Azure Arc-enabled data services revealed : deploying Azure Data services on any infrastructure / / Ben Weissman and Anthony E. Nocentino
| Azure Arc-enabled data services revealed : deploying Azure Data services on any infrastructure / / Ben Weissman and Anthony E. Nocentino |
| Autore | Weissman Ben |
| Edizione | [2nd edition.] |
| Pubbl/distr/stampa | [Place of publication not identified] : , : Apress, , [2022] |
| Descrizione fisica | 1 online resource (184 pages) |
| Disciplina | 004.6782 |
| Soggetto topico |
Microsoft Azure (Computing platform)
Cloud computing |
| ISBN | 1-4842-8085-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. A Kubernetes Primer 2. Azure Arc-Enabled Data Services 3. Getting Ready for Deployment 4. Installing Kubernetes 5. Deploying a Data Controller in Indirect Mode 6. Deploying a Data Controller in Direct Mode 7. Deploying an Azure Arc-Enabled SQL Managed Instance 8. Deploying Azure Arc-Enabled PostgreSQL Hyperscale 9. Monitoring and Management |
| Record Nr. | UNINA-9910548181203321 |
Weissman Ben
|
||
| [Place of publication not identified] : , : Apress, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Azure Arc-Enabled Kubernetes and servers : extending hyperscale cloud management to your datacenter / / Steve Buchanan, John Joyner
| Azure Arc-Enabled Kubernetes and servers : extending hyperscale cloud management to your datacenter / / Steve Buchanan, John Joyner |
| Autore | Buchanan Steve |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2022 |
| Descrizione fisica | 1 online resource (310 pages) : illustrations (black and white, and colour) |
| Disciplina | 004.6782 |
| Soggetto topico |
Microsoft Azure (Computing platform)
Cloud computing |
| ISBN |
9781484277683
1484277686 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Azure Arc as an Extension of the Azure Control Plane -- Chapter 2: Azure Resource Manager Insights -- Chapter 3: Azure Management Insights -- Chapter 4: Azure Arc Servers: Getting Started -- Chapter 5: Azure Arc Servers: Using at Scale -- Chapter 6: Hybrid Server Monitoring Solution -- Chapter 7: Regulatory and Security Compliance for Azure Arc Servers -- Chapter 8: GitOps Insights -- Chapter 9: Azure Arc Enabled Kubernetes: Getting Started. |
| Record Nr. | UNINA-9910522981503321 |
Buchanan Steve
|
||
| Berkeley, CA : , : Apress : , : Imprint : Apress, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Azure cloud security for absolute beginners : enabling cloud infrastructure security with multi-level security options / / Pushpa Herath
| Azure cloud security for absolute beginners : enabling cloud infrastructure security with multi-level security options / / Pushpa Herath |
| Autore | Herath Pushpa |
| Pubbl/distr/stampa | [Berkeley, CA] : , : Apress, , [2022] |
| Descrizione fisica | 1 online resource (242 pages) : illustrations (colour) |
| Disciplina | 004.6782 |
| Soggetto topico |
Cloud computing - Security measures
Microsoft Azure (Computing platform) |
| ISBN | 1-4842-7860-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Understanding the Importance of Data/Application Security -- Chapter 2: Overview of Basic Azure Security Components -- Chapter 3: Introduction to Azure Active Directory -- Chapter 4: Working with Azure Key Vault -- Chapter 5: Ensure Azure Application Security -- Chapter 6: Ensure Data Security with Azure Storages -- Chapter 7: Ensure Security using Azure Virtual Networks -- Chapter 8: Azure Virtual Machine Security -- Chapter 9: Securing resources with Azure Firewall -- Chapter 10: App Service Environments. |
| Record Nr. | UNINA-9910522980703321 |
Herath Pushpa
|
||
| [Berkeley, CA] : , : Apress, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Azure Data Lakehouse Toolkit : Building and Scaling Data Lakehouses on Azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake / / by Ron L'Esteve
| The Azure Data Lakehouse Toolkit : Building and Scaling Data Lakehouses on Azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake / / by Ron L'Esteve |
| Autore | L'Esteve Ron |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2022 |
| Descrizione fisica | 1 online resource (467 pages) |
| Disciplina | 004.6782 |
| Soggetto topico |
Microsoft Azure (Computing platform)
Cloud computing Electronic data processing Databases |
| ISBN |
9781484282335
1484282337 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I: Getting Started -- Chapter 1: The Data Lakehouse Paradigm -- Part II: Data Platforms -- Chapter 2: Snowflake -- Chapter 3: Databricks -- Chapter 4: Synapse Analytics -- Part III: Apache Spark ELT -- Chapter 5: Pipelines and Jobs -- Chapter 6: Notebook Code -- Part IV: Delta Lake.-Chapter 7: Schema Evolution -- Chapter 8: Change Feed -- Chapter 9: Clones -- Chapter 10: Live Tables -- Chapter 11: Sharing -- Part V: Optimizing Performance -- Chapter 12: Dynamic Partition Pruning for Querying Star Schemas -- Chapter 13: Z-Ordering & Data Skipping -- Chapter 14: Adaptive Query Execution -- Chapter 15: Bloom Filter Index -- Chapter 16: Hyperspace -- Part VI: Advanced Capabilities -- Chapter 17: Auto Loader -- Chapter 18: Python Wheels -- Chapter 19: Security & Controls. |
| Record Nr. | UNINA-9910584482303321 |
L'Esteve Ron
|
||
| Berkeley, CA : , : Apress : , : Imprint : Apress, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Beginning Azure synapse analytics : transition from data warehouse to data lakehouse / / Bhadresh Shiyal
| Beginning Azure synapse analytics : transition from data warehouse to data lakehouse / / Bhadresh Shiyal |
| Autore | Shiyal Bhadresh |
| Pubbl/distr/stampa | [Place of publication not identified] : , : Apress, , [2021] |
| Descrizione fisica | 1 online resource (263 pages) |
| Disciplina | 658.40380285574 |
| Soggetto topico |
Data warehousing - Management
Microsoft Azure (Computing platform) |
| ISBN | 1-4842-7061-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional & -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data.
Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution. Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features & -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR). Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability. When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index. |
| Record Nr. | UNINA-9910485588003321 |
Shiyal Bhadresh
|
||
| [Place of publication not identified] : , : Apress, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Building applications with Azure Resource Manager (ARM) : leverage IaC to vastly improve the life cycle of your applications / / David Rendón
| Building applications with Azure Resource Manager (ARM) : leverage IaC to vastly improve the life cycle of your applications / / David Rendón |
| Autore | Rendón David |
| Pubbl/distr/stampa | Berkeley, California : , : Apress L. P., , [2022] |
| Descrizione fisica | 1 online resource (417 pages) |
| Disciplina | 004.6782 |
| Soggetto topico |
Microsoft Azure (Computing platform)
Cloud computing Application software - Development |
| ISBN | 1-4842-7747-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Why Infrastructure as Code?- Chapter 2: Azure Resource Manager -- Chapter 3: Preparing Your Environment -- Chapter 4: Building Your First Azure Resource Manager Template -- Chapter 5: Deployment Scopes -- Chapter 6: Working with Parameters on Your ARM Template -- Chapter 7: Using Variables in Your ARM Template -- Chapter 8: Working with the Resources Section of Your ARM Template -- Chapter 9: Understanding Dependencies in Your ARM Template -- Chapter 10: Making Use of Functions in Your ARM Template -- Chapter 11: Deployment Modes of Your ARM Template -- Chapter 12: Working with Loops in Your ARM Template -- Chapter 13: Understanding Post-Deployment Configurations: Extensions and Deployment Scripts -- Chapter 14: Working with Larger and More Complex Environments -- Chapter 15: Working with Secrets in Your ARM Template -- Chapter 16: Validating Your ARM Template -- Chapter 17: Building Your Environment with Azure DevOps and ARM Templates -- Chapter 18: Deploy ARM Templates Using GitHub Actions -- Chapter 19: Project Bicep. |
| Record Nr. | UNINA-9910522981203321 |
Rendón David
|
||
| Berkeley, California : , : Apress L. P., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud defense strategies with Azure Sentinel : hands-on threat hunting in cloud logs and services / / Marshall Copeland
| Cloud defense strategies with Azure Sentinel : hands-on threat hunting in cloud logs and services / / Marshall Copeland |
| Autore | Copeland Marshall |
| Pubbl/distr/stampa | [Place of publication not identified] : , : Apress, , [2021] |
| Descrizione fisica | 1 online resource (289 pages) |
| Disciplina | 004.6782 |
| Soggetto topico |
Cloud computing - Security measures
Microsoft Azure (Computing platform) |
| ISBN | 1-4842-7132-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910502616203321 |
Copeland Marshall
|
||
| [Place of publication not identified] : , : Apress, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data lake analytics on Microsoft Azure : a practitioner's guide to big data engineering / / Harsh Chawla; Pankaj Khattar; Sandeep J. Alur
| Data lake analytics on Microsoft Azure : a practitioner's guide to big data engineering / / Harsh Chawla; Pankaj Khattar; Sandeep J. Alur |
| Autore | Chawla Harsh |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | New York, New York : , : Apress L. P., , [2020] |
| Descrizione fisica | 1 online resource (XVII, 222 p. 134 illus.) |
| Disciplina | 004.165 |
| Soggetto topico |
Big data
Microsoft Azure (Computing platform) Microsoft .NET Framework |
| ISBN | 1-4842-6252-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Data Lake Analytics Concepts -- Chapter 2: Building Blocks of Data Analytics -- Chapter 3: Data Analytics on Public Cloud -- Chapter 4: Data Ingestion -- Chapter 5: Data Storage -- Chapter 6: Data Preparation and Training Part I -- Chapter 7: Data Preparation and Training Part II -- Chapter 8: Model and Serve -- Chapter 9: Summary. |
| Record Nr. | UNINA-9910427051203321 |
Chawla Harsh
|
||
| New York, New York : , : Apress L. P., , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design and deploy Azure VMware solutions : build and run VMware workloads natively on Microsoft Azure / / Puthiyavan Udayakumar
| Design and deploy Azure VMware solutions : build and run VMware workloads natively on Microsoft Azure / / Puthiyavan Udayakumar |
| Autore | Udayakumar Puthiyavan |
| Pubbl/distr/stampa | [Place of publication not identified] : , : Apress, , [2022] |
| Descrizione fisica | 1 online resource (412 pages) : illustrations (black and white, and color) |
| Disciplina | 006.76 |
| Soggetto topico | Microsoft Azure (Computing platform) |
| ISBN | 1-4842-8312-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Getting Started with AVS Chapter 2: Solution overview of AVS Chapter 3: Design Essentials of AVS Chapter 4: Plan and Prepare AVS Chapter 5: Deployment Essentials of AVS Chapter 6: Manage and Secure AVS |
| Record Nr. | UNINA-9910588598103321 |
Udayakumar Puthiyavan
|
||
| [Place of publication not identified] : , : Apress, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design and deploy Microsoft Azure virtual desktop : an essential guide for architects and administrators / / Puthiyavan Udayakumar
| Design and deploy Microsoft Azure virtual desktop : an essential guide for architects and administrators / / Puthiyavan Udayakumar |
| Autore | Udayakumar Puthiyavan |
| Pubbl/distr/stampa | New York, New York : , : Apress L. P., , [2022] |
| Descrizione fisica | 1 online resource (401 pages) |
| Disciplina | 005.43 |
| Soggetto topico |
Microsoft Azure (Computing platform)
Virtual computer systems |
| ISBN | 1-4842-7796-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1: Microsoft AVD Essentials -- Chapter 2: Planning and preparing for AVD -- Chapter 3: Defining AVD Requirements and Assessment -- Chapter 4: Designing and Deploying AVD Solution -- Chapter 5: Managing and Securing AVD Solution. |
| Record Nr. | UNINA-9910522994603321 |
Udayakumar Puthiyavan
|
||
| New York, New York : , : Apress L. P., , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||