top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
Autore Pajitnov Andrei V
Pubbl/distr/stampa Berlin ; ; New York, : De Gruyter, c2006
Descrizione fisica 1 online resource (464 pages)
Disciplina 514/.74
Collana De Gruyter studies in mathematics
Soggetto topico Morse theory
Manifolds (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-282-19426-7
9786612194269
3-11-019797-9
Classificazione SK 350
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter
Record Nr. UNINA-9910454619003321
Pajitnov Andrei V  
Berlin ; ; New York, : De Gruyter, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov
Autore Pajitnov Andrei V
Pubbl/distr/stampa Berlin ; ; New York, : De Gruyter, c2006
Descrizione fisica 1 online resource (464 pages)
Disciplina 514/.74
Collana De Gruyter studies in mathematics
Soggetto topico Morse theory
Manifolds (Mathematics)
Soggetto non controllato Differential geometry
Morse theory
ISBN 1-282-19426-7
9786612194269
3-11-019797-9
Classificazione SK 350
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter
Record Nr. UNINA-9910782523503321
Pajitnov Andrei V  
Berlin ; ; New York, : De Gruyter, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Circle-valued Morse theory / / Andrei V. Pajitnov
Circle-valued Morse theory / / Andrei V. Pajitnov
Autore Pajitnov Andrei V
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; New York, : De Gruyter, c2006
Descrizione fisica 1 online resource (464 pages)
Disciplina 514/.74
Collana De Gruyter studies in mathematics
Soggetto topico Morse theory
Manifolds (Mathematics)
ISBN 1-282-19426-7
9786612194269
3-11-019797-9
Classificazione SK 350
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter
Record Nr. UNINA-9910825910603321
Pajitnov Andrei V  
Berlin ; ; New York, : De Gruyter, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Infinite dimensional Morse theory and multiple solution problems / Kung-Ching Chang
Infinite dimensional Morse theory and multiple solution problems / Kung-Ching Chang
Autore Chang, Kung-Ching
Pubbl/distr/stampa Boston : Birkhäuser, 1993
Descrizione fisica x, 312 p. ; 24 cm
Disciplina 515
Collana Progress in nonlinear differential equations and their applications ; 6
Soggetto topico Morse theory
ISBN 0817634517
Classificazione AMS 57R70
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000995269707536
Chang, Kung-Ching  
Boston : Birkhäuser, 1993
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
An invitation to Morse theory / Liviu I. Nicolaescu
An invitation to Morse theory / Liviu I. Nicolaescu
Autore Nicolaescu, Liviu I.
Pubbl/distr/stampa New York ; London : Springer, 2007
Descrizione fisica xiv, 241 p. : 24 cm
Disciplina 514.74
Collana Universitext
Soggetto topico Morse theory
ISBN 9780387495095
0387495096
038749510X
9780387495101
Classificazione AMS 57R70
LC QA331.N498
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003588029707536
Nicolaescu, Liviu I.  
New York ; London : Springer, 2007
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Lectures on morse homology / Augustin Banyaga and David Hurtubise
Lectures on morse homology / Augustin Banyaga and David Hurtubise
Autore Banyaga, Augustin
Pubbl/distr/stampa Dordrecht ; Boston ; London : Kluwer Academic Publishers, c2004
Descrizione fisica vii, 324 p. : ill. ; 25 cm
Disciplina 515.73
Altri autori (Persone) Hurtubise, Davidauthor
Collana Kluwer texts in the mathematical sciences ; 29
Soggetto topico Morse theory
Homology theory
ISBN 1402026951
Classificazione AMS 58E05
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000915479707536
Banyaga, Augustin  
Dordrecht ; Boston ; London : Kluwer Academic Publishers, c2004
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Autore Walsh Mark
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2010
Descrizione fisica 1 online resource (80 p.)
Disciplina 516.3/62
Collana Memoirs of the American Mathematical Society
Soggetto topico Curvature
Morse theory
Riemannian manifolds
Algebraic topology
Soggetto genere / forma Electronic books.
ISBN 1-4704-0597-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Introduction""; ""0.1. Background""; ""0.2. Main results""; ""0.3. The connection with generalised Morse functions and Part II""; ""0.4. Acknowledgements""; ""Chapter 1. Definitions and Preliminary Results""; ""1.1. Isotopy and concordance in the space of metrics of positive scalar curvature""; ""1.2. Warped product metrics on the sphere""; ""1.3. Torpedo metrics on the disk""; ""1.4. Doubly warped products and mixed torpedo metrics""; ""1.5. Inducing a mixed torpedo metric with an embedding""; ""Chapter 2. Revisiting the Surgery Theorem""
""2.1. Surgery and cobordism""""2.2. Surgery and positive scalar curvature""; ""2.3. Outline of the proof of Theorem 2.3""; ""2.4. Part 1 of the proof: Curvature formulae for the first deformation""; ""2.5. Part 2 of the proof: A continuous bending argument""; ""2.6. Part 3 of the proof: Isotoping to a standard product""; ""2.7. Applying Theorem 2.3 over a compact family of psc-metrics""; ""2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem)""; ""Chapter 3. Constructing Gromov-Lawson Cobordisms""; ""3.1. Morse Theory and admissible Morse functions""
""3.2. A reverse Gromov-Lawson cobordism""""3.3. Continuous families of Morse functions""; ""Chapter 4. Constructing Gromov-Lawson Concordances""; ""4.1. Applying the Gromov-Lawson technique over a pair of cancelling surgeries""; ""4.2. Cancelling Morse critical points: The Weak and Strong Cancellation Theorems""; ""4.3. A strengthening of Theorem 4.2""; ""4.4. Standardising the embedding of the second surgery sphere""; ""Chapter 5. Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries""; ""5.1. Connected sums of psc-metrics""
""5.2. An analysis of the metric g'', obtained from the second surgery""""5.3. The proof of Theorem 5.1""; ""Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the General Case""; ""6.1. A weaker version of Theorem 0.8""; ""6.2. The proof of the main theorem""; ""Appendix: Curvature Calculations from the Surgery Theorem""; ""Bibliography""
Record Nr. UNINA-9910480096203321
Walsh Mark  
Providence, Rhode Island : , : American Mathematical Society, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Autore Walsh Mark
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2010
Descrizione fisica 1 online resource (80 p.)
Disciplina 516.3/62
Collana Memoirs of the American Mathematical Society
Soggetto topico Curvature
Morse theory
Riemannian manifolds
Algebraic topology
ISBN 1-4704-0597-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Introduction""; ""0.1. Background""; ""0.2. Main results""; ""0.3. The connection with generalised Morse functions and Part II""; ""0.4. Acknowledgements""; ""Chapter 1. Definitions and Preliminary Results""; ""1.1. Isotopy and concordance in the space of metrics of positive scalar curvature""; ""1.2. Warped product metrics on the sphere""; ""1.3. Torpedo metrics on the disk""; ""1.4. Doubly warped products and mixed torpedo metrics""; ""1.5. Inducing a mixed torpedo metric with an embedding""; ""Chapter 2. Revisiting the Surgery Theorem""
""2.1. Surgery and cobordism""""2.2. Surgery and positive scalar curvature""; ""2.3. Outline of the proof of Theorem 2.3""; ""2.4. Part 1 of the proof: Curvature formulae for the first deformation""; ""2.5. Part 2 of the proof: A continuous bending argument""; ""2.6. Part 3 of the proof: Isotoping to a standard product""; ""2.7. Applying Theorem 2.3 over a compact family of psc-metrics""; ""2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem)""; ""Chapter 3. Constructing Gromov-Lawson Cobordisms""; ""3.1. Morse Theory and admissible Morse functions""
""3.2. A reverse Gromov-Lawson cobordism""""3.3. Continuous families of Morse functions""; ""Chapter 4. Constructing Gromov-Lawson Concordances""; ""4.1. Applying the Gromov-Lawson technique over a pair of cancelling surgeries""; ""4.2. Cancelling Morse critical points: The Weak and Strong Cancellation Theorems""; ""4.3. A strengthening of Theorem 4.2""; ""4.4. Standardising the embedding of the second surgery sphere""; ""Chapter 5. Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries""; ""5.1. Connected sums of psc-metrics""
""5.2. An analysis of the metric g'', obtained from the second surgery""""5.3. The proof of Theorem 5.1""; ""Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the General Case""; ""6.1. A weaker version of Theorem 0.8""; ""6.2. The proof of the main theorem""; ""Appendix: Curvature Calculations from the Surgery Theorem""; ""Bibliography""
Record Nr. UNINA-9910788859803321
Walsh Mark  
Providence, Rhode Island : , : American Mathematical Society, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Metrics of positive scalar curvature and generalised Morse functions Part I / / Mark Walsh
Autore Walsh Mark
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2010
Descrizione fisica 1 online resource (80 p.)
Disciplina 516.3/62
Collana Memoirs of the American Mathematical Society
Soggetto topico Curvature
Morse theory
Riemannian manifolds
Algebraic topology
ISBN 1-4704-0597-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Abstract""; ""Introduction""; ""0.1. Background""; ""0.2. Main results""; ""0.3. The connection with generalised Morse functions and Part II""; ""0.4. Acknowledgements""; ""Chapter 1. Definitions and Preliminary Results""; ""1.1. Isotopy and concordance in the space of metrics of positive scalar curvature""; ""1.2. Warped product metrics on the sphere""; ""1.3. Torpedo metrics on the disk""; ""1.4. Doubly warped products and mixed torpedo metrics""; ""1.5. Inducing a mixed torpedo metric with an embedding""; ""Chapter 2. Revisiting the Surgery Theorem""
""2.1. Surgery and cobordism""""2.2. Surgery and positive scalar curvature""; ""2.3. Outline of the proof of Theorem 2.3""; ""2.4. Part 1 of the proof: Curvature formulae for the first deformation""; ""2.5. Part 2 of the proof: A continuous bending argument""; ""2.6. Part 3 of the proof: Isotoping to a standard product""; ""2.7. Applying Theorem 2.3 over a compact family of psc-metrics""; ""2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem)""; ""Chapter 3. Constructing Gromov-Lawson Cobordisms""; ""3.1. Morse Theory and admissible Morse functions""
""3.2. A reverse Gromov-Lawson cobordism""""3.3. Continuous families of Morse functions""; ""Chapter 4. Constructing Gromov-Lawson Concordances""; ""4.1. Applying the Gromov-Lawson technique over a pair of cancelling surgeries""; ""4.2. Cancelling Morse critical points: The Weak and Strong Cancellation Theorems""; ""4.3. A strengthening of Theorem 4.2""; ""4.4. Standardising the embedding of the second surgery sphere""; ""Chapter 5. Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries""; ""5.1. Connected sums of psc-metrics""
""5.2. An analysis of the metric g'', obtained from the second surgery""""5.3. The proof of Theorem 5.1""; ""Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the General Case""; ""6.1. A weaker version of Theorem 0.8""; ""6.2. The proof of the main theorem""; ""Appendix: Curvature Calculations from the Surgery Theorem""; ""Bibliography""
Record Nr. UNINA-9910827647903321
Walsh Mark  
Providence, Rhode Island : , : American Mathematical Society, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Minimal resolutions via algebraic discrete morse theory / / Michael J©œllenbeck, Volkmar Welker
Minimal resolutions via algebraic discrete morse theory / / Michael J©œllenbeck, Volkmar Welker
Autore J©œllenbeck Michael <1975->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (88 p.)
Disciplina 514
Collana Memoirs of the American Mathematical Society
Soggetto topico Morse theory
Free resolutions (Algebra)
Algebra
Soggetto genere / forma Electronic books.
ISBN 1-4704-0529-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""1. Hochschild Homology and Discrete Morse Theory""""2. Explicit Calculations of Hochschild Homology""; ""Chapter 6. Minimal (Cellular) Resolutions for (p-)Borel Fixed Ideals""; ""1. Cellular Resolutions""; ""2. Cellular Minimal Resolution for Principal Borel Fixed Ideals""; ""3. Cellular Minimal Resolution for a Class of p-Borel Fixed Ideals""; ""Appendix A. The Bar and the Hochschild Complex""; ""Appendix B. Proofs for Algebraic Discrete Morse Theory""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""N""; ""P""; ""R""
""S""""T""; ""V""; ""W""
Record Nr. UNINA-9910480858303321
J©œllenbeck Michael <1975->  
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui