top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Molten carbonate and phosphoric acid stationary fuel cells [[electronic resource] ] : overview and gap analysis / / Robert Remick, Douglas Wheeler
Molten carbonate and phosphoric acid stationary fuel cells [[electronic resource] ] : overview and gap analysis / / Robert Remick, Douglas Wheeler
Autore Remick Robert Jerome <1945->
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , [2010]
Descrizione fisica 1 online resource (vii, 42 pages) : digital, PDF file
Altri autori (Persone) WheelerDouglas J
Collana NREL/TP
Soggetto topico Molten carbonate fuel cells
Fuel cells - Design and construction
Manufacturing processes - Costs
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Molten Carbonate and Phosphoric Acid Stationary Fuel Cells
Record Nr. UNINA-9910703069503321
Remick Robert Jerome <1945->  
Golden, CO : , : National Renewable Energy Laboratory, , [2010]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (263 p.)
Disciplina 621.312429
Altri autori (Persone) SundmacherKai
Soggetto topico Molten carbonate fuel cells
Fuel cells
Soggetto genere / forma Electronic books.
ISBN 1-281-08793-9
1-282-11839-0
9786612118395
9786611087937
3-527-61132-0
3-527-61133-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences
2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index
4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors
5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography
6 Steady State and Dynamic Process Analysis
Record Nr. UNINA-9910144574803321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (263 p.)
Disciplina 621.312429
Altri autori (Persone) SundmacherKai
Soggetto topico Molten carbonate fuel cells
Fuel cells
ISBN 1-281-08793-9
1-282-11839-0
9786612118395
9786611087937
3-527-61132-0
3-527-61133-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences
2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index
4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors
5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography
6 Steady State and Dynamic Process Analysis
Record Nr. UNINA-9910830318103321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molten carbonate fuel cells : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Molten carbonate fuel cells : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (263 p.)
Disciplina 621.312429
Altri autori (Persone) SundmacherKai
Soggetto topico Molten carbonate fuel cells
Fuel cells
ISBN 1-281-08793-9
1-282-11839-0
9786612118395
9786611087937
3-527-61132-0
3-527-61133-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences
2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index
4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors
5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography
6 Steady State and Dynamic Process Analysis
Record Nr. UNINA-9910877100403321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui