top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Current Trends in Computational Modeling for Drug Discovery / / edited by Supratik Kar, Jerzy Leszczynski
Current Trends in Computational Modeling for Drug Discovery / / edited by Supratik Kar, Jerzy Leszczynski
Autore Kar Supratik
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (311 pages)
Disciplina 541.2
615.19
Altri autori (Persone) LeszczynskiJerzy
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Drugs—Design
Molecules—Models
Chemistry—Data processing
Medicinal chemistry
Pharmacology
Structure-Based Drug Design
Molecular Modelling
Computational Chemistry
Medicinal Chemistry
ISBN 3-031-33871-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SBDD and its challenges -- In silico discovery of class IIb HDAC inhibitors: The state of art -- Role of computational modelling in drug discovery for Alzheimer’s disease -- Computational Modeling in the Development of Antiviral Agents -- Targeted computational approaches to identify potential inhibitors for Nipah virus -- Role of Computational Modelling in Drug Discovery for HIV -- Recent insight of the emerging severe fever with thrombocytopenia syndrome virus: drug discovery, therapeutic options, and limitations -- Computational toxicological aspects in drug design and discovery, screening adverse effects -- Read-Across and RASAR tools from the DTC Laboratory -- Databases for Drug Discovery and Development.
Record Nr. UNINA-9910734828903321
Kar Supratik  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning in Molecular Sciences / / edited by Chen Qu, Hanchao Liu
Machine Learning in Molecular Sciences / / edited by Chen Qu, Hanchao Liu
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (323 pages)
Disciplina 006.31
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Machine learning
Artificial intelligence
Molecules - Models
Chemistry, Physical and theoretical
Chemistry - Data processing
Bioinformatics
Machine Learning
Artificial Intelligence
Molecular Modelling
Theoretical Chemistry
Computational Chemistry
Computational and Systems Biology
ISBN 3-031-37196-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Machine Learning in Molecular Sciences -- Graph Neural Networks for Molecules -- Voxelized representations of atomic systems for machine learning applications -- Development of exchange-correlation functionals assisted by machine learning -- Machine-Learning for Static and Dynamic Electronic Structure Theory -- Data Quality, Data Sampling and Data Fitting: A Tutorial Guide for Constructing Full-dimensional Accurate Potential Energy Surfaces (PESs) of Molecules and Reactions -- Machine Learning Applications in Chemical Kinetics and Thermochemistry -- Synthesize in A Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis -- Machine Learning for Protein Engineering.
Record Nr. UNINA-9910746977103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Philosophy of Astrophysics : Stars, Simulations, and the Struggle to Determine What is Out There / / edited by Nora Mills Boyd, Siska De Baerdemaeker, Kevin Heng, Vera Matarese
Philosophy of Astrophysics : Stars, Simulations, and the Struggle to Determine What is Out There / / edited by Nora Mills Boyd, Siska De Baerdemaeker, Kevin Heng, Vera Matarese
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (XII, 332 p. 1 illus.)
Disciplina 501
Collana Synthese Library, Studies in Epistemology, Logic, Methodology, and Philosophy of Science
Soggetto topico Science—Philosophy
Astronomy
Molecules—Models
Knowledge, Theory of
Astronomy—Observations
Philosophy of Science
Astronomy, Cosmology and Space Sciences
Molecular Modelling
Epistemology
Astronomy, Observations and Techniques
ISBN 3-031-26618-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction (Vera Matarese, Siska De Baerdemaeker, and Nora Mills Boyd) -- Part I: Theory, Observation, and the Relation Between Them. 2. Laboratory Astrophysics: Lessons for Epistemology of Astrophysics (Nora Mills Boyd) -- 3. A Crack in the Track of the Hubble Constant (Marie Gueguen) -- 4. Theory Testing in Gravitational-Wave Astrophysics (Jamee Elder) -- 5. Hybrid Enrichment of Theory and Observation in Next-Generation Stellar Population Synthesis (Lydia Patton) -- 6. Doing More with Less: Dark Matter & Modified Gravity (Niels C. M. Martens and Martin King) -- Part II: Models and Simulations. 7. Stellar Structure Models Revisited: Evidence and Data in Asteroseismology (Mauricio Suárez) -- 8. Idealizations in Astrophysical Computer Simulations (Melissa Jacquart and Regy-Null R. Arcadia) -- 9. Simulation Verification in Practice (Kevin Kadowaki) -- 10. (What) Do We Learn from Code Comparisons? A Case Study of Self-Interacting Dark Matter Implementations (Helen Meskhidze) -- 11. Simulation and Experiment Revisited: Temporal Data in Astronomy and Astrophysics (Shannon Sylvie Abelson) -- 12. What’s In a Survey? Simulation-Induced Selection Effects in Astronomy (Sarah C. Gallagher and Christopher Smeenk) -- Part III: Black Holes. 13. On the Epistemology of Observational Black Hole Astrophysics (Juliusz Doboszewski and Dennis Lehmkuhl) -- 14. Black Holes and Analogy (Alex Mathie) -- 15. Extragalactic Reality Revisited: Astrophysics and Entity Realism (Simon Allzén) -- Part IV: Concluding Thoughts. 16. Reflections by a Theoretical Astrophysicist (Kevin Heng) -- 17. Annotated Bibliography (Cameron C. Yetman).
Record Nr. UNINA-9910731412903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
q-RASAR : A Path to Predictive Cheminformatics / / by Kunal Roy, Arkaprava Banerjee
q-RASAR : A Path to Predictive Cheminformatics / / by Kunal Roy, Arkaprava Banerjee
Autore Roy Kunal <1971->
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (99 pages)
Disciplina 542.85
Collana SpringerBriefs in Molecular Science
Soggetto topico Chemistry - Data processing
Quantum physics
Computer simulation
Molecules - Models
Computational Chemistry
Quantum Simulations
Molecular Modelling
ISBN 3-031-52057-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemical Information and Molecular Similarity -- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling -- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development -- Tools, Applications, and Case Studies (q-RA and q-RASAR) -- Future Prospects.
Record Nr. UNINA-9910806198703321
Roy Kunal <1971->  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui