2006 27th Power Modulator Symposium |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2006 |
Descrizione fisica | 1 online resource |
Disciplina | 621.381536 |
Soggetto topico |
Modulation (Electronics)
Pulse techniques (Electronics) |
ISBN | 1-5090-9261-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996211196903316 |
[Place of publication not identified], : IEEE, 2006 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
2006 27th Power Modulator Symposium |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2006 |
Descrizione fisica | 1 online resource |
Disciplina | 621.381536 |
Soggetto topico |
Modulation (Electronics)
Pulse techniques (Electronics) |
ISBN |
9781509092611
1509092617 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910146710303321 |
[Place of publication not identified], : IEEE, 2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
2008 International ITG Workshop on Smart Antennas : Darmstadt, Germany 23-27 February 2008 |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2008 |
Disciplina | 621.382/4 |
Soggetto topico |
Adaptive antennas
Modulation (Electronics) Electrical Engineering Electrical & Computer Engineering Engineering & Applied Sciences |
ISBN |
1-5090-7690-5
1-4244-1757-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996216106803316 |
[Place of publication not identified], : IEEE, 2008 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
2008 International ITG Workshop on Smart Antennas : Darmstadt, Germany 23-27 February 2008 |
Pubbl/distr/stampa | [Place of publication not identified], : IEEE, 2008 |
Disciplina | 621.382/4 |
Soggetto topico |
Adaptive antennas
Modulation (Electronics) Electrical Engineering Electrical & Computer Engineering Engineering & Applied Sciences |
ISBN |
9781509076901
1509076905 9781424417575 1424417570 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910144955403321 |
[Place of publication not identified], : IEEE, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Adaptive wireless transceivers : turbo-coded, turbo-equalized and space-time coded TDMA, CDMA, and OFDM systems / / L. Hanzo, C.H. Wong, M.S. Yee. |
Autore | Hanzo Lajos <1952-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | [Hoboken, New Jersey] : , : Wiley, 2002 |
Descrizione fisica | 1 PDF (xiv, 737 pages) : illustrations |
Disciplina | 621.3845 |
Altri autori (Persone) |
WongC. H
YeeM. S |
Soggetto topico |
Radio - Transmitter-receivers
Modulation (Electronics) Wireless communication systems Adaptive filters Adaptive antennas |
ISBN |
1-280-55556-4
9786610555567 0-470-84776-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1 Prologue -- 1.1 Motivation of the Book -- 1.2 Adaptation Principles -- 1.3 Channel Quality Metrics -- 1.4 Transceiver Parameter Adaptation -- 1.5 Milestones in Adaptive Modulation History -- 1.6 Outline of the book -- I Near-instantaneously Adaptive Modulation and Filtering Based Equalisation -- 2 Introduction To Equalizers -- 2.1 Coherent Demodulation of Square-QAM -- 2.2 Intersymbol Interference -- 2.3 Basic Equalizer Theory -- 2.4 Signal to Noise Ratio Loss of the DFE -- 2.5 Equalization in Multi-level Modems -- 2.6 Review and Discussion -- 3 Adaptive Equalization -- 3.1 Derivation of the Recursive Kalman Algorithm -- 3.2 Application of the Kalman Algorithm -- 3.3 Complexity Study -- 3.4 Adaptive Equalization in Multilevel Modems -- 3.5 Review and Discussion -- 4 Adaptive Modulation -- 4.1 Adaptive Modulation for Narrow-band Fading Channels -- 4.2 Power Control Assisted Adaptive Modulation -- 4.3 Adaptive Modulation and Equalization in a Wideband Environment -- 4.4 Review and Discussion -- 5 Turbo-Coded and Turbo-Equalised Adaptive Modulation -- 5.1 Turbo Coding -- 5.2 System Parameters -- 5.3 Turbo Block Coding Performance of the Fixed QAM Modes -- 5.4 Fixed Coding Rate, Fixed Interleaver Size Turbo Coded AQAM -- 5.5 Fixed Coding Rate. Variable Interleaver Size Turbo Coded AQAM -- 5.6 Blind Modulation Detection -- 5.7 Variable Coding Rate Turbo Block Coded Adaptive Modulation -- 5.8 Comparisons of the Turbo Block Coded AQAM Schemes -- 5.9 Turbo Convolutional Coded AQAM Schemes -- 5.10 Turbo Equalization -- 5.11 Burst-by-Burst Adaptive Wideband Coded Modulation -- 5.12 Review and Discussion -- 6 Adaptive Modulation Mode Switching Optimization -- 6.l Introduction -- 6.2 Increasing the Average Transmit Power as a Fading Counter-Measure -- 6.3 System Description -- 6.4 Optimum Switching Levels -- 6.5 Results and Discussions -- 6.6 Review and Discussion -- 7 Practical Considerations of Wideband AQAM -- 7.1 Impact of Error Propagation.
7.2 Channel Quality Estimation Latency -- 7.3 Effect of CO-channel Interference on AQAM -- 7.4 Review and Discussion -- II Near-instantaneously Adaptive Modulation and Neural Network Based Equalisation -- 8 Neural Network Based Equalization -- 8.l Discrete Time Model for Channels Exhibiting Intersymbol Interference -- 8.2 Equalization as a Classification Problem -- 8.3 Introduction to Neural Networks -- 8.4 Equalization Using Neural Networks -- 8.5 Multilayer Perceptron Based Equaliser -- 8.6 Polynomial Perceptron Based Equaliser -- 8.7 Radial Basis Function Networks -- 8.8 K-means Clustering Algorithm -- 8.9 Radial Basis Function Network Based Equalisers -- 8.10 Scalar Noise-free Channel Output States -- 8.11 Decision Feedback Assisted Radial Basis Function Network Equaliser.49 -- 8.12 Simulation Results -- 8.13 Review and Discussion -- 9 RBF-Equalized Adaptive Modulation -- 9.l Background to Adaptive Modulation in a Narrowband Fading Channel -- 9.2 Background on Adaptive Modulation in a Wideband Fading Channel -- 9.3 Brief Overview of Part I of the Book -- 9.4 Joint Adaptive Modulation and RBF Based Equalization -- 9.5 Performance of the AQAM RBF DFE Scheme -- 9.6 Review and Discussion -- 10 RBF Equalization Using nrbo Codes -- 10.1 Introduction to Turbo Codes -- 10.2 Jacobian Logarithmic RBF Equalizer -- 10.3 System Overview -- 10.4 Turbo-coded RBF-equalized M-QAM Performance -- 10.5 Channel Quality Measure -- 10.6 Turbo Coding and RBF Equalizer Assisted AQAM -- 10.7 Review and Discussion -- 11 RBF Turbo Equalization -- 11.1 Introduction to Turbo equalization -- 11.2 RBF Assisted Turbo equalization -- 11.3 Comparison of the RBF and MAP Equaliser -- 11.4 Comparison of the Jacobian RBF and Log-MAP Equaliser -- 11.5 RBF Turbo Equaliser Performance -- 11.6 Reduced-complexity RBF Assisted Turbo equalization -- 11.7 In-phase/Quadrature-phase Turbo equalization -- 11.8 Turbo Equalized Convolutional and Space Time Trellis Coding. 11.9 Review and Discussion -- III Near-Instantaneously Adaptive CDMA and Adaptive Space-Time Coded OFDM -- 12 Burst-by-Burst Adaptive Multiuser Detection CDMA -- 12.1 Motivation -- 12.2 Multiuser Detection -- 12.3 Multiuser Equaliser Concepts -- 12.4 Adaptive CDMA Schemes -- 12.5 Burst-by-Burst AQAM/CDMA -- 12.6 Review and Discussion -- 13 Adaptive Multicarrier Modulation -- 13.1 Introduction -- 13.2 Orthogonal Frequency Division Multiplexing -- 13.3 OFDM Transmission over Frequency Selective Channel -- 13.4 OFDM Performance with Frequency Errors and Timing Errors -- 13.5 Synchronization Algorithms -- 13.6 Adaptive OFDM -- 13.7 Pre-Equalization -- 13.8 Review and Discussion -- 14 Space-Time Coding versus Adaptive Modulation -- 14.1 Introduction -- 14.2 Space-Time Trellis Codes -- 14.3 Space-Time CodedTransmissionOver Wideband Channels -- 14.4 Simulation Results -- 14.5 Space-Time Coded Adaptive Modulation for OFDM -- 14.6 Review and Discussion -- 15 Conclusions and Suggestions for Further Research -- 15.1 Book Summary and Conclusions -- 15.2 Suggestions for Future Research -- 15.3 Closing Remarks -- A Appendices -- A.1 Turbo Decoding and Equalization Algorithms -- A.2 Least Mean Square Algorithm -- A.3 Minimal Feedforward Order of the RBF DFE [Proof] -- A.4 BER Analysis of Type-I Star-QAM -- A.5 Two-Dimensional Rake Receiver -- A.6 Mode Specific Average BEP of Adaptive Modulation -- Bibliography -- Index -- Author Index. |
Record Nr. | UNINA-9910142529803321 |
Hanzo Lajos <1952->
![]() |
||
[Hoboken, New Jersey] : , : Wiley, 2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
ADSL, VDSL, and multicarrier modulation |
Autore | Bingham John A. C |
Edizione | [Reissue] |
Pubbl/distr/stampa | [Place of publication not identified], : Wiley, 2000 |
Descrizione fisica | 1 online resource (301 pages) |
Disciplina | 621.385 |
Collana | Wiley series in telecommunications and signal processing ADSL, VDSL, and multicarrier modulation |
Soggetto topico |
Asymmetric digital subscriber lines
Very high-speed digital subscriber lines Modulation (Electronics) Computer networks Electrical & Computer Engineering Engineering & Applied Sciences Telecommunications |
ISBN |
1-280-55621-8
9786610556212 0-470-31014-6 0-471-20072-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910146075103321 |
Bingham John A. C
![]() |
||
[Place of publication not identified], : Wiley, 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand |
Autore | Zhu Zhechen |
Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (194 p.) |
Disciplina | 621.3815/36 |
Soggetto topico | Modulation (Electronics) |
ISBN |
1-118-90650-0
1-118-90652-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright Page; Contents; About the Authors; Preface; List of Abbreviations; List of Symbols; Chapter 1 Introduction; 1.1 Background; 1.2 Applications ofAMC; 1.2.1 Military Applications; 1.2.2 Civilian Applications; 1.3 Field Overview and Book Scope; 1.4 Modulation and Communication System Basics; 1.4.1 Analogue Systems and Modulations; 1.4.2 Digital Systems and Modulations; 1.4.3 Received Signal with Channel Effects; 1.5 Conclusion; References; Chapter 2 Signal Models for Modulation Classification; 2.1 Introduction; 2.2 Signal Model inAWGNChannel
2.2.1 Signal Distribution of I-Q Segments2.2.2 Signal Distribution of Signal Phase; 2.2.3 Signal Distribution of Signal Magnitude; 2.3 Signal Models in Fading Channel; 2.4 Signal Models in Non-Gaussian Channel; 2.4.1 Middleton ́s Class A Model; 2.4.2 Symmetric Alpha Stable Model; 2.4.3 Gaussian Mixture Model; 2.5 Conclusion; References; Chapter 3 Likelihood-based Classifiers; 3.1 Introduction; 3.2 Maximum Likelihood Classifiers; 3.2.1 Likelihood Function inAWGNChannels; 3.2.2 Likelihood Function in Fading Channels; 3.2.3 Likelihood Function in Non-Gaussian Noise Channels 3.2.4 Maximum Likelihood Classification Decision Making3.3 Likelihood Ratio Test for Unknown Channel Parameters; 3.3.1 Average Likelihood Ratio Test; 3.3.2 Generalized Likelihood Ratio Test; 3.3.3 Hybrid Likelihood Ratio Test; 3.4 Complexity Reduction; 3.4.1 Discrete Likelihood Ratio Test and Lookup Table; 3.4.2 Minimum Distance Likelihood Function; 3.4.3 Non-Parametric Likelihood Function; 3.5 Conclusion; References; Chapter 4 Distribution Test-based Classifier; 4.1 Introduction; 4.2 Kolmogorov-Smirnov Test Classifier; 4.2.1 The KS Test for Goodness of Fit 4.2.2 One-sample KS Test Classifier4.2.3 Two-sample KS Test Classifier; 4.2.4 Phase Difference Classifier; 4.3 Cramer-Von Mises Test Classifier; 4.4 Anderson-Darling Test Classifier; 4.5 Optimized Distribution Sampling Test Classifier; 4.5.1 Sampling Location Optimization; 4.5.2 Distribution Sampling; 4.5.3 Classification Decision Metrics; 4.5.4 Modulation Classification Decision Making; 4.6 Conclusion; References; Chapter 5 Modulation Classification Features; 5.1 Introduction; 5.2 Signal Spectral-based Features; 5.2.1 Signal Spectral-based Features; 5.2.2 Spectral-based Features Specialities 5.2.3 Spectral-based Features Decision Making5.2.4 Decision Threshold Optimization; 5.3 Wavelet Transform-based Features; 5.4 High-order Statistics-based Features; 5.4.1 High-order Moment-based Features; 5.4.2 High-order Cumulant-based Features; 5.5 Cyclostationary Analysis-based Features; 5.6 Conclusion; References; Chapter 6 Machine Learning for Modulation Classification; 6.1 Introduction; 6.2 K-Nearest Neighbour Classifier; 6.2.1 Reference Feature Space; 6.2.2 Distance Definition; 6.2.3 K-Nearest Neighbour Decision; 6.3 Support Vector Machine Classifier 6.4 Logistic Regression for Feature Combination |
Record Nr. | UNINA-9910132305003321 |
Zhu Zhechen
![]() |
||
Chichester, England : , : Wiley, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand |
Autore | Zhu Zhechen |
Pubbl/distr/stampa | Chichester, England : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (194 p.) |
Disciplina | 621.3815/36 |
Soggetto topico | Modulation (Electronics) |
ISBN |
1-118-90650-0
1-118-90652-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright Page; Contents; About the Authors; Preface; List of Abbreviations; List of Symbols; Chapter 1 Introduction; 1.1 Background; 1.2 Applications ofAMC; 1.2.1 Military Applications; 1.2.2 Civilian Applications; 1.3 Field Overview and Book Scope; 1.4 Modulation and Communication System Basics; 1.4.1 Analogue Systems and Modulations; 1.4.2 Digital Systems and Modulations; 1.4.3 Received Signal with Channel Effects; 1.5 Conclusion; References; Chapter 2 Signal Models for Modulation Classification; 2.1 Introduction; 2.2 Signal Model inAWGNChannel
2.2.1 Signal Distribution of I-Q Segments2.2.2 Signal Distribution of Signal Phase; 2.2.3 Signal Distribution of Signal Magnitude; 2.3 Signal Models in Fading Channel; 2.4 Signal Models in Non-Gaussian Channel; 2.4.1 Middleton ́s Class A Model; 2.4.2 Symmetric Alpha Stable Model; 2.4.3 Gaussian Mixture Model; 2.5 Conclusion; References; Chapter 3 Likelihood-based Classifiers; 3.1 Introduction; 3.2 Maximum Likelihood Classifiers; 3.2.1 Likelihood Function inAWGNChannels; 3.2.2 Likelihood Function in Fading Channels; 3.2.3 Likelihood Function in Non-Gaussian Noise Channels 3.2.4 Maximum Likelihood Classification Decision Making3.3 Likelihood Ratio Test for Unknown Channel Parameters; 3.3.1 Average Likelihood Ratio Test; 3.3.2 Generalized Likelihood Ratio Test; 3.3.3 Hybrid Likelihood Ratio Test; 3.4 Complexity Reduction; 3.4.1 Discrete Likelihood Ratio Test and Lookup Table; 3.4.2 Minimum Distance Likelihood Function; 3.4.3 Non-Parametric Likelihood Function; 3.5 Conclusion; References; Chapter 4 Distribution Test-based Classifier; 4.1 Introduction; 4.2 Kolmogorov-Smirnov Test Classifier; 4.2.1 The KS Test for Goodness of Fit 4.2.2 One-sample KS Test Classifier4.2.3 Two-sample KS Test Classifier; 4.2.4 Phase Difference Classifier; 4.3 Cramer-Von Mises Test Classifier; 4.4 Anderson-Darling Test Classifier; 4.5 Optimized Distribution Sampling Test Classifier; 4.5.1 Sampling Location Optimization; 4.5.2 Distribution Sampling; 4.5.3 Classification Decision Metrics; 4.5.4 Modulation Classification Decision Making; 4.6 Conclusion; References; Chapter 5 Modulation Classification Features; 5.1 Introduction; 5.2 Signal Spectral-based Features; 5.2.1 Signal Spectral-based Features; 5.2.2 Spectral-based Features Specialities 5.2.3 Spectral-based Features Decision Making5.2.4 Decision Threshold Optimization; 5.3 Wavelet Transform-based Features; 5.4 High-order Statistics-based Features; 5.4.1 High-order Moment-based Features; 5.4.2 High-order Cumulant-based Features; 5.5 Cyclostationary Analysis-based Features; 5.6 Conclusion; References; Chapter 6 Machine Learning for Modulation Classification; 6.1 Introduction; 6.2 K-Nearest Neighbour Classifier; 6.2.1 Reference Feature Space; 6.2.2 Distance Definition; 6.2.3 K-Nearest Neighbour Decision; 6.3 Support Vector Machine Classifier 6.4 Logistic Regression for Feature Combination |
Record Nr. | UNINA-9910807452803321 |
Zhu Zhechen
![]() |
||
Chichester, England : , : Wiley, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Detection estimation and modulation theory . Part I Detection, estimation, and filtering theory [[electronic resource] /] / Harry L. Van Trees, Kristine L. Bell ; with Zhi Tian |
Autore | Van Trees Harry L |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2013 |
Descrizione fisica | 1 online resource (1175 p.) |
Disciplina | 621.382/2 |
Altri autori (Persone) |
BellKristine L
TianZhi <1972-> |
Soggetto topico |
Signal theory (Telecommunication)
Modulation (Electronics) Estimation theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-53970-2
1-118-53992-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Detection, Estimation, and Modulation Theory: Part I -Detection, Estimation, and Filtering Theory; Contents; Preface; Preface to the First Edition; 1 Introduction; 1.1 Introduction; 1.2 Topical Outline; 1.3 Possible Approaches; 1.4 Organization; 2 Classical Detection Theory; 2.1 Introduction; 2.2 Simple Binary Hypothesis Tests; 2.2.1 Decision Criteria; 2.2.2 Performance: Receiver Operating Characteristic; 2.3 M Hypotheses; 2.4 Performance Bounds and Approximations; 2.5 Monte Carlo Simulation; 2.5.1 Monte Carlo Simulation Techniques; 2.5.2 Importance Sampling; 2.5.2.1 Simulation of PF
2.5.2.2 Simulation of PM2.5.2.3 Independent Observations; 2.5.2.4 Simulation of the ROC; 2.5.2.5 Examples; 2.5.2.6 Iterative Importance Sampling; 2.5.3 Summary; 2.6 Summary; 2.7 Problems; 3 General Gaussian Detection; 3.1 Detection of Gaussian Random Vectors; 3.1.1 Real Gaussian Random Vectors; 3.1.2 Circular Complex Gaussian Random Vectors; 3.1.3 General Gaussian Detection; 3.1.3.1 Real Gaussian Vectors; 3.1.3.2 Circular Complex Gaussian Vectors; 3.1.3.3 Summary; 3.2 Equal Covariance Matrices; 3.2.1 Independent Components with Equal Variance 3.2.2 Independent Components with Unequal Variances3.2.3 General Case: Eigendecomposition; 3.2.4 Optimum Signal Design; 3.2.5 Interference Matrix: Estimator-Subtractor; 3.2.6 Low-Rank Models; 3.2.7 Summary; 3.3 Equal Mean Vectors; 3.3.1 Diagonal Covariance Matrix on H0: Equal Variance; 3.3.1.1 Independent, Identically Distributed Signal Components; 3.3.1.2 Independent Signal Components: Unequal Variances; 3.3.1.3 Correlated Signal Components; 3.3.1.4 Low-Rank Signal Model; 3.3.1.5 Symmetric Hypotheses, Uncorrelated Noise; 3.3.2 Nondiagonal Covariance Matrix on H0; 3.3.2.1 Signal on H1 Only 3.3.2.2 Signal on Both Hypotheses3.3.3 Summary; 3.4 General Gaussian; 3.4.1 Real Gaussian Model; 3.4.2 Circular Complex Gaussian Model; 3.4.3 Single Quadratic Form; 3.4.4 Summary; 3.5 M Hypotheses; 3.6 Summary; 3.7 Problems; 4 Classical Parameter Estimation; 4.1 Introduction; 4.2 Scalar Parameter Estimation; 4.2.1 Random Parameters: Bayes Estimation; 4.2.2 Nonrandom Parameter Estimation; 4.2.3 Bayesian Bounds; 4.2.3.1 Lower Bound on the MSE; 4.2.3.2 Asymptotic Behavior; 4.2.4 Case Study; 4.2.5 Exponential Family; 4.2.5.1 Nonrandom Parameters; 4.2.5.2 Random Parameters 4.2.6 Summary of Scalar Parameter Estimation4.3 Multiple Parameter Estimation; 4.3.1 Estimation Procedures; 4.3.1.1 Random Parameters; 4.3.1.2 Nonrandom Parameters; 4.3.2 Measures of Error; 4.3.2.1 Nonrandom Parameters; 4.3.2.2 Random Parameters; 4.3.3 Bounds on Estimation Error; 4.3.3.1 Nonrandom Parameters; 4.3.3.2 Random Parameters; 4.3.4 Exponential Family; 4.3.4.1 Nonrandom Parameters; 4.3.4.2 Random Parameters; 4.3.5 Nuisance Parameters; 4.3.5.1 Nonrandom Parameters; 4.3.5.2 Random Parameters; 4.3.5.3 Hybrid Parameters; 4.3.6 Hybrid Parameters; 4.3.6.1 Joint ML and MAP Estimation 4.3.6.2 Nuisance Parameters |
Record Nr. | UNINA-9910462883903321 |
Van Trees Harry L
![]() |
||
Hoboken, N.J., : Wiley, c2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Detection estimation and modulation theory . Part I Detection, estimation, and filtering theory [[electronic resource] /] / Harry L. Van Trees, Kristine L. Bell ; with Zhi Tian |
Autore | Van Trees Harry L |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2013 |
Descrizione fisica | 1 online resource (1175 p.) |
Disciplina | 621.382/2 |
Altri autori (Persone) |
BellKristine L
TianZhi <1972-> |
Collana | Detection, estimation, and modulation theory |
Soggetto topico |
Signal theory (Telecommunication)
Modulation (Electronics) Estimation theory |
ISBN |
1-118-53970-2
1-118-53992-3 |
Classificazione |
547.1
621.381536 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Detection, Estimation, and Modulation Theory: Part I -Detection, Estimation, and Filtering Theory; Contents; Preface; Preface to the First Edition; 1 Introduction; 1.1 Introduction; 1.2 Topical Outline; 1.3 Possible Approaches; 1.4 Organization; 2 Classical Detection Theory; 2.1 Introduction; 2.2 Simple Binary Hypothesis Tests; 2.2.1 Decision Criteria; 2.2.2 Performance: Receiver Operating Characteristic; 2.3 M Hypotheses; 2.4 Performance Bounds and Approximations; 2.5 Monte Carlo Simulation; 2.5.1 Monte Carlo Simulation Techniques; 2.5.2 Importance Sampling; 2.5.2.1 Simulation of PF
2.5.2.2 Simulation of PM2.5.2.3 Independent Observations; 2.5.2.4 Simulation of the ROC; 2.5.2.5 Examples; 2.5.2.6 Iterative Importance Sampling; 2.5.3 Summary; 2.6 Summary; 2.7 Problems; 3 General Gaussian Detection; 3.1 Detection of Gaussian Random Vectors; 3.1.1 Real Gaussian Random Vectors; 3.1.2 Circular Complex Gaussian Random Vectors; 3.1.3 General Gaussian Detection; 3.1.3.1 Real Gaussian Vectors; 3.1.3.2 Circular Complex Gaussian Vectors; 3.1.3.3 Summary; 3.2 Equal Covariance Matrices; 3.2.1 Independent Components with Equal Variance 3.2.2 Independent Components with Unequal Variances3.2.3 General Case: Eigendecomposition; 3.2.4 Optimum Signal Design; 3.2.5 Interference Matrix: Estimator-Subtractor; 3.2.6 Low-Rank Models; 3.2.7 Summary; 3.3 Equal Mean Vectors; 3.3.1 Diagonal Covariance Matrix on H0: Equal Variance; 3.3.1.1 Independent, Identically Distributed Signal Components; 3.3.1.2 Independent Signal Components: Unequal Variances; 3.3.1.3 Correlated Signal Components; 3.3.1.4 Low-Rank Signal Model; 3.3.1.5 Symmetric Hypotheses, Uncorrelated Noise; 3.3.2 Nondiagonal Covariance Matrix on H0; 3.3.2.1 Signal on H1 Only 3.3.2.2 Signal on Both Hypotheses3.3.3 Summary; 3.4 General Gaussian; 3.4.1 Real Gaussian Model; 3.4.2 Circular Complex Gaussian Model; 3.4.3 Single Quadratic Form; 3.4.4 Summary; 3.5 M Hypotheses; 3.6 Summary; 3.7 Problems; 4 Classical Parameter Estimation; 4.1 Introduction; 4.2 Scalar Parameter Estimation; 4.2.1 Random Parameters: Bayes Estimation; 4.2.2 Nonrandom Parameter Estimation; 4.2.3 Bayesian Bounds; 4.2.3.1 Lower Bound on the MSE; 4.2.3.2 Asymptotic Behavior; 4.2.4 Case Study; 4.2.5 Exponential Family; 4.2.5.1 Nonrandom Parameters; 4.2.5.2 Random Parameters 4.2.6 Summary of Scalar Parameter Estimation4.3 Multiple Parameter Estimation; 4.3.1 Estimation Procedures; 4.3.1.1 Random Parameters; 4.3.1.2 Nonrandom Parameters; 4.3.2 Measures of Error; 4.3.2.1 Nonrandom Parameters; 4.3.2.2 Random Parameters; 4.3.3 Bounds on Estimation Error; 4.3.3.1 Nonrandom Parameters; 4.3.3.2 Random Parameters; 4.3.4 Exponential Family; 4.3.4.1 Nonrandom Parameters; 4.3.4.2 Random Parameters; 4.3.5 Nuisance Parameters; 4.3.5.1 Nonrandom Parameters; 4.3.5.2 Random Parameters; 4.3.5.3 Hybrid Parameters; 4.3.6 Hybrid Parameters; 4.3.6.1 Joint ML and MAP Estimation 4.3.6.2 Nuisance Parameters |
Record Nr. | UNINA-9910786249403321 |
Van Trees Harry L
![]() |
||
Hoboken, N.J., : Wiley, c2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|