Advanced envelope research for factory built housing , Phase 3--Whole-house prototyping / / prepared by E. Levy, M. Mullens, and P. Rath, ARIES Collaborative, The Levy Partnership, Inc
| Advanced envelope research for factory built housing , Phase 3--Whole-house prototyping / / prepared by E. Levy, M. Mullens, and P. Rath, ARIES Collaborative, The Levy Partnership, Inc |
| Autore | Lévy Edmond |
| Pubbl/distr/stampa | [Washington, D.C.] : , : U.S. Department of Energy, Energy Efficiency & Renewable Energy, Building Technologies Office, , April 2014 |
| Descrizione fisica | 1 online resource (x, 49 pages) : illustrations (chiefly color) |
| Soggetto topico |
Prefabricated houses
Prefabricated houses - Energy conservation Modular construction Exterior walls - Materials Exterior walls - Energy conservation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910702640503321 |
Lévy Edmond
|
||
| [Washington, D.C.] : , : U.S. Department of Energy, Energy Efficiency & Renewable Energy, Building Technologies Office, , April 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced envelope research for factory built housing, phase 3, design development and prototyping / / prepared by E. Levy [and three others] ; prepared for: The National Renewable Energy Laboratory on behalf of the U.S. Department of Energy's Building America Program, Office of Energy Efficiency and Renewable Energy
| Advanced envelope research for factory built housing, phase 3, design development and prototyping / / prepared by E. Levy [and three others] ; prepared for: The National Renewable Energy Laboratory on behalf of the U.S. Department of Energy's Building America Program, Office of Energy Efficiency and Renewable Energy |
| Autore | Lévy Edmond |
| Pubbl/distr/stampa | [Washington, D.C.] : , : U.S. Department of Energy, Energy Efficiency & Renewable Energy, Building Technologies Office, , 2014 |
| Descrizione fisica | 1 online resource (xii, 78 pages) : illustrations (some color) |
| Soggetto topico |
Prefabricated houses
Modular construction Exterior walls - Materials |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910705450603321 |
Lévy Edmond
|
||
| [Washington, D.C.] : , : U.S. Department of Energy, Energy Efficiency & Renewable Energy, Building Technologies Office, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Manual on use of self-propelled modular transporters to remove and replace bridges [[electronic resource] /] / sponsored by Federal Highway Administration ... [and others]
| Manual on use of self-propelled modular transporters to remove and replace bridges [[electronic resource] /] / sponsored by Federal Highway Administration ... [and others] |
| Pubbl/distr/stampa | [Washington, D.C.?] : , : U.S. Dept. of Transportation, Federal Highway Administration, , [2007] |
| Descrizione fisica | ii, 112 pages : digital, PDF file |
| Soggetto topico |
Moving of buildings, bridges, etc - Equipment and supplies
Bridges - Design and construction Modular construction |
| Soggetto genere / forma | Handbooks and manuals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Manual on use of self propelled modular transporters to remove and replace bridges |
| Record Nr. | UNINA-9910696680103321 |
| [Washington, D.C.?] : , : U.S. Dept. of Transportation, Federal Highway Administration, , [2007] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modular and Offsite Construction (MOC) Summit proceedings
| Modular and Offsite Construction (MOC) Summit proceedings |
| Pubbl/distr/stampa | Edmonton, Alberta, Canada : , : University of Alberta Libraries, , [2016]- |
| Soggetto topico |
Modular construction - Congresses
Modular construction |
| Soggetto genere / forma | Conference papers and proceedings. |
| ISSN | 2562-5438 |
| Classificazione |
collissn
cci1icc |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
Modular and Offsite Construction Summit proceedings
MOC Summit proceedings Proceedings of the ... Modular and Offsite Construction (MOC) Summit |
| Record Nr. | UNINA-9910728686503321 |
| Edmonton, Alberta, Canada : , : University of Alberta Libraries, , [2016]- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modularization : a strategic guide to offsite preassembly for capital projects / / Michael Kluck, Jin Ouk Choi
| Modularization : a strategic guide to offsite preassembly for capital projects / / Michael Kluck, Jin Ouk Choi |
| Autore | Kluck Michael |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (253 pages) |
| Disciplina | 693.97 |
| Soggetto topico | Modular construction |
| ISBN | 1-119-82482-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Introduction -- Chapter 1: What Is Modularization? -- Chapter 2: Advantages and Challenges of Modularization -- Chapter 3: Industry Status on Modularization -- Chapter 4: What Is a Module? -- Chapter 5: The Business Case for Modularization -- Chapter 6: The Module Team and Execution Plan Differences -- Chapter 7: Key Critical Success Factors for Modular Project Success -- Chapter 8: The Fabrication Yard -- Chapter 9: Module Considerations by Project Group -- Chapter 10: A Practical Module Development Process -- Chapter 11: Modularization Application Case Study Exercise -- Chapter 12: Standardization: The Holy Grail of Pre-Assembly -- Chapter 13: Innovative Technologies for Modularization -- Chapter 14: Moving Forward -- Chapter 15: Key Literature and Resources on Modularization -- Chapter 1 What Is Modularization? -- 1.1 Definitions -- 1.1.1 Modularization -- 1.1.2 Module -- 1.1.3 Percentage Modularization -- 1.2 "Planning for Modularization" as a Best Practice -- 1.3 Current State of the Construction Industry -- 1.3.1 How Did the Construction Industry End Up in Such a Sad State of Affairs? -- 1.3.2 The Solution: Modularization -- 1.3.3 Why Aren't All Jobs Modular? -- 1.3.4 Are Module Jobs More Expensive? -- 1.4 Three Distinct Module Options (or Circumstances) -- 1.4.1 Very Limited -- 1.4.2 Selective Implementation -- 1.4.3 Maximized Modularization -- 1.5 What Modularization Is "Not" -- 1.5.1 Panacea (a Solution for All Difficulties) -- 1.5.2 Constant -- 1.5.3 Easy -- 1.6 Summary -- References -- Chapter 2 Advantages and Challenges of Modularization -- 2.1 Why Do Fabrication Yards Have an Advantage? -- 2.1.1 Obvious Reasons -- 2.1.2 Less Obvious Reasons -- 2.2 Advantages of Modularization -- 2.2.1 Reduced Capital Costs -- 2.2.2 Improved Schedule Performance.
2.2.3 Increased Productivity -- 2.2.4 Improved Predictability (Surety/Reliability) or Less Variability -- 2.2.5 Increased Safety and Quality Performance -- 2.2.6 Increased Sustainability Performance (Green Benefits) -- 2.2.7 Site and Site Construction Team Benefits -- 2.3 Challenges -- 2.3.1 Critical Path (Reduction in Flexibility) -- 2.3.2 Upfront Cost (and Pre-Commitment) -- 2.3.3 Barriers to Engineering -- 2.3.4 Acceleration of Procurement -- 2.3.5 Owner and Contractor Capabilities -- 2.3.6 Module Fabricator Skills and Capabilities -- 2.3.7 Extensive Coordination -- 2.3.8 Logistics (Module Transportation) -- 2.3.9 Others -- 2.4 Summary -- References -- Chapter 3 Industry Status on Modularization -- 3.1 Modular Projects Case Study -- 3.1.1 Case Study Methodologies -- 3.1.2 Sample Characteristics -- 3.2 Results (Industry Status on Modularization) -- 3.2.1 Advantages of Modularization -- 3.2.2 Cost and Schedule Savings Compared to Stick-Built -- 3.2.3 Recognized Project Difficulties and Impediments to Modularization Application -- 3.2.4 Business Case Drivers for Modularization -- 3.2.5 Types of Module Units -- 3.2.6 Number, Size, and Weight of Modules -- 3.2.7 Characteristics of Job Site and Module Fabrication/Assembly Shops -- 3.3 Summary -- Acknowledgments -- References -- Chapter 4 What Is a Module? -- 4.1 Common Terms -- 4.1.1 Pre-Assembled Pipe Rack or Pre-Assembled Rack (PAR) -- 4.1.2 Pre-Assembled Units (PAU) -- 4.1.3 Skid Mounted Unit (SMU) or Vendor Package Unit (VPU) -- 4.1.4 Vendor Assembled Unit (VAU) -- 4.1.5 Pre-Assembled Structure (PAS) -- 4.2 Other Terms -- 4.2.1 Small PAU/Medium PAU/Large PAU/Super PAU/Mega (or Small/Medium/Large/Very Large/Mega Equipment Modules) -- 4.2.2 Small PAR/Medium PAR/Large/Very Large PAR (or Small/Medium/Large/Very Large Pipe Rack Modules) -- 4.3 Module Considerations -- 4.3.1 Plot Plan Development. 4.3.2 What Does Such an Exercise Look Like? -- 4.3.3 Why Analyze the Process? -- 4.3.4 Steps in Maximizing Module Efficiency -- 4.3.5 Additional Module Considerations -- 4.4 Summary -- References -- Chapter 5 The Business Case for Modularization -- 5.1 Fundamentals of the Business Case -- 5.1.1 What Makes a "Good" Module Candidate? -- 5.1.2 Every Project Has Some Amount of Modularization -- 5.1.3 Three Distinct Levels of Involvement -- 5.1.4 Advantages and Challenges -- 5.2 Important Factors to Consider -- 5.2.1 Universal Key Project Drivers -- 5.2.2 Additional Project-Specific Factors -- 5.3 The Business Case Process -- 5.4 The Business Case Model -- Project Analysis -- The 13-Step Business Case Flowchart -- 5.5 The 13-Step Business Case Flowchart -- Step 1 Modularization Technical Feasibility -- Step 2 Identify Module Drivers -- Step 3 Analyze Module Potential -- Step 4 Perform Options Analysis -- Step 5 Develop Module Scope, and Step 6 Develop Module Size -- Step 7 Produce Module Definition and Index -- Step 8 Develop Execution Strategy and Execution Plan -- Step 9 Produce a Definitive Cost Estimate -- Step 10 Produce a Definitive Schedule -- Step 11 Check Module Viability -- Step 12 Proceed with Modularization to the Next Project Phase -- Step 13 Fall Back to Stick-Built -- 5.6 How Often Should the Business Case Flowchart Be Utilized? -- 5.7 Summary -- References -- Chapter 6 The Module Team and Execution Plan Differences -- 6.1 The Module Team -- 6.1.1 A Module-Savvy Leader -- 6.1.2 The Module Team Members -- 6.1.3 Critical Team Members -- 6.1.4 Integration into Project Management -- 6.1.5 Module Team Growth -- 6.2 Execution Plan Differences (EPDs) -- 6.2.1 Guiding Principles -- 6.2.2 Topics of Execution Plan Differences -- 6.2.3 Detailed List of Execution Plan Differences -- 6.2.4 Timing of Execution Plan Differences -- 6.3 Summary. References -- Chapter 7 Key Critical Success Factors for Modular Project Success -- 7.1 Modularization Critical Success Factors (CSFs) -- 7.1.1 CSF Labels and Descriptions -- 7.1.2 Frequent Module Job Mistakes -- 7.1.3 Responsibility and Timing of CSFs -- 7.1.4 Most Delayed CSFs in Terms of Accomplishment Timing -- 7.2 Association between Modularization CSF and Project Performance -- 7.3 Training Exercise -- 7.3.1 Instructions for the Training Exercise -- References -- Chapter 8 The Fabrication Yard -- 8.1 Basic Benefits of the Fab Yard -- 8.2 Manufacturing and Construction Mixture -- 8.3 AWP and Module Fabrication -- 8.4 Selecting a Fabrication Yard -- 8.4.1 Project Size -- 8.4.2 Number of Yards Utilized -- 8.4.3 Location of the Yard -- 8.4.4 Complexity -- 8.5 Contracting Strategy -- 8.5.1 Type of Contract -- 8.5.2 The Best Type of Subcontract -- 8.6 Division of Responsibility -- 8.7 Summary -- Reference -- Chapter 9 Module Considerations by Project Group -- 9.1 Engineering Considerations -- 9.1.1 Module Evolution -- 9.1.2 Operations and Maintenance Input -- 9.1.3 Structural Engineering Is King -- 9.2 Scheduling Considerations -- 9.3 Procurement Considerations -- 9.3.1 Fabrication Yard Interfacing -- 9.4 Sub-Contract Considerations -- 9.4.1 Heavy Haul (HH) -- 9.4.2 Vessel Transport -- 9.4.3 Module Offloading Facility (MOF) -- 9.4.4 Heavy Lift (HL) -- 9.4.5 Pipe Spools and Galvanized Structural Steel Fabrication -- 9.5 Fabrication Considerations -- 9.5.1 Bolted vs. Welded -- 9.5.2 Structural Shapes -- 9.6 Completion/Testing/Prep Considerations -- 9.6.1 Shipping Incomplete -- 9.6.2 Ship Loose -- 9.7 Load-out Considerations -- 9.7.1 Land Load-out and Self-Propelled Modular Transporters (SPMTs) -- 9.7.2 Marine Onloading and Offloading -- 9.7.3 Capacity of the Wharf or Quay -- 9.8 Module Movement Considerations -- 9.9 Module Responsibility Matrix. 9.10 Shipping Considerations -- 9.10.1 Tying or Fastening the Module -- 9.10.2 Movement to Site and Hook-Up -- 9.11 Construction Considerations -- 9.11.1 Understand the Schedule -- 9.11.2 Understand the Modules -- 9.12 Summary -- References -- Chapter 10 A Practical Module Development Process -- 10.1 Introduction -- 10.2 Initial Project Analysis -- 10.2.1 Reality Check Questions -- 10.3 Early Discussions -- 10.4 Module Tenets -- 10.4.1 Definitions -- 10.4.2 Boundaries and Limitations -- 10.4.3 Cost -- 10.4.4 Impacts -- 10.4.5 Experience -- 10.4.6 Commitment -- 10.5 Project Drivers -- 10.5.1 Cost versus Schedule -- 10.5.2 Other Drivers -- 10.5.3 Owner-Furnished Equipment -- 10.5.4 The Module Team -- 10.5.5 How Many and How Big? -- 10.6 The Five-Step Module Development Process -- 10.6.1 Step #1 The Stick-Built versus Module Comparison -- 10.6.2 Step #2 The Module Layout -- 10.6.3 Step #3 Expand and Accept -- 10.6.4 Step #4 Schedule -- 10.6.5 Step #5 Cost -- 10.6.6 Other Activities -- 10.7 Concerns to Watch Out For (Lessons Learned) -- 10.8 The Inevitable Question -- 10.8.1 The Late Requested Module Study -- 10.8.2 Less Ambitious Options -- 10.9 A Couple of Observations from Experience -- 10.9.1 Underestimation -- 10.9.2 Under-Collaboration -- 10.10 Conclusion -- Chapter 11 Modularization Application Case Study Exercise -- 11.1 Oil and Gas (Downstream) LNG Modularization Project Scenario1 -- 11.2 General Project Description and Background -- 11.3 Additional Project Site/Existing Facilities Information -- 11.3.1 General Information -- 11.3.2 Potential African Supply Bases -- 11.3.3 Opportunity Island -- 11.3.4 Asian Fabrication Yards -- 11.3.5 The Houston Engineering Offices -- 11.3.6 Project Scope -- 11.3.7 Project Characteristics -- 11.3.8 Project Stakeholders -- 11.3.9 Modularization -- 11.4 In-Class Exercise -- Opportunity Framing (FEL-0). 11.4.1 Suggested Student Development Activities. |
| Record Nr. | UNINA-9910829854803321 |
Kluck Michael
|
||
| Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Structural Design of Modules for Energy and Industrial Facilities
| Structural Design of Modules for Energy and Industrial Facilities |
| Autore | Kerins David |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Reston : , : American Society of Civil Engineers, , 2024 |
| Descrizione fisica | 1 online resource (333 pages) |
| Altri autori (Persone) |
Drake AmorosoSamuel
John CurrieDavid DankarSanjay HuaXiapin KalmusJeremy KhanRasheed George KhouryKal KhuranaHimanshu LiuZhong (John) |
| Soggetto topico |
Modular construction
Industrial buildings - Design and construction |
| ISBN |
0-7844-8577-1
0-7844-8576-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Task Committee on Onshore Heavy Industrial Modularization Guidelines -- Acknowledgments -- Preface -- Disclaimer -- Chapter 1 : Overview -- 1.1 Introduction -- 1.2 Report Purpose -- 1.3 Research -- 1.4 Modules -- 1.4.1 Background -- 1.4.2 Buildings or Equivalent Structures -- 1.4.2.1 Modular Buildings -- 1.4.2.2 Modular Building Splits -- 1.4.2.3 Modular Building Compliance Programs -- 1.4.2.4 Modular Building Design for Transportation -- 1.4.3 Structure Subassemblies -- 1.4.4 Pipe Racks -- 1.4.5 Packaged Units -- 1.4.6 Process Modules -- 1.5 Transportation Modes -- 1.5.1 Land -- 1.5.2 Water -- 1.5.3 Air -- 1.6 Sustainability Considerations -- References -- Appendix 1A. Structure Subassemblies -- 1A-1 Introduction -- 1A-2 Modular Steel Panel Types -- 1A-2.1 Composite Floor Panels -- 1A-2.2 Pressure Restraint Walls -- 1A-2.3 Grating Floor Panels -- 1A-2.4 Checkered Plate Floor Panels -- 1A-2.5 Girt Trusses -- 1A-3.1 Ground Assemblies Using Modular Steel Floor Panels -- 1A-3.2 Silo Support Frames -- 1A-3.3 Roof Ground Assemblies -- 1A-3.4 Turbine Generator Tabletop Ground Preassembly -- 1A-3.5 Shop-Fabricated and Ground-Assembled Stair Tower Modules -- 1A-4 Economics of Modular Steel Floor and Wall Panels -- Chapter 2 : Philosophy and Early Design Development Concepts -- 2.1 Introduction -- 2.1.1 Definitions -- 2.2 Modularization Objectives and Drivers -- 2.3 Modularization Strategy -- 2.3.1 Modularization Design Workshops -- 2.3.2 Module Design Strategy -- 2.3.3 Module Layout -- 2.4 Civil/Structural Design Philosophies -- 2.4.1 Target Reliability and Associated Reliability Indexes -- 2.4.2 Site Preparation and Foundation Design Strategy -- 2.4.3 Primary Steel Structure.
2.4.4 Module Size, Structural System, and Connections -- Module Size and Weight Constraints -- Selection of a Structural System -- Framing Configuration -- Rolled Shapes versus Built-Up Girders -- Bolted versus Welded Connections -- 2.4.5 Multidiscipline Supports -- 2.4.6 Marine Transport Structural Characteristics -- 2.4.7 Land Transport Structural Characteristics -- 2.5 Logistics Philosophy -- 2.5.1 Marine Transport: Heavy-Lift Vessel and Barge -- 2.5.2 Land Transport: Self-Propelled Modular Transporter and Propelled Modular Transporter a nd Rail -- 2.6 Weight Management Philosophy -- 2.7 Module Installation Philosophies -- 2.8 Interface/Project Management -- 2.9 Impact on Project Summary -- References -- Chapter 3 : Front-End Engineering Design -- 3.1 Introduction -- 3.2 Module Layout -- 3.3 Transportation -- 3.3.1 Transportation for Planning and Schedule -- 3.3.2 Dimensional and Weight Limitations -- 3.3.3 Available Transportation Options -- 3.3.4 Water Transportation -- 3.3.5 Self-Propelled Modular Transporters -- 3.3.6 Trucks -- 3.3.7 Railway -- 3.3.8 Selection of Transportation Contractors -- 3.4 Module Structure Design Criteria -- 3.5 Constructability Study -- 3.5.1 Planning and Logistics Management -- 3.5.2 Schedule Compression and Cost Reduction -- 3.5.3 Bolted versus Welded Connections -- 3.5.4 Extent of Field Construction versus Shop Fabrication -- 3.5.5 Selection of Fabrication Yard -- 3.6 Weight Management Procedure -- 3.6.1 Weight and Center of Gravity Report -- 3.6.2 Weight Report Updates -- 3.7 Dimensional Control Basis -- 3.8 Risk Management -- 3.9 Permitting Plan -- 3.10 Schedule -- 3.11 Cost Estimate -- 3.12 Interface Matrix -- 3.13 Value Engineering -- References -- Chapter 4 : Weight Management -- 4.1 Purpose -- 4.2 Scope -- 4.3 Tailoring. 4.4 Definitions -- 4.5 Acronyms -- 4.6 General Requirements -- 4.6.1 Scope Determination -- 4.6.2 Complexity Evaluation -- Design Parameters (Weight, Aspect Ratio, Equipment, and Disciplines Involved) -- Transportation -- Risk Acceptance -- 4.6.3 Management Decision Matrix -- Checklist-Transportation (X-axis) -- The scoring system ranges from 4 to 30 points and addresses various aspects of transportation. -- 4.6.4 Definition of List of Tools and Setup (G, Y, R) -- Setup: Define Units -- Setup: Three-Dimensional Model -- Setup: Weight Database -- 4.6.5 Use of Allowances (G, Y, R) -- 4.6.6 Establishment of a Module Datum Point -- 4.6.7 Use of Discipline Checklists (G, Y, R) -- Architectural Item List -- Electrical Item List -- Heating, Ventilation, and Air-Conditioning Item List -- Instrumentation Item List -- Mechanical Item List -- Material and Corrosion Items List -- Piping Item List -- Safety, Environment, and Security Item List -- Structural Item List -- 4.7 Requirements for Various Project Phases -- 4.7.1 Early Estimate of Pre-FEED and FEED (G, Y, R) -- 4.7.2 Detailed Design (G, Y, R) -- Weight and Center of Gravity Limits (G, Y, R) -- 4.7.3 Fabrication (G, Y, R) -- Types of Weight Management -- Shared Fabricator and Engineering Weight Management -- None to Very Little Fabricator Weight Management (G) -- Weight Shedding and Ballasting -- Carryover Work/Ship Loose -- 4.8 Procedures/Specifications -- 4.8.1 Definition of Weight Management Procedure/Specification (G, Y, R) -- Purpose -- References -- Definitions and Abbreviations -- Weight Management Goals -- Weight Management Policy -- Weight Report (Varies by Complexity) -- Executive Summary (G, Y, R) -- Introduction (Y, R) -- Module Reports (Y, R) -- Summary and Conclusions (Y, R) -- Appendixes (Varies by Complexity) -- As-Built Data (G, Y, R). 4.8.2 Define Vendor Weight Reporting Procedure/Specification (G, Y, R) -- 4.8.3 Definition of Fabricator Weight Management Procedure/Specification (G, Y, R) -- Defining Fabricator Weighing Requirements (G, Y, R) -- As-Built (G, Y, R) -- 4.8.4 Job Bulletins (As Applicable) -- Chapter 5 : Detailed Engineering -- 5.1 Introduction -- 5.2 Design Loads -- 5.2.1 In-Place -- 5.2.2 Land Transportation by Truck -- Introduction -- Current Practice for Accelerations due to Transportation -- Cargo Securement Rules -- Acceleration Demands -- Acceleration Resistances-Friction -- Transverse Friction and Super Elevation -- 5.2.3 Self-Propelled Modular Transporter Transportation -- Low-Speed Transport -- Average-Speed Transport -- High-Speed Transport -- Inclinations -- Internal Forces within Trailer Configuration -- 5.2.4 Water Transportation -- Introduction -- Sea Vessel Motions: Analysis Methods -- 5.2.5 Lifting Loads -- Crane Lifting -- Self-Propelled Modular Transporter (Lifting) -- Impact Factors -- 5.2.6 Setting Loads and Fabrication Yard Loads -- 5.2.7 Rail Loads -- 5.2.8 Wind Loads -- Introduction -- In-Place Wind -- Wind Load for Truckable Modules -- Wind Loads for Sea Transportation -- Design Wind Speed-Reference Period -- Wind Force -- Wind Load for Land Transportation -- 5.3 Load Combinations -- 5.3.1 Introduction -- 5.3.2 Allowable Stress Design -- 5.3.3 Load and Resistance Factor Design -- 5.3.4 Structural Reliability -- 5.3.5 Load Combinations -- In-Place Load Combinations -- Module Transport Load Combinations -- Module Lifting Load Combinations -- Fabrication and Construction Load Combinations -- 5.3.6 Development of Load Criteria on Projects -- 5.4 Structural Design -- 5.4.1 Structural Modeling and Analysis -- Self-Propelled Modular Transporter Modeling -- Truck Transportation Modeling. Water Transportation Modeling -- Center of Gravity Envelope Impact on Modeling -- Deflection Restrictions on Modeling -- Horizontal Displacements -- 5.4.2 Structural Members and Connections -- 5.4.3 General Design Criteria -- 5.4.4 DNV-ST-N001 Design Criteria -- 5.5 Fatigue Design -- 5.5.1 Methodology -- 5.6 Other Considerations -- References -- Appendix 5A. Survey Data of Truck Transportation Design Loads -- Appendix 5B. Example of Transverse Wind with Truck Transportation Loads -- Reference -- Chapter 6 : Module Yard Fabrication and Assembly -- 6.1 Introduction -- 6.2 Modularizations, Prefabrication, and Packaged Equipment -- 6.3 Module Assembly and Erection -- 6.4 Module Fabrication Tolerances -- 6.5 Module Miscellaneous Supports -- 6.6 Module Weighing -- 6.7 Dimensional Control -- 6.8 Compliance Certification and Inspection -- 6.9 Fabrication Interface with Engineering -- References -- Chapter 7 : Logistics and Transportation -- 7.1 Introduction -- 7.2 Interfaces -- 7.3 Procurement and Planning -- 7.3.1 Roles and Responsibilities -- 7.3.2 Operational Constraints -- 7.4 Water Transportation -- 7.4.1 Marine Transport Methods -- Loading and Discharging Methods -- Lift-On/Lift-Off -- Roll-On/Roll-Off -- Float-On/Float-Off -- 7.4.2 Available Ship Types -- Container Ships -- Multipurpose Ships -- Conventional Heavy-Lift Ships -- Dock-Type Ships -- Semisubmersible Heavy-Lift Ships -- Module Carriers -- Barges -- 7.4.3 Transport Vessel Selection -- 7.4.4 Grillage and Sea Fastenings -- Grillage -- Load Spreading -- Wooden Cribbing/dunnage -- Sea Fastenings -- Stoppers -- Pipe Bracings -- A-frames -- Bend Plate -- Chains and Wire Lashing -- Uplift Provisions -- Straps or Chains -- Clips -- 7.4.5 Internal Sea Fastenings -- 7.4.6 Loading and Offloading -- 7.4.7 Marine Warranty Surveyor. 7.4.8 Studies. |
| Record Nr. | UNINA-9911016148003321 |
Kerins David
|
||
| Reston : , : American Society of Civil Engineers, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||