2.1 ISAC: From Orthogonality to Non‐orthogonality -- 9.2.2 Downlink ISAC -- 9.2.3 Uplink ISAC -- 9.3 Novel NOMA Designs in Downlink and Uplink ISAC -- 9.3.1 NOMA‐Empowered Downlink ISAC Design -- 9.3.2 Semi‐NOMA‐Based Uplink ISAC Design -- 9.4 Case Study: System Model and Problem Formulation -- 9.4.1 System Model -- 9.4.1.1 Communication Model -- 9.4.1.2 Sensing Model -- 9.4.2 Problem Formulation -- 9.5 Case Study: Proposed Solutions -- 9.6 Case Study: Numerical Results -- 9.6.1 Convergence of Algorithm 9.1 -- 9.6.2 Baseline -- 9.6.3 Transmit Beampattern -- 9.7 Conclusions -- References -- Part II Massive Access for NGMA -- Chapter 10 Capacity of Many‐Access Channels -- 10.1 Introduction -- 10.2 The Many‐Access Channel Model -- 10.3 Capacity of the MnAC -- 10.3.1 The Equal‐Power Case -- 10.3.2 Heterogeneous Powers and Fading -- 10.4 Energy Efficiency of the MnAC -- 10.4.1 Minimum Energy per Bit for Given PUPE -- 10.4.2 Capacity per Unit‐Energy Under Different Error Criteria -- 10.5 Discussion and Open Problems -- 10.5.1 Scaling Regime -- 10.5.2 Some Practical Issues -- Acknowledgments -- References -- Chapter 11 Random Access Techniques for Machine‐Type Communication -- 11.1 Fundamentals of Random Access -- 11.1.1 Coordinated Versus Uncoordinated Transmissions -- 11.1.2 Random Access Techniques -- 11.1.2.1 ALOHA Protocols -- 11.1.2.2 CSMA -- 11.1.3 Re‐transmission Strategies -- 11.2 A Game Theoretic View -- 11.2.1 A Model -- 11.2.2 Fictitious Play -- 11.3 Random Access Protocols for MTC -- 11.3.1 4‐Step Random Access.
11.3.2 2‐Step Random Access -- 11.3.3 Analysis of 2‐Step Random Access -- 11.3.4 Fast Retrial -- 11.4 Variants of 2‐Step Random Access -- 11.4.1 2‐Step Random Access with MIMO -- 11.4.2 Sequential Transmission of Multiple Preambles -- 11.4.3 Simultaneous Transmission of Multiple Preambles -- 11.4.4 Preambles for Exploration -- 11.5 Application of NOMA to Random Access -- 11.5.1 Power‐Domain NOMA -- 11.5.2 S‐ALOHA with NOMA -- 11.5.3 A Generalization with Multiple Channels -- 11.5.4 NOMA‐ALOHA Game -- 11.6 Low‐Latency Access for MTC -- 11.6.1 Long Propagation Delay -- 11.6.2 Repetition Diversity -- 11.6.3 Channel Coding‐Based Random Access -- References -- Chapter 12 Grant‐Free Random Access via Compressed Sensing: Algorithm and Performance -- 12.1 Introduction -- 12.2 Joint Device Detection, Channel Estimation, and Data Decoding with Collision Resolution for MIMO Massive Unsourced Random Access -- 12.2.1 System Model and Encoding Scheme -- 12.2.1.1 System Model -- 12.2.1.2 Encoding Scheme -- 12.2.2 Collision Resolution Protocol -- 12.2.3 Decoding Scheme -- 12.2.3.1 Joint DAD‐CE Algorithm -- 12.2.3.2 MIMO‐LDPC‐SIC Decoder -- 12.2.4 Experimental Results -- 12.3 Exploiting Angular Domain Sparsity for Grant‐Free Random Access: A Hybrid AMP Approach -- 12.3.1 Sparse Modeling of Massive Access -- 12.3.2 Recovery Algorithm -- 12.3.2.1 Application to Unsourced Random Access -- 12.3.3 Experimental Results -- 12.4 LEO Satellite‐Enabled Grant‐Free Random Access -- 12.4.1 System Model -- 12.4.1.1 Channel Model -- 12.4.1.2 Signal Modulation -- 12.4.1.3 Problem Formulation -- 12.4.2 Pattern Coupled SBL Framework -- 12.4.2.1 The Pattern‐Coupled Hierarchical Prior -- 12.4.2.2 SBL Framework -- 12.4.3 Experimental Results -- 12.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Algorithm Unrolling for Massive Connectivity in IoT Networks.
13.1 Introduction.
Record Nr. UNINA-9911020068103321
Liu Yuanwei  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio access network slicing and virtualization for 5G vertical industries / / Lei Zhang [et al.]
Radio access network slicing and virtualization for 5G vertical industries / / Lei Zhang [et al.]
Autore Zhang Lei (Engineering teacher)
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (xxxii, 288 pages) : illustrations (some color)
Disciplina 621.38456
Collana Wiley - IEEE
Soggetto topico 5G mobile communication systems
Multiple access protocols (Computer network protocols)
ISBN 1-119-65247-2
1-119-65245-6
1-119-65243-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the editors -- Preface -- Part 1: Waveforms and Mixed-Numerology -- Ch 1: ICI Cancellation Techniques Based on Data Repetition for OFDM Systems -- Ch 2: Generalized Frequency Division Multiplexing: Unified Multicarrier Framework -- Ch 3: Offset Quadrature Amplitude Modulation based Filter Bank Multicarrier System -- Ch 4: Low Electromagnetic Emission Wireless Network Technologies 5G and Beyond -- Ch 5: Filtered OFDM: an Insight into Intrinsic In-Band Interference -- Ch 6: Multi-Numerology Waveform Parameter Assignment in 5G -- Part 2: RAN Slicing and 5G vertical industries -- Ch 7: Network Slicing with Spectrum Sharing -- Ch 8: Access Control and Handoff Policy Design for RAN slicing -- Ch 9: Robust RAN Slicing -- Ch 10: Flexible function split over Ethernet Enabling RAN Slicing -- Ch 11: Service oriented RAN Support of Network Slicing -- Ch 12: 5G Network Slicing for V2X Communications: Technologies and Enablers -- Ch 13: Optimizing Resource Allocation in URLLC for Real-Time Wireless Control Systems
Record Nr. UNINA-9910554817703321
Zhang Lei (Engineering teacher)  
Hoboken, NJ : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio access network slicing and virtualization for 5G vertical industries / / Lei Zhang [et al.]
Radio access network slicing and virtualization for 5G vertical industries / / Lei Zhang [et al.]
Autore Zhang Lei (Engineering teacher)
Pubbl/distr/stampa Hoboken, NJ : , : Wiley : , : IEEE Press, , [2021]
Descrizione fisica 1 online resource (xxxii, 288 pages) : illustrations (some color)
Disciplina 621.38456
Collana Wiley - IEEE
Soggetto topico 5G mobile communication systems
Multiple access protocols (Computer network protocols)
ISBN 1-119-65247-2
1-119-65245-6
1-119-65243-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the editors -- Preface -- Part 1: Waveforms and Mixed-Numerology -- Ch 1: ICI Cancellation Techniques Based on Data Repetition for OFDM Systems -- Ch 2: Generalized Frequency Division Multiplexing: Unified Multicarrier Framework -- Ch 3: Offset Quadrature Amplitude Modulation based Filter Bank Multicarrier System -- Ch 4: Low Electromagnetic Emission Wireless Network Technologies 5G and Beyond -- Ch 5: Filtered OFDM: an Insight into Intrinsic In-Band Interference -- Ch 6: Multi-Numerology Waveform Parameter Assignment in 5G -- Part 2: RAN Slicing and 5G vertical industries -- Ch 7: Network Slicing with Spectrum Sharing -- Ch 8: Access Control and Handoff Policy Design for RAN slicing -- Ch 9: Robust RAN Slicing -- Ch 10: Flexible function split over Ethernet Enabling RAN Slicing -- Ch 11: Service oriented RAN Support of Network Slicing -- Ch 12: 5G Network Slicing for V2X Communications: Technologies and Enablers -- Ch 13: Optimizing Resource Allocation in URLLC for Real-Time Wireless Control Systems
Record Nr. UNINA-9910829910903321
Zhang Lei (Engineering teacher)  
Hoboken, NJ : , : Wiley : , : IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectrum sharing : the next frontier in wireless networks / / edited by Tharmalingam Ratnarajah, Constantinos B. Papadias, Dirk T.M. Slock
Spectrum sharing : the next frontier in wireless networks / / edited by Tharmalingam Ratnarajah, Constantinos B. Papadias, Dirk T.M. Slock
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (459 pages)
Disciplina 004.678
Collana Ieee series
Soggetto topico Multiple access protocols (Computer network protocols)
Wireless communication systems - Technological innovations
ISBN 1-119-55151-X
1-119-55153-6
1-119-55147-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Abbreviations -- Chapter 1 Introduction: From Cognitive Radio to Modern Spectrum Sharing -- 1.1 A Brief History of Spectrum Sharing -- 1.2 Background -- 1.3 Book overview -- 1.4 Summary -- Chapter 2 Regulation and Standardization Activities Related to Spectrum Sharing -- 2.1 Introduction -- 2.2 Standardization -- 2.2.1 Licensed Shared Access -- 2.2.2 Evolved Licensed Shared Access -- 2.2.3 Citizen Broadband Radio System -- 2.2.4 CBRS Alliance -- 2.3 Regulation
2.3.1 European Conference of Postal and Telecommunications Administrations -- 2.3.2 Federal Communications Commission -- 2.3.3 A Comparison: (e)LSA vs CBRS Regulation Framework -- 2.3.4 Conclusion -- References -- Chapter 3 White Spaces and Database-assisted Spectrum Sharing -- 3.1 Introduction -- 3.2 Demand for Spectrum Outstrips Supply -- 3.2.1 Making Room for New Wireless Technology -- 3.2.2 Unused Spectrum -- 3.3 Three-tier Access Model -- 3.3.1 Secondary Users: Exploiting Gaps left by Primary Users -- 3.3.2 Passive Users: Vulnerable to Transmissions in White Space Frequencies
3.3.3 Opportunistic Spectrum Users -- 3.4 What is Efficient Use of Spectrum? -- 3.4.1 Broadcasters prefer Large Coverage Areas with Lower Spectrum Reuse -- 3.4.2 ISPs Respond to Growing Bandwidth Demand from Subscribers -- 3.4.3 Protection of Primary Users Defines the Scope for Sharing -- 3.5 Tapping Unused Capacity: the Evolution of Spectrum Sharing -- 3.5.1 Traditional Coordination is a Slow and Expensive Process -- 3.5.2 License-exempt Access as the Default Spectrum Sharing Mechanism -- 3.5.3 DSA offers Lower Friction and more Scalability -- 3.5.3.1 Early days of DSA
3.5.3.2 CR: Towards Flexible, Adaptive, Ad Hoc Access -- 3.5.4 Spectrum Databases are Preferred by Regulators -- 3.6 Determining which Frequencies are Available to Share: Technology -- 3.6.1 CR: Its Original Sense -- 3.6.2 DSA is more Pragmatic and Immediately Applicable -- 3.6.3 Spectrum Sensing -- 3.6.3.1 Hidden Nodes: Limiting the Scope/Certainty of Sensing -- 3.6.3.2 Overcoming the Hidden Node Problem: a Cooperative Approach -- 3.6.4 Beacons -- 3.6.5 Spectrum Databases used with Device Geolocation -- 3.7 Implementing Flexible Spectrum Access
3.7.1 Software-defined Radio Underpins Flexibility -- 3.7.2 Regulation Needs to Adapt to the New Flexibility in Radio Devices -- 3.8 Foundations for More Flexible Access in the Future -- 3.8.1 Finer-grained Spectrum Access Management -- 3.8.2 More Flexible License Exemption -- 3.8.2.1 Towards a UHF Spectrum Commons or Superhighway -- References -- Further Reading -- Chapter 4 Evolving Spectrum Sharing Methods, Standards and Trials: TVWS, CBRS, MulteFire and More -- 4.1 Introduction -- 4.2 TV White Space -- 4.2.1 Overview -- 4.2.2 Operating Standards -- 4.2.3 Overview of TVWS Trials and Projects
Record Nr. UNINA-9910555090003321
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectrum sharing : the next frontier in wireless networks / / edited by Tharmalingam Ratnarajah, Constantinos B. Papadias, Dirk T.M. Slock
Spectrum sharing : the next frontier in wireless networks / / edited by Tharmalingam Ratnarajah, Constantinos B. Papadias, Dirk T.M. Slock
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (459 pages)
Disciplina 004.678
Collana Ieee series
Soggetto topico Multiple access protocols (Computer network protocols)
Wireless communication systems - Technological innovations
ISBN 1-119-55151-X
1-119-55153-6
1-119-55147-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Abbreviations -- Chapter 1 Introduction: From Cognitive Radio to Modern Spectrum Sharing -- 1.1 A Brief History of Spectrum Sharing -- 1.2 Background -- 1.3 Book overview -- 1.4 Summary -- Chapter 2 Regulation and Standardization Activities Related to Spectrum Sharing -- 2.1 Introduction -- 2.2 Standardization -- 2.2.1 Licensed Shared Access -- 2.2.2 Evolved Licensed Shared Access -- 2.2.3 Citizen Broadband Radio System -- 2.2.4 CBRS Alliance -- 2.3 Regulation
2.3.1 European Conference of Postal and Telecommunications Administrations -- 2.3.2 Federal Communications Commission -- 2.3.3 A Comparison: (e)LSA vs CBRS Regulation Framework -- 2.3.4 Conclusion -- References -- Chapter 3 White Spaces and Database-assisted Spectrum Sharing -- 3.1 Introduction -- 3.2 Demand for Spectrum Outstrips Supply -- 3.2.1 Making Room for New Wireless Technology -- 3.2.2 Unused Spectrum -- 3.3 Three-tier Access Model -- 3.3.1 Secondary Users: Exploiting Gaps left by Primary Users -- 3.3.2 Passive Users: Vulnerable to Transmissions in White Space Frequencies
3.3.3 Opportunistic Spectrum Users -- 3.4 What is Efficient Use of Spectrum? -- 3.4.1 Broadcasters prefer Large Coverage Areas with Lower Spectrum Reuse -- 3.4.2 ISPs Respond to Growing Bandwidth Demand from Subscribers -- 3.4.3 Protection of Primary Users Defines the Scope for Sharing -- 3.5 Tapping Unused Capacity: the Evolution of Spectrum Sharing -- 3.5.1 Traditional Coordination is a Slow and Expensive Process -- 3.5.2 License-exempt Access as the Default Spectrum Sharing Mechanism -- 3.5.3 DSA offers Lower Friction and more Scalability -- 3.5.3.1 Early days of DSA
3.5.3.2 CR: Towards Flexible, Adaptive, Ad Hoc Access -- 3.5.4 Spectrum Databases are Preferred by Regulators -- 3.6 Determining which Frequencies are Available to Share: Technology -- 3.6.1 CR: Its Original Sense -- 3.6.2 DSA is more Pragmatic and Immediately Applicable -- 3.6.3 Spectrum Sensing -- 3.6.3.1 Hidden Nodes: Limiting the Scope/Certainty of Sensing -- 3.6.3.2 Overcoming the Hidden Node Problem: a Cooperative Approach -- 3.6.4 Beacons -- 3.6.5 Spectrum Databases used with Device Geolocation -- 3.7 Implementing Flexible Spectrum Access
3.7.1 Software-defined Radio Underpins Flexibility -- 3.7.2 Regulation Needs to Adapt to the New Flexibility in Radio Devices -- 3.8 Foundations for More Flexible Access in the Future -- 3.8.1 Finer-grained Spectrum Access Management -- 3.8.2 More Flexible License Exemption -- 3.8.2.1 Towards a UHF Spectrum Commons or Superhighway -- References -- Further Reading -- Chapter 4 Evolving Spectrum Sharing Methods, Standards and Trials: TVWS, CBRS, MulteFire and More -- 4.1 Introduction -- 4.2 TV White Space -- 4.2.1 Overview -- 4.2.2 Operating Standards -- 4.2.3 Overview of TVWS Trials and Projects
Record Nr. UNINA-9910819868703321
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui