3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
Descrizione fisica | 1 online resource (406 p.) |
Disciplina | 621.366 |
Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
Soggetto topico |
Lasers - Industrial applications
Microfabrication |
ISBN |
1-280-72338-6
9786610723386 3-527-60846-X 3-527-60840-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
Record Nr. | UNINA-9910144728303321 |
Weinheim, : Wiley-VCH, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
Descrizione fisica | 1 online resource (406 p.) |
Disciplina | 621.366 |
Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
Soggetto topico |
Lasers - Industrial applications
Microfabrication |
ISBN |
1-280-72338-6
9786610723386 3-527-60846-X 3-527-60840-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
Record Nr. | UNINA-9910830437203321 |
Weinheim, : Wiley-VCH, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
3D laser microfabrication : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
Descrizione fisica | 1 online resource (406 p.) |
Disciplina | 621.366 |
Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
Soggetto topico |
Lasers - Industrial applications
Microfabrication |
ISBN |
1-280-72338-6
9786610723386 3-527-60846-X 3-527-60840-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
Altri titoli varianti | Three-dimensional laser microfabrication |
Record Nr. | UNINA-9910877035603321 |
Weinheim, : Wiley-VCH, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced MEMS/NEMS fabrication and sensors / / Zhuoqing Yang, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (312 pages) |
Disciplina | 621.381 |
Soggetto topico |
Microelectromechanical systems
Nanoelectromechanical systems Microfabrication |
ISBN | 3-030-79749-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522964803321 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomedical microdevices |
Pubbl/distr/stampa | Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- |
Descrizione fisica | 1 online resource |
Disciplina | 610.28 |
Soggetto topico |
Biomedical materials
Biomedical engineering Microfabrication Biomatériaux Génie biomédical |
Soggetto genere / forma | Periodicals. |
Soggetto non controllato | Biomedical Engineering |
ISSN | 1572-8781 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996208332903316 |
Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Biomedical microdevices |
Pubbl/distr/stampa | Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- |
Descrizione fisica | 1 online resource |
Disciplina | 610.28 |
Soggetto topico |
Biomedical materials
Biomedical engineering Microfabrication Biomatériaux Génie biomédical Enginyeria biomèdica Materials biomèdics |
Soggetto genere / forma |
Periodicals.
Revistes electròniques |
ISSN | 1572-8781 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910142801903321 |
Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Design and fabrication of a strain-powered microelectromechanical system (MEMS) switch / / Cory R Knick and Christopher J Morris |
Autore | Knick Cory R. |
Pubbl/distr/stampa | Adelphi, MD : , : Army Research Laboratory, , September 2014 |
Descrizione fisica | 1 online resource (v, 25 pages) : color illustrations |
Collana | ARL-TR |
Soggetto topico |
Microelectromechanical systems
Microfabrication |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Design and fabrication of a strain-powered microelectromechanical system |
Record Nr. | UNINA-9910703951903321 |
Knick Cory R.
![]() |
||
Adelphi, MD : , : Army Research Laboratory, , September 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Inkjet technology for digital fabrication [[electronic resource] /] / edited by Ian M. Hutchings and Graham D. Martin |
Autore | Hutchings Ian |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : Wiley, 2013 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina |
620.1/06
620.106 686.2 |
Altri autori (Persone) |
HutchingsIan M
MartinGraham (Graham Dagnall) |
Soggetto topico |
Microfluidics
Microfabrication Ink-jet printing Three-dimensional printing Coating processes |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-45294-1
1-118-45293-3 1-299-18728-5 1-118-45292-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to inkjet printing for manufacturing -- Fundamentals of inkjet technology -- Dynamics of piezoelectric print-heads -- Fluids for inkjet printing -- When the drop hits the substrate -- Manufacturing of Micro-Electro-Mechanical (MEMS) -- Conductive tracks and passive electronics -- Printed circuit board fabrication -- Active electronics -- Flat-panel Organic Light-Emitting Diode (OLED) displays : a case study -- Radiofrequency Identification (RFID) manufacturing : a case study -- Biopolymers and cells -- Tissue engineering : a case study -- Three-dimensional digital fabrication -- Current inkjet technology and future directions. |
Record Nr. | UNINA-9910141490303321 |
Hutchings Ian
![]() |
||
Chichester, West Sussex, U.K., : Wiley, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Inkjet technology for digital fabrication [[electronic resource] /] / edited by Ian M. Hutchings and Graham D. Martin |
Autore | Hutchings Ian |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : Wiley, 2013 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina |
620.1/06
620.106 686.2 |
Altri autori (Persone) |
HutchingsIan M
MartinGraham (Graham Dagnall) |
Soggetto topico |
Microfluidics
Microfabrication Ink-jet printing Three-dimensional printing Coating processes |
ISBN |
1-118-45294-1
1-118-45293-3 1-299-18728-5 1-118-45292-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to inkjet printing for manufacturing -- Fundamentals of inkjet technology -- Dynamics of piezoelectric print-heads -- Fluids for inkjet printing -- When the drop hits the substrate -- Manufacturing of Micro-Electro-Mechanical (MEMS) -- Conductive tracks and passive electronics -- Printed circuit board fabrication -- Active electronics -- Flat-panel Organic Light-Emitting Diode (OLED) displays : a case study -- Radiofrequency Identification (RFID) manufacturing : a case study -- Biopolymers and cells -- Tissue engineering : a case study -- Three-dimensional digital fabrication -- Current inkjet technology and future directions. |
Record Nr. | UNINA-9910830707903321 |
Hutchings Ian
![]() |
||
Chichester, West Sussex, U.K., : Wiley, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Inkjet technology for digital fabrication / / edited by Ian M. Hutchings and Graham D. Martin |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : Wiley, 2013 |
Descrizione fisica | 1 online resource (562 p.) |
Disciplina | 620.1/06 |
Altri autori (Persone) |
HutchingsIan M
MartinGraham (Graham Dagnall) |
Soggetto topico |
Microfluidics
Microfabrication Ink-jet printing Three-dimensional printing Coating processes |
ISBN |
9781118452943
1118452941 9781118452936 1118452933 9781299187283 1299187285 9781118452929 1118452925 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to inkjet printing for manufacturing -- Fundamentals of inkjet technology -- Dynamics of piezoelectric print-heads -- Fluids for inkjet printing -- When the drop hits the substrate -- Manufacturing of Micro-Electro-Mechanical (MEMS) -- Conductive tracks and passive electronics -- Printed circuit board fabrication -- Active electronics -- Flat-panel Organic Light-Emitting Diode (OLED) displays : a case study -- Radiofrequency Identification (RFID) manufacturing : a case study -- Biopolymers and cells -- Tissue engineering : a case study -- Three-dimensional digital fabrication -- Current inkjet technology and future directions. |
Record Nr. | UNINA-9910877665203321 |
Chichester, West Sussex, U.K., : Wiley, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|