Biomedical micro- and nanorobots in disease treatment : design, preparation, and applications / / Chun Mao and Mimi Wan
| Biomedical micro- and nanorobots in disease treatment : design, preparation, and applications / / Chun Mao and Mimi Wan |
| Autore | Mao Chun (Writer on microrobots) |
| Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] |
| Descrizione fisica | 1 online resource (253 pages) |
| Disciplina | 610.28 |
| Soggetto topico |
Biomedical engineering
Diseases - Treatment Microrobots |
| ISBN |
3-527-83977-1
3-527-83975-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Origin of Biomedical Micro‐ and Nanorobots -- 1.2 A Long Journey -- 1.3 Moment of Glory -- 1.4 Three Laws -- 1.5 Main Contents of this Book -- References -- Chapter 2 Definition and Classification -- 2.1 Definition -- 2.2 Classification -- References -- Chapter 3 Design and Preparation -- 3.1 Substrate Selection -- 3.1.1 Metal Materials -- 3.1.2 Inorganic Materials -- 3.1.3 Organic Materials -- 3.1.4 Natural Materials -- 3.1.5 Hybrid Materials -- 3.2 Driving System -- 3.2.1 Driving System Based on Biological Components -- 3.2.2 Driving System Based on External Fields -- 3.2.3 Driving System Based on Chemical Reactions -- References -- Chapter 4 Characterization -- 4.1 Characterization of Motion -- 4.1.1 In Aqueous Environment -- 4.1.2 In Complex Environments In Vitro -- 4.2 In Vivo Tracking Technologies -- 4.2.1 Fluorescence Imaging Technology -- 4.2.2 MRI Technology -- 4.2.3 Radionuclide Imaging Technology -- 4.2.4 Ultrasonic Imaging Technology -- 4.2.5 Other Imaging Methods -- References -- Chapter 5 Biosafety -- 5.1 Biosafety of Micro‐ and Nanorobot Substrate -- 5.1.1 Material Composition -- 5.1.2 Micro‐ and Nanoscale Influence -- 5.1.3 Interaction with Physiological Environment In Vivo -- 5.1.4 Ultimate Destiny -- 5.1.5 Genotoxicity -- 5.1.6 Research Method of Biosafety -- 5.2 Biosafety of Driving System of Micro‐ and Nanorobots -- 5.2.1 Biological Micro‐ and Nanorobots -- 5.2.2 Physical Field‐Driven Micro‐ and Nanorobots -- 5.2.3 Chemical Reaction‐Driven Micro‐ and Nanorobots -- 5.3 Biosafety of Autonomous Motion Behavior of Micro‐ and Nanorobots -- 5.4 Biosafety Evaluation Methods for Micro‐ and Nanorobots -- References -- Chapter 6 Autonomous Motion Behavior -- 6.1 Autonomous Motion Mechanism.
6.1.1 Motion Mechanism of Biological Micro‐ and Nanorobots -- 6.1.1.1 Bacteria -- 6.1.1.2 Sperm -- 6.1.1.3 Immune Cells -- 6.1.2 Motion Mechanism of Physical Field‐Driven Micro‐ and Nanorobots -- 6.1.2.1 Magnetic Field‐Driving Mode -- 6.1.2.2 Photic Driving Mode -- 6.1.2.3 Ultrasonic Field‐Driving Mode -- 6.1.3 Motion Mechanism of Chemical Reaction‐Driven Micro‐ and Nanorobots -- 6.1.3.1 Self‐Electrophoresis Mode -- 6.1.3.2 Self‐Diffusiophoresis Mode -- 6.1.3.3 Bubble Mode -- 6.2 Trend Behavior Mechanism -- 6.2.1 Magnetotactic System -- 6.2.2 Phototactic System -- 6.2.3 Chemotaxis System -- 6.3 Motion Control -- 6.3.1 Speed Control Mode -- 6.3.2 Direction Control Mode -- 6.3.3 Control of Start and Stop -- References -- Chapter 7 Functions -- 7.1 Moving in Complex Physiological Environment -- 7.2 Loading Power Source, Drug, or Imaging Agent -- 7.3 Targeting Specific Cells or Physiological Tissues -- 7.4 Promoting Cell Uptake and Improving Tissue Permeability -- 7.5 Imaging Capability -- 7.6 Information Interaction and Intelligent Decision -- 7.7 Diagnosis and Treatment of Disease -- References -- Chapter 8 For Cardiovascular Disease Treatment -- 8.1 Thrombus -- 8.2 Atherosclerosis -- 8.3 Cerebral Apoplexy -- References -- Chapter 9 For Cancer Treatment -- 9.1 Cancer Diagnosis -- 9.2 Targeting and Delivery -- 9.3 Treatment of Different Cancer Species -- 9.4 Treatment Mechanism -- 9.4.1 Chemotherapy -- 9.4.2 Metabolic Therapy -- 9.4.3 Gas Therapy -- 9.4.4 Optical Therapy -- 9.4.5 Biotherapy -- 9.4.6 Immunotherapy -- 9.4.7 Multimodal Combined Therapy -- 9.5 Theranostics -- References -- Chapter 10 For Other Diseases' Treatment -- 10.1 Ophthalmic Diseases -- 10.2 Orthopedic Diseases -- 10.3 Gastrointestinal Diseases -- 10.4 Neurological Diseases -- 10.5 Bacterial Infection -- 10.6 Blood Heavy Metal Poisoning -- References. Chapter 11 Future Development Trend -- 11.1 Biosafety of Micro‐ and Nanorobots -- 11.2 New Materials and Technologies of Micro‐ and Nanorobots -- 11.3 Intelligent Micro‐ and Nanorobots -- 11.4 New Treatment Mode -- 11.5 New Detection Technology for Micro‐ and Nanorobots -- 11.6 Outlook and Future Challenges -- References -- Postscript -- Glossary -- Index -- EULA. |
| Record Nr. | UNINA-9910830782603321 |
Mao Chun (Writer on microrobots)
|
||
| Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Field-Driven Micro and Nanorobots for Biology and Medicine
| Field-Driven Micro and Nanorobots for Biology and Medicine |
| Autore | Sun Yu |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2022 |
| Descrizione fisica | 1 online resource (422 pages) |
| Altri autori (Persone) |
WangXi'an
YuJiangfan |
| Soggetto topico |
Microrobots
Nanotechnology |
| Soggetto genere / forma | Electronic books. |
| ISBN |
9783030801977
9783030801960 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Book Description -- Contents -- About the Editors -- Chapter 1: Fundamentals and Field-Driven Control of Micro-/Nanorobots -- 1.1 Introduction -- 1.2 General Architecture of MRI-Guided Nanorobotic Systems -- 1.3 Propulsion and Navigation Limitations at Microscales -- 1.4 Theoretical Modeling of Steering and Navigation of Microrobots in a Fluid -- 1.4.1 Modeling of Physical Forces on Magnetic Microrobots -- Hydrodynamics -- Apparent Height -- Magnetic Force -- Contact Forces -- Gravitational Forces -- Van der Waals Forces -- 1.4.2 State-Space Representation -- 1.5 Control Strategies -- 1.5.1 MRI-Based Backstepping Control Approach -- 1.5.2 MRI-Based Predictive Control Approach -- 1.5.3 MRI-Based Optimal Control Approach -- 1.6 Results -- 1.7 Conclusion -- References -- Chapter 2: Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications -- 2.1 Introduction -- 2.2 Fundamentals of Ultrasound Physics -- 2.2.1 Acoustic Radiation Forces -- 2.2.2 Fundamentals of Acoustic Streaming -- 2.3 Designing Ultrasound Micro-/Nanomotors -- 2.3.1 Microrod Streamers -- Early Discoveries -- Mechanisms -- Biomedical Applications -- Practical Considerations -- Usefulness in Basic Sciences -- 2.3.2 Bubble Streamers -- Mechanism -- Notable Studies -- Practical Considerations -- 2.3.3 Flagellar Streamers -- 2.3.4 Acoustic Jets -- 2.4 Conclusion and Future Prospects -- References -- Chapter 3: Manipulation and Patterning of Micro-objects Using Acoustic Waves -- 3.1 Introduction -- 3.2 Forces -- 3.2.1 Acoustic Radiation Force -- 3.2.2 Bjerknes Forces -- 3.2.3 Acoustic Streaming-Induced Drag Forces -- 3.3 Excitation Methods -- 3.3.1 Bulk Acoustic Waves -- Theory -- 3.3.2 Design Considerations -- 3.3.3 Surface Acoustic Waves -- Theory -- 3.3.4 Tweezing -- Ultrasonic Beams -- Ultrasonic Arrays -- Acoustic Structures -- 3.4 Applications.
3.4.1 Standing Waves -- 3.4.2 Travelling Waves -- 3.4.3 Acoustic Tweezing and Micro-robots -- 3.5 Conclusions and Outlook -- References -- Chapter 4: Light-Driven Microrobots: Mechanisms and Applications -- 4.1 Introduction -- 4.2 Optical Microrobot -- 4.3 Opto-mechanical Soft Microrobots -- 4.4 Opto-chemical Microrobots -- 4.5 Conclusion and Outlook -- References -- Chapter 5: Electric-Field-Driven Micro/Nanomachines for Biological Applications -- 5.1 Introduction -- 5.2 Fundamentals -- 5.2.1 Low Reynolds Number Physics and Laminar Flow -- 5.2.2 Electrophoresis and the Electric Double Layer -- 5.2.3 Dielectrophoresis and the Clausius-Mossotti Factor -- 5.2.4 DC and AC Electroosmosis -- DC Electroosmosis -- AC Electroosmosis -- 5.2.5 Combined AC and DC E-Fields for E-Field-Assisted Nano-manipulation -- 5.2.6 Other Factors to Consider -- Brownian Motion and Joule Heating -- Properties of the Suspension Medium -- 5.3 Applications of the Electric-Tweezer Manipulation in Biological Research -- 5.3.1 Cytokine Molecule Delivery -- 5.3.2 Cargo Delivery -- 5.3.3 Tunable Release of Biochemicals for Ultrasensitive SERS Detection -- 5.3.4 Electrical Capture of Biochemical Molecules -- 5.3.5 Assembly of Quantum Dot Nanowires for Location Deterministic Biomolecule Sensing -- 5.4 Conclusion -- References -- Chapter 6: Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions -- 6.1 Introduction -- 6.2 Electric Field-Based Particle Manipulation -- 6.3 EP-Based Motion Model and Problem Formulation -- 6.3.1 System Configuration -- 6.3.2 EP-Based Motion Model -- 6.3.3 Problem Formulation -- 6.4 EP-Based Particle Motion Control -- 6.4.1 Nonlinear Feedback Control -- Sequential Particle Control and Assembly -- Simultaneous Particle Control -- 6.4.2 Adaptive Control -- 6.4.3 Adaptive Tube Model Predictive Control -- Adaptive Tube MPC Design. Manipulation Capability -- Experimental Result -- 6.5 EP-Based Particle Motion Planning -- 6.5.1 Heuristic-Based Minimum-Time Motion Planning -- 6.5.2 Network Flow-Based Minimum-Distance Motion Planning -- 6.5.3 Sampling-Based Motion Planning -- 6.6 EP-Based Adaptive Manipulation Scheme of Micro- and Nanoparticles -- 6.7 Conclusion -- References -- Chapter 7: Magneto-Acoustic Hybrid Micro-/Nanorobot -- References -- Chapter 8: Colloidal Microrobotic Swarms -- 8.1 Introduction -- 8.2 Field-Driven Microrobotic Swarms -- 8.3 Vortex-Like Swarms -- 8.3.1 Vortices Merging -- 8.3.2 Minimum Particle Concentration of Generating a VPNS -- 8.4 Characteristics of a VPNS -- 8.5 Pattern Transformation of VPNS -- 8.5.1 Core Size Modification -- 8.5.2 Spread State -- 8.6 Experimental Results and Discussion -- 8.6.1 Generating a Vortex-Like Swarm -- 8.6.2 Characterization of a VPNS -- 8.6.3 Pattern Transformation of a VPNS -- Change of Core Size -- Spread State of VPNS -- 8.6.4 Morphology of Swarm Pattern During Locomotion -- Motion in a Synchronized Fashion -- Tuneable Trapping Forces of VPNSs -- Locomotion in a Channel -- Discussion on Imaging Modality -- 8.7 Conclusion -- References -- Chapter 9: Shape-Programmable Magnetic Miniature Robots: A Critical Review -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 General Deformation Mechanics -- 9.2.2 Deformation Mechanics of Shape-Programmable Magnetic Robots with Beam-Like Configurations -- 9.2.3 Rigid-Body Motion -- 9.3 Programming and Fabrication Methods -- 9.3.1 Programming Methods -- 9.3.2 Fabrication Methods -- 9.4 Locomotion and Mechanical Functionalities -- 9.4.1 Locomotion -- 9.4.2 Mechanical Functionalities -- 9.5 Discussion -- 9.6 Conclusion -- References -- Chapter 10: In Vitro Biosensing Using Micro-/Nanomachines -- 10.1 Introduction -- 10.2 Propulsion, Function of Micro-/Nanomachines. 10.2.1 Propulsion of Micro-/Nanomachines -- 10.2.2 Chemical-, Biological-, and Self-Functionalization of Micro-/Nanomachines -- 10.3 Micro-/Nanomachines for Sensing -- 10.3.1 Sensing Mechanisms of Micro-/Nanomachines -- 10.3.2 In Vitro Detection for Chemical and Biological Agent -- 10.3.3 Intracellular Monitoring of Life-Important Properties and Molecules -- 10.3.4 Pathogens and Biomarker Discrimination Based on Micro-/Nanomachines -- 10.4 Conclusion and Perspective -- References -- Chapter 11: Biophysical Measurement of Cellular and Intracellular Structures Using Magnetic Tweezers -- 11.1 Introduction -- 11.2 Principles of Magnetic Micromanipulation -- 11.2.1 Magnetic Microbead -- 11.2.2 Magnetic Force and Magnetic Moment -- 11.2.3 Magnetic Bead Dynamics -- 11.2.4 Magnetic Tweezers Based on Gradient Force -- 11.2.5 Magnetic Tweezers Based on Torque -- 11.3 Mechanical Measurement of Single Cells Using Magnetic Tweezers -- 11.3.1 Measurements of Cell Mechanics -- 11.3.2 Measurement of Cellular Rheological Properties -- 11.4 Mechanical Measurement of Intracellular Structures -- 11.4.1 Measurement of Cell Nucleus and Cytoskeleton -- 11.4.2 Measurement of Cytoskeleton, DNA Strands, and Intracellular Motor Proteins -- 11.5 Summary and Outlook -- References -- Chapter 12: Hepatic Vascular Network Construction Using Magnetic Fields -- 12.1 Introduction -- 12.2 Concept of Research -- 12.3 System of Magnetic Tweezers -- 12.3.1 Overall System of Manipulator -- 12.3.2 Simulation of Magnetic Tweezers -- 12.4 Method and Materials -- 12.4.1 Assembly Method of Multilayered Structure -- 12.4.2 Method of Cell Culture and Viability Test -- 12.5 Results and Discussion -- 12.5.1 Hepatic Lobule-Like Vascular Network in Fibrin Gel -- 12.5.2 Cell Viability in 3D Cellular Structure with Channels -- 12.6 Conclusion -- References -- Chapter 13: Biohybrid Microrobots. 13.1 Introduction -- 13.2 The Biological Motors of Motile Cells -- 13.3 Robots Based on Bacteria -- 13.3.1 Bacterial Robots Based on Chemotaxis -- 13.3.2 Bacterial Robots Based on Magnetotaxis or Embedding Paramagnetic Elements -- 13.3.3 Other Taxis Abilities and Multifunctional Robots -- 13.4 Microrobots Based on Other Motile Cells -- 13.4.1 Robots Based on Non-bacterial Flagellated Cells -- 13.4.2 Robots Based on Non-flagellated Cells -- 13.5 Challenges and Perspectives of Robots Based on Bacteria and Other Motile Cells -- 13.6 Muscle Cells as Biological Motors -- 13.6.1 Robots Based on Cardiomyocytes -- 13.6.2 Robots Based on Skeletal Muscle Cells -- 13.6.3 Robots Based on Insect-Derived Cells -- 13.7 Challenges and Perspectives of Robots Based on Muscle Cells -- References -- Chapter 14: Microrobots in the Gastrointestinal Tract -- 14.1 Introduction -- 14.2 Microrobots in GI Tract: Environmental Features and Propulsion -- 14.3 Propulsion of Microrobots in GI Tract -- 14.4 In Vivo Imaging and Localization of Microrobots in GI Tract -- 14.5 Enhanced Retention and Navigation of Microrobots in GI Tract -- 14.6 In-Stomach Application of Microrobots: Cargo Delivery and Therapy -- 14.7 Intestinal Application of Microrobots: Cargo Delivery -- 14.8 Biocompatible and Biodegradable -- 14.9 Conclusion and Future Prospects -- References -- Chapter 15: Polymer-Based Swimming Nanorobots Driven by Chemical Fuels -- 15.1 Introduction -- 15.1.1 Challenges of Propulsion in Micro-/Nanoworld -- 15.1.2 Lessons from Natural Nanoswimmers -- 15.1.3 From Natural Biomotors, Molecular Motors, Toward Swimming Nanorobots -- 15.2 Bottom-Up Fabrication of Polymer-Based Swimming Nanorobots -- 15.2.1 Layer-by-Layer Assembly Technique -- 15.2.2 Supramolecular Assembly -- 15.2.3 Biological Hybridization -- 15.3 Motion Control -- 15.3.1 Navigation Using External Field. 15.3.2 Chemotaxis. |
| Record Nr. | UNINA-9910510575703321 |
Sun Yu
|
||
| Cham : , : Springer International Publishing AG, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Field-driven micro and nanorobots for biology and medicine / / Yu Sun, Xian Wang, Jiangfan Yu, editors
| Field-driven micro and nanorobots for biology and medicine / / Yu Sun, Xian Wang, Jiangfan Yu, editors |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (422 pages) |
| Disciplina | 629.8932 |
| Soggetto topico |
Microrobots
Nanotechnology |
| ISBN | 3-030-80197-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Book Description -- Contents -- About the Editors -- Chapter 1: Fundamentals and Field-Driven Control of Micro-/Nanorobots -- 1.1 Introduction -- 1.2 General Architecture of MRI-Guided Nanorobotic Systems -- 1.3 Propulsion and Navigation Limitations at Microscales -- 1.4 Theoretical Modeling of Steering and Navigation of Microrobots in a Fluid -- 1.4.1 Modeling of Physical Forces on Magnetic Microrobots -- Hydrodynamics -- Apparent Height -- Magnetic Force -- Contact Forces -- Gravitational Forces -- Van der Waals Forces -- 1.4.2 State-Space Representation -- 1.5 Control Strategies -- 1.5.1 MRI-Based Backstepping Control Approach -- 1.5.2 MRI-Based Predictive Control Approach -- 1.5.3 MRI-Based Optimal Control Approach -- 1.6 Results -- 1.7 Conclusion -- References -- Chapter 2: Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications -- 2.1 Introduction -- 2.2 Fundamentals of Ultrasound Physics -- 2.2.1 Acoustic Radiation Forces -- 2.2.2 Fundamentals of Acoustic Streaming -- 2.3 Designing Ultrasound Micro-/Nanomotors -- 2.3.1 Microrod Streamers -- Early Discoveries -- Mechanisms -- Biomedical Applications -- Practical Considerations -- Usefulness in Basic Sciences -- 2.3.2 Bubble Streamers -- Mechanism -- Notable Studies -- Practical Considerations -- 2.3.3 Flagellar Streamers -- 2.3.4 Acoustic Jets -- 2.4 Conclusion and Future Prospects -- References -- Chapter 3: Manipulation and Patterning of Micro-objects Using Acoustic Waves -- 3.1 Introduction -- 3.2 Forces -- 3.2.1 Acoustic Radiation Force -- 3.2.2 Bjerknes Forces -- 3.2.3 Acoustic Streaming-Induced Drag Forces -- 3.3 Excitation Methods -- 3.3.1 Bulk Acoustic Waves -- Theory -- 3.3.2 Design Considerations -- 3.3.3 Surface Acoustic Waves -- Theory -- 3.3.4 Tweezing -- Ultrasonic Beams -- Ultrasonic Arrays -- Acoustic Structures -- 3.4 Applications.
3.4.1 Standing Waves -- 3.4.2 Travelling Waves -- 3.4.3 Acoustic Tweezing and Micro-robots -- 3.5 Conclusions and Outlook -- References -- Chapter 4: Light-Driven Microrobots: Mechanisms and Applications -- 4.1 Introduction -- 4.2 Optical Microrobot -- 4.3 Opto-mechanical Soft Microrobots -- 4.4 Opto-chemical Microrobots -- 4.5 Conclusion and Outlook -- References -- Chapter 5: Electric-Field-Driven Micro/Nanomachines for Biological Applications -- 5.1 Introduction -- 5.2 Fundamentals -- 5.2.1 Low Reynolds Number Physics and Laminar Flow -- 5.2.2 Electrophoresis and the Electric Double Layer -- 5.2.3 Dielectrophoresis and the Clausius-Mossotti Factor -- 5.2.4 DC and AC Electroosmosis -- DC Electroosmosis -- AC Electroosmosis -- 5.2.5 Combined AC and DC E-Fields for E-Field-Assisted Nano-manipulation -- 5.2.6 Other Factors to Consider -- Brownian Motion and Joule Heating -- Properties of the Suspension Medium -- 5.3 Applications of the Electric-Tweezer Manipulation in Biological Research -- 5.3.1 Cytokine Molecule Delivery -- 5.3.2 Cargo Delivery -- 5.3.3 Tunable Release of Biochemicals for Ultrasensitive SERS Detection -- 5.3.4 Electrical Capture of Biochemical Molecules -- 5.3.5 Assembly of Quantum Dot Nanowires for Location Deterministic Biomolecule Sensing -- 5.4 Conclusion -- References -- Chapter 6: Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions -- 6.1 Introduction -- 6.2 Electric Field-Based Particle Manipulation -- 6.3 EP-Based Motion Model and Problem Formulation -- 6.3.1 System Configuration -- 6.3.2 EP-Based Motion Model -- 6.3.3 Problem Formulation -- 6.4 EP-Based Particle Motion Control -- 6.4.1 Nonlinear Feedback Control -- Sequential Particle Control and Assembly -- Simultaneous Particle Control -- 6.4.2 Adaptive Control -- 6.4.3 Adaptive Tube Model Predictive Control -- Adaptive Tube MPC Design. Manipulation Capability -- Experimental Result -- 6.5 EP-Based Particle Motion Planning -- 6.5.1 Heuristic-Based Minimum-Time Motion Planning -- 6.5.2 Network Flow-Based Minimum-Distance Motion Planning -- 6.5.3 Sampling-Based Motion Planning -- 6.6 EP-Based Adaptive Manipulation Scheme of Micro- and Nanoparticles -- 6.7 Conclusion -- References -- Chapter 7: Magneto-Acoustic Hybrid Micro-/Nanorobot -- References -- Chapter 8: Colloidal Microrobotic Swarms -- 8.1 Introduction -- 8.2 Field-Driven Microrobotic Swarms -- 8.3 Vortex-Like Swarms -- 8.3.1 Vortices Merging -- 8.3.2 Minimum Particle Concentration of Generating a VPNS -- 8.4 Characteristics of a VPNS -- 8.5 Pattern Transformation of VPNS -- 8.5.1 Core Size Modification -- 8.5.2 Spread State -- 8.6 Experimental Results and Discussion -- 8.6.1 Generating a Vortex-Like Swarm -- 8.6.2 Characterization of a VPNS -- 8.6.3 Pattern Transformation of a VPNS -- Change of Core Size -- Spread State of VPNS -- 8.6.4 Morphology of Swarm Pattern During Locomotion -- Motion in a Synchronized Fashion -- Tuneable Trapping Forces of VPNSs -- Locomotion in a Channel -- Discussion on Imaging Modality -- 8.7 Conclusion -- References -- Chapter 9: Shape-Programmable Magnetic Miniature Robots: A Critical Review -- 9.1 Introduction -- 9.2 Theory -- 9.2.1 General Deformation Mechanics -- 9.2.2 Deformation Mechanics of Shape-Programmable Magnetic Robots with Beam-Like Configurations -- 9.2.3 Rigid-Body Motion -- 9.3 Programming and Fabrication Methods -- 9.3.1 Programming Methods -- 9.3.2 Fabrication Methods -- 9.4 Locomotion and Mechanical Functionalities -- 9.4.1 Locomotion -- 9.4.2 Mechanical Functionalities -- 9.5 Discussion -- 9.6 Conclusion -- References -- Chapter 10: In Vitro Biosensing Using Micro-/Nanomachines -- 10.1 Introduction -- 10.2 Propulsion, Function of Micro-/Nanomachines. 10.2.1 Propulsion of Micro-/Nanomachines -- 10.2.2 Chemical-, Biological-, and Self-Functionalization of Micro-/Nanomachines -- 10.3 Micro-/Nanomachines for Sensing -- 10.3.1 Sensing Mechanisms of Micro-/Nanomachines -- 10.3.2 In Vitro Detection for Chemical and Biological Agent -- 10.3.3 Intracellular Monitoring of Life-Important Properties and Molecules -- 10.3.4 Pathogens and Biomarker Discrimination Based on Micro-/Nanomachines -- 10.4 Conclusion and Perspective -- References -- Chapter 11: Biophysical Measurement of Cellular and Intracellular Structures Using Magnetic Tweezers -- 11.1 Introduction -- 11.2 Principles of Magnetic Micromanipulation -- 11.2.1 Magnetic Microbead -- 11.2.2 Magnetic Force and Magnetic Moment -- 11.2.3 Magnetic Bead Dynamics -- 11.2.4 Magnetic Tweezers Based on Gradient Force -- 11.2.5 Magnetic Tweezers Based on Torque -- 11.3 Mechanical Measurement of Single Cells Using Magnetic Tweezers -- 11.3.1 Measurements of Cell Mechanics -- 11.3.2 Measurement of Cellular Rheological Properties -- 11.4 Mechanical Measurement of Intracellular Structures -- 11.4.1 Measurement of Cell Nucleus and Cytoskeleton -- 11.4.2 Measurement of Cytoskeleton, DNA Strands, and Intracellular Motor Proteins -- 11.5 Summary and Outlook -- References -- Chapter 12: Hepatic Vascular Network Construction Using Magnetic Fields -- 12.1 Introduction -- 12.2 Concept of Research -- 12.3 System of Magnetic Tweezers -- 12.3.1 Overall System of Manipulator -- 12.3.2 Simulation of Magnetic Tweezers -- 12.4 Method and Materials -- 12.4.1 Assembly Method of Multilayered Structure -- 12.4.2 Method of Cell Culture and Viability Test -- 12.5 Results and Discussion -- 12.5.1 Hepatic Lobule-Like Vascular Network in Fibrin Gel -- 12.5.2 Cell Viability in 3D Cellular Structure with Channels -- 12.6 Conclusion -- References -- Chapter 13: Biohybrid Microrobots. 13.1 Introduction -- 13.2 The Biological Motors of Motile Cells -- 13.3 Robots Based on Bacteria -- 13.3.1 Bacterial Robots Based on Chemotaxis -- 13.3.2 Bacterial Robots Based on Magnetotaxis or Embedding Paramagnetic Elements -- 13.3.3 Other Taxis Abilities and Multifunctional Robots -- 13.4 Microrobots Based on Other Motile Cells -- 13.4.1 Robots Based on Non-bacterial Flagellated Cells -- 13.4.2 Robots Based on Non-flagellated Cells -- 13.5 Challenges and Perspectives of Robots Based on Bacteria and Other Motile Cells -- 13.6 Muscle Cells as Biological Motors -- 13.6.1 Robots Based on Cardiomyocytes -- 13.6.2 Robots Based on Skeletal Muscle Cells -- 13.6.3 Robots Based on Insect-Derived Cells -- 13.7 Challenges and Perspectives of Robots Based on Muscle Cells -- References -- Chapter 14: Microrobots in the Gastrointestinal Tract -- 14.1 Introduction -- 14.2 Microrobots in GI Tract: Environmental Features and Propulsion -- 14.3 Propulsion of Microrobots in GI Tract -- 14.4 In Vivo Imaging and Localization of Microrobots in GI Tract -- 14.5 Enhanced Retention and Navigation of Microrobots in GI Tract -- 14.6 In-Stomach Application of Microrobots: Cargo Delivery and Therapy -- 14.7 Intestinal Application of Microrobots: Cargo Delivery -- 14.8 Biocompatible and Biodegradable -- 14.9 Conclusion and Future Prospects -- References -- Chapter 15: Polymer-Based Swimming Nanorobots Driven by Chemical Fuels -- 15.1 Introduction -- 15.1.1 Challenges of Propulsion in Micro-/Nanoworld -- 15.1.2 Lessons from Natural Nanoswimmers -- 15.1.3 From Natural Biomotors, Molecular Motors, Toward Swimming Nanorobots -- 15.2 Bottom-Up Fabrication of Polymer-Based Swimming Nanorobots -- 15.2.1 Layer-by-Layer Assembly Technique -- 15.2.2 Supramolecular Assembly -- 15.2.3 Biological Hybridization -- 15.3 Motion Control -- 15.3.1 Navigation Using External Field. 15.3.2 Chemotaxis. |
| Record Nr. | UNINA-9910523720503321 |
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intracorporeal robotics : from milliscale to nanoscale / / Michaël Gauthier, Nicolas Andreff, Dombre Etienne
| Intracorporeal robotics : from milliscale to nanoscale / / Michaël Gauthier, Nicolas Andreff, Dombre Etienne |
| Autore | Gauthier Michael |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
| Descrizione fisica | 1 online resource (200 p.) |
| Disciplina | 629.892 |
| Collana | Robotics Series |
| Soggetto topico |
Robotics
Robots - Design and construction Microrobots |
| ISBN |
1-118-57910-0
1-118-57912-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Contents; Introduction; Chapter 1 Intracorporeal Millirobotics; 1.1. Introduction; 1.2. Principles; 1.2.1. Partially intracorporeal devices with active distal mobilities; 1.2.2. Intracorporeal manipulators; 1.2.3. Intracorporeal mobile devices; 1.3. Scientific issues; 1.3.1. Modeling; 1.3.2. Design; 1.3.3. Actuation and transmission; 1.3.4. Sensing; 1.3.5. Control; 1.4. Examples of devices; 1.4.1. The robotic platform of the Araknes project; 1.4.2. A snake-like robot made of concentric super-elastic tubes
1.4.3. MICRON: a handheld robotized instrument for ophthalmic surgery1.5. Conclusion; Chapter 2 Intracorporeal Microrobotics; 2.1. Introduction; 2.2. Novel paradigms for intracorporeal robotics; 2.2.1. Classification of intracorporeal robots; 2.2.2. Physical principles in use at microscale; 2.3. Methods; 2.3.1. Models; 2.3.2. Design; 2.3.3. Actuation; 2.3.4. Sensing; 2.3.5. Control; 2.4. Devices; 2.4.1. Magnetically guided catheters; 2.4.2. Distal tip mobility for endoluminal microphonosurgery; 2.4.3. Autonomous active capsules; 2.4.4. Magnetically guided capsules; 2.5. Conclusion Chapter 3 Non-Contact Mesorobotics3.1. Introduction; 3.2. Principles; 3.2.1. Introduction; 3.2.2. Laser trapping; 3.2.3. Electrostatic principles; 3.3. Scientific challenges; 3.3.1. Modeling; 3.3.2. Design; 3.3.3. Perception; 3.3.4. Control; 3.4. Experimental devices; 3.4.1. Laser trapping; 3.4.2. DEP systems; 3.5. Conclusion; Chapter 4 Toward Biomedical Nanorobotics; 4.1. Applicative challenges; 4.1.1. In vitro applications; 4.1.2. Nanoassembly for biomedical applications; 4.1.3. In vivo applications; 4.2. Scientific challenges; 4.2.1. New paradigm removing frontiers between sciences 4.2.2. Energy sources4.2.3. How far away is this future?; Bibliography; Index |
| Record Nr. | UNINA-9910132236903321 |
Gauthier Michael
|
||
| London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intracorporeal robotics : from milliscale to nanoscale / / Michaël Gauthier, Nicolas Andreff, Dombre Etienne
| Intracorporeal robotics : from milliscale to nanoscale / / Michaël Gauthier, Nicolas Andreff, Dombre Etienne |
| Autore | Gauthier Michael |
| Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
| Descrizione fisica | 1 online resource (200 p.) |
| Disciplina | 629.892 |
| Collana | Robotics Series |
| Soggetto topico |
Robotics
Robots - Design and construction Microrobots |
| ISBN |
1-118-57910-0
1-118-57912-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Contents; Introduction; Chapter 1 Intracorporeal Millirobotics; 1.1. Introduction; 1.2. Principles; 1.2.1. Partially intracorporeal devices with active distal mobilities; 1.2.2. Intracorporeal manipulators; 1.2.3. Intracorporeal mobile devices; 1.3. Scientific issues; 1.3.1. Modeling; 1.3.2. Design; 1.3.3. Actuation and transmission; 1.3.4. Sensing; 1.3.5. Control; 1.4. Examples of devices; 1.4.1. The robotic platform of the Araknes project; 1.4.2. A snake-like robot made of concentric super-elastic tubes
1.4.3. MICRON: a handheld robotized instrument for ophthalmic surgery1.5. Conclusion; Chapter 2 Intracorporeal Microrobotics; 2.1. Introduction; 2.2. Novel paradigms for intracorporeal robotics; 2.2.1. Classification of intracorporeal robots; 2.2.2. Physical principles in use at microscale; 2.3. Methods; 2.3.1. Models; 2.3.2. Design; 2.3.3. Actuation; 2.3.4. Sensing; 2.3.5. Control; 2.4. Devices; 2.4.1. Magnetically guided catheters; 2.4.2. Distal tip mobility for endoluminal microphonosurgery; 2.4.3. Autonomous active capsules; 2.4.4. Magnetically guided capsules; 2.5. Conclusion Chapter 3 Non-Contact Mesorobotics3.1. Introduction; 3.2. Principles; 3.2.1. Introduction; 3.2.2. Laser trapping; 3.2.3. Electrostatic principles; 3.3. Scientific challenges; 3.3.1. Modeling; 3.3.2. Design; 3.3.3. Perception; 3.3.4. Control; 3.4. Experimental devices; 3.4.1. Laser trapping; 3.4.2. DEP systems; 3.5. Conclusion; Chapter 4 Toward Biomedical Nanorobotics; 4.1. Applicative challenges; 4.1.1. In vitro applications; 4.1.2. Nanoassembly for biomedical applications; 4.1.3. In vivo applications; 4.2. Scientific challenges; 4.2.1. New paradigm removing frontiers between sciences 4.2.2. Energy sources4.2.3. How far away is this future?; Bibliography; Index |
| Record Nr. | UNINA-9910807284803321 |
Gauthier Michael
|
||
| London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Micro-nanorobotic manipulation systems and their applications / / Toshio Fukuda, Fumihito Arai, and Masahiro Nakajima
| Micro-nanorobotic manipulation systems and their applications / / Toshio Fukuda, Fumihito Arai, and Masahiro Nakajima |
| Autore | Fukuda Toshio |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin ; ; Heidelberg, : Springer, c2013 |
| Descrizione fisica | 1 online resource (xiii, 334 pages) : illustrations (some color) |
| Disciplina | 629.8933 |
| Altri autori (Persone) |
AraiFumihito
NakajimaMasahiro |
| Collana | Gale eBooks |
| Soggetto topico |
Microrobots
Manipulators (Mechanism) |
| ISBN | 3-642-36391-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction of Micro-Nanorobotic Manipulation Systems -- Physics in Micro-Nano Scale -- Basics of Micro-Nanorobotic Manipulation Systems -- Micromanipulation System under Optical Microscope -- Applications of Micromanipulation System under Optical Microscope -- Nanomanipulation System under Electron Microscopes -- Applications of Nanomanipulation System under FE-SEM-TEM -- Applications of Nanomanipulation System under E-SEM. |
| Record Nr. | UNINA-9910437912403321 |
Fukuda Toshio
|
||
| Berlin ; ; Heidelberg, : Springer, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microbiorobotics : biologically inspired microscale robotic systems / / edited by Minjun Kim, Anak Agung Julius, U Kei Cheang
| Microbiorobotics : biologically inspired microscale robotic systems / / edited by Minjun Kim, Anak Agung Julius, U Kei Cheang |
| Autore | Kim Minjun |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2017 |
| Descrizione fisica | 1 online resource (292 pages) |
| Disciplina | 629.8932 |
| Collana | Micro & nano technologies series |
| Soggetto topico |
Microrobots
Bioengineering |
| ISBN | 0-323-43019-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Theoretical microbiorobotics -- Biological microrobots -- Synthetic microrobots. |
| Record Nr. | UNINA-9910583339503321 |
Kim Minjun
|
||
| Amsterdam, Netherlands : , : Elsevier, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Micromachines
| Micromachines |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI, [2010]- |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Microelectromechanical systems
Nanoelectromechanical systems Microcontrollers Microrobots Microactuators Nanotechnology Micro-Electrical-Mechanical Systems Mechanical Phenomena Robotics |
| Soggetto genere / forma |
Periodicals.
Fulltext Internet Resources. Periodical |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996321484203316 |
| Basel, Switzerland, : MDPI, [2010]- | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Micromachines
| Micromachines |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI, [2010]- |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Microelectromechanical systems
Nanoelectromechanical systems Microcontrollers Microrobots Microactuators Nanotechnology Micro-Electrical-Mechanical Systems Mechanical Phenomena Robotics |
| Soggetto genere / forma |
Periodical
Fulltext Internet Resources. Periodicals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910140833503321 |
| Basel, Switzerland, : MDPI, [2010]- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microrobotics for micromanipulation [[electronic resource] /] / edited by Nicolas Chaillet, Stéphane Régnier
| Microrobotics for micromanipulation [[electronic resource] /] / edited by Nicolas Chaillet, Stéphane Régnier |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (510 p.) |
| Disciplina |
629.8/933
629.8933 |
| Altri autori (Persone) |
ChailletNicolas
RégnierStéphane |
| Collana | ISTE |
| Soggetto topico |
Microrobots
Manipulators (Mechanism) Microelectromechanical systems |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-62281-2
1-299-31568-2 1-118-62245-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The physics of the microworld / Michaël Gauthier, Pierre Lambert, and Stéphane Régnier -- Actuators for microrobotics / Nicolas Chaillet, Moustapha Hafez, and Pierre Lambert -- Microhandling and micromanipulation strategies / Michaël Gauthier, Pierre Lambert, and Stéphane Régnier -- Architecture of a micromanipulation station / Joël Agnus ... [et al.] -- Microtechnologies and micromanipulation / Lionel Buchaillot -- Future prospects / Philippe Lutz and Stéphane Régnier. |
| Record Nr. | UNINA-9910139239803321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||