top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Atmospheric and oceanic optics
Atmospheric and oceanic optics
Pubbl/distr/stampa Tomsk, : Institute of Atmospheric Optics
Disciplina 551.5/65
Soggetto topico Meteorological optics
Optical oceanography
Soggetto genere / forma Periodicals.
ISSN 2070-0393
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910307941903321
Tomsk, : Institute of Atmospheric Optics
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Atmospheric and oceanic optics
Atmospheric and oceanic optics
Pubbl/distr/stampa Tomsk, : Institute of Atmospheric Optics
Disciplina 551.5/65
Soggetto topico Meteorological optics
Optical oceanography
Soggetto genere / forma Periodicals.
ISSN 2070-0393
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996207254603316
Tomsk, : Institute of Atmospheric Optics
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
Autore McKechnie T. Stewart
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (694 pages)
Disciplina 700.94409034
Collana Progress in Optical Science and Photonics
Soggetto topico Light - Scattering
Meteorological optics
ISBN 9783030988289
9783030988272
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Contents -- In Memoriam -- About the Author -- 1 History of the Telescope and Its Remarkable Contribution to Scientific Discovery (and the 400-Year Journey from Galileo to a Rigorous General Theory of Imaging Through Earth's Turbulent Atmosphere) -- 1.1 Telescope Imaging Through Earth's Turbulent Atmosphere -- 1.2 Kolmogorov Theory (Mid-1960s) -- 1.3 Origins of the New General Theory -- 1.4 Publication of the New General Theory (1989/90) -- 1.5 Definitive Confirmation of Cores in Star Images -- 1.5.1 The UKIRT 3.8-m Instrument and Star Image Cores -- 1.6 Horace Babcock and Adaptive Optics -- 1.7 Pivotal Equation Yielded by the New General Theory -- 1.8 Future Direction of Ground-Based Observational Astronomy -- 1.9 Final Destination! -- References -- 2 Introduction -- 2.1 Principal Cause of Differences Between Kolmogorov Theory and the New General Theory -- 2.1.1 Visible and IR Star Images for Large Turbulence Structure -- 2.1.2 Visible and IR Star Images for Small Turbulence Structure -- 2.2 Significant Features of the New General Theory -- 2.3 Book Content Preview -- 2.4 Kolmogorov Theory -- 2.4.1 Kolmogorov Theory and Its Damage Legacy -- 2.5 The New General Theory -- References -- 3 Terms, Definitions, and Theoretical Foundations -- 3.1 Air Refractive Index -- 3.1.1 Air Temperature and Altitude -- 3.1.2 Air Pressure and Altitude -- 3.1.3 Integrated Optical Path Difference Over the Entire Atmospheric Depth -- 3.1.4 Effect of Humidity -- 3.1.5 Effect of Dispersion -- 3.1.6 Random Variables Associated with Atmospheric Turbulence -- 3.1.7 Astronomical Refraction -- 3.1.8 Atmospheric Extinction -- 3.2 Point-Objects -- 3.3 The Electromagnetic Spectrum -- 3.4 Quasi-Monochromatic Light -- 3.5 Amplitude and Phase of Light Waves Disrupted by Turbulence -- 3.6 The Atmosphere Considered as a Stochastic Process.
3.6.1 Spatial and Temporal Stationarity and the Ensemble Average -- 3.6.2 Standard Error and Standard Deviation -- 3.6.3 Autocovariance and Autocorrelation Functions, the Variance, and Rms -- 3.6.4 The Atmospheric Refractive Index Field -- 3.7 Scalar Diffraction Theory -- 3.7.1 Scalar Diffraction Theory Applied to Atmospheric Propagation -- 3.7.2 Scalar Diffraction Theory Applied to Telescope Imaging -- 3.7.3 Monochromatic Light Fields -- 3.7.4 Analytic Signal -- 3.7.5 Complex Amplitude -- 3.7.6 Intensity -- 3.7.7 Irradiance -- 3.7.8 Polychromatic Light Fields -- 3.8 Coherence Terminology -- 3.9 Free-Space Propagation -- 3.9.1 Maxwell's Electromagnetic Wave Equations -- 3.9.2 Helmholtz Equation -- 3.9.3 Solutions for Infinitely Extensive Plane Waves -- 3.10 Mathematical Notations and Quantity Dimensions -- References -- 4 Diffraction -- 4.1 Diffraction by an Aperture -- 4.1.1 Fresnel Number -- 4.1.2 Fresnel-Kirchoff Diffraction Formula -- 4.1.3 Fresnel Near-Field Diffraction -- 4.1.4 Stationary Phase -- 4.1.5 Fraunhofer Far-Field Diffraction -- 4.2 Optical System Terminology -- 4.2.1 Telescopes, Telescope Objectives, and Eyepieces -- 4.2.2 Aperture Stops, Pupils, Conjugate Distances, Focal Lengths, and F/Numbers -- 4.2.3 Light Rays and Ray Terminology -- 4.2.4 Objects at Finite Distances -- 4.2.5 Objects at Infinite Distances -- 4.2.6 Pupil Functions -- 4.3 The Amplitude Point Spread Function -- 4.3.1 For Diffraction-Limited Telescopes with Circular Apertures -- 4.4 The Intensity Point Spread Function -- 4.4.1 The Airy Pattern -- 4.5 Strehl Intensity -- 4.5.1 Expressed in Terms of Rms Wavefront Error -- 4.5.2 For Circularly Symmetric Images -- 4.6 Rayleigh Resolution Criterion -- 4.7 Images of Extended Objects -- 4.7.1 Superposition Property -- 4.7.2 Nonlinear Optical Phenomena -- 4.7.3 Isoplanaticity -- 4.7.4 Convolution Integrals.
4.7.5 Images of Coherently Illuminated Extended Objects -- 4.7.6 Images of Incoherently Illuminated Extended Objects -- 4.7.7 Images of Partially Coherently Illuminated Extended Objects -- 4.8 Images of Two-Point Objects -- 4.8.1 Incoherently Illuminated Two-Point Objects -- 4.8.2 Coherently Illuminated Two-Point Objects -- 4.9 Stellar Speckle Patterns -- 4.10 Effect of Central Obstruction on Telescope Point Spread Functions -- 4.11 Mathematical Notation Used in This Chapter -- References -- 5 Wave Propagation After Scattering by a Thin Atmospheric Layer -- 5.1 Characterizing Atmospheric Paths and Telescopes by MTFs and OTFs -- 5.2 The Atmospheric Refractive Index -- 5.3 Wave Propagation in the Geometrical Optics Region -- 5.3.1 Optical Path Difference -- 5.3.2 Phase Angle of the Exiting Wave -- 5.3.3 Complex Amplitude of the Exiting Wave -- 5.3.4 The Two-Point Two-Wavelength Correlation Function for Exiting Waves -- 5.3.5 Complex Coherence Factor for Exiting Waves -- 5.3.6 Illustrative Plots of the Complex Coherence Factor -- 5.3.7 Illustrative Plots of the Two-Point Two-Wavelength Correlation Function -- 5.4 Near-Field Propagation of the Complex Amplitude -- 5.5 Near-Field Propagation of the Two-Point Two-Wavelength Correlation Function -- 5.5.1 Cases Where the Function Conserves -- 5.5.2 General Case of Non-Conservation of the Function -- 5.6 Near-Field Propagation of the Complex Coherence Factor -- 5.7 Development of Scintillation After Light Scattering by a Thin Layer -- 5.7.1 Dependence of Scintillation on Turbulence Scale Sizes in the Layer -- 5.7.2 Dependence of Scintillation on the Various Controlling Parameters -- 5.7.3 Effective Fresnel Numbers for Atmospheric Paths -- 5.8 Mathematical Notation Used in This Chapter -- References -- 6 Wave Propagation Over Extended Atmospheric Paths.
6.1 Atmospheric MTF Expressions Developed by Hufnagel and Stanley -- 6.1.1 Hufnagel and Stanley's General Expression for the Atmospheric MTF -- 6.1.2 Hufnagel and Stanley's Kolmogorov-Based Expression for the Atmospheric MTF -- 6.2 Layered Model Representations of Extended Atmospheric Paths -- 6.2.1 Two Equivalent Random Phase Screen Atmospheric Path Models -- 6.2.2 Properties of the Phase Screens in the Uncorrelated Random Phase Screen Path Model -- 6.2.3 Effect of Individual Random Phase Screens on Transmitted Light Waves -- 6.3 General Expression for the Two-Point Two-Wavelength Correlation Function -- 6.3.1 Case of Isotropic Turbulence -- 6.3.2 The Functional Form When ρ( ξ, ) is Gaussian -- 6.4 General Expression for the Atmospheric MTF -- 6.4.1 Case of Isotropic Turbulence -- 6.4.2 Functional Forms When ρ( ξ, ) is Gaussian -- 6.4.3 Comparison of the General Expression to that of Hufnagel and Stanley -- 6.5 Equivalent Phase Screen Representation of an Atmospheric Path -- 6.5.1 Relationship Between ρ(ξ, η) and the Refractive Index Structure Function, DN -- 6.5.2 Location of the Equivalent Phase Screen in the Atmospheric Path -- 6.5.3 Complex Amplitude Properties Arising from an Equivalent Phase Screen -- 6.5.4 Properties of the OPD Fluctuation Created by an Equivalent Phase Screen -- 6.6 General Expressions for M and S that Include Dispersion -- 6.7 Mathematical Notation Used in This Chapter -- References -- 7 Properties of Point-Object Images Formed by Telescopes -- 7.1 Long- and Short-Exposure Images of Point-Objects -- 7.2 Telescope Coordinate Systems -- 7.3 The Complex Amplitude in an Instantaneous Point-Object Image -- 7.4 Telescope OTFs and MTFs -- 7.4.1 Telescope OTF and MTF for Incoherent Illumination -- 7.4.2 Amplitude Transfer Function of a Telescope for Coherent Illumination.
7.5 Two-Point Two-Wavelength Correlation Function of the Complex Amplitudes in the Image -- 7.5.1 Characterizing the Influence of the Telescope Optics -- 7.5.2 Unit-Normalized Form of the Function -- 7.5.3 The Function at a Single Point in the Image -- 7.5.4 The Spectral Correlation Function at the Center of a Point-Object Image -- 7.6 Complex Coherence Factor of the Complex Amplitude in the Image -- 7.7 Average Intensity Envelopes for Point-Object Images -- 7.8 Statistics of the Complex Amplitude in Point-Object Images Formed by Large Telescopes -- 7.8.1 Reed's Theorem for Gaussian-Distributed Complex Random Variables -- 7.8.2 Unit-Normalized Two-Point Two-Wavelength Correlation Function of the Image Intensities -- 7.8.3 Two-Wavelength Correlation Function of the Intensity at a Single Point in the Image -- 7.8.4 Two-Wavelength Correlation Function of the Complex Amplitude at a Single Point in the Image -- 7.9 OTF for an Entire End-To-End Imaging Path -- 7.9.1 OTF for an Entire End-To-End Imaging Path for Space Telescopes -- 7.9.2 OTF and Intensity PSF for a Diffraction-Limited Telescope with Circular Aperture -- 7.10 Mathematical Notation Used in This Chapter -- References -- 8 Atmospheric Path Characterization -- 8.1 Obtaining the Atmospheric MTF from Point-Object Images -- 8.1.1 For Large Diffraction-Limited Telescopes -- 8.1.2 Long- and Short-Exposure Atmospheric MTFs -- 8.1.3 Effective End-to-End OTF for a Telescope Equipped with Adaptive Optics -- 8.1.4 Atmospheric MTF Plots and Corresponding Intensity Envelopes -- 8.2 Measurement of the rms OPD Fluctuation -- 8.2.1 Measurement for the Case σ/λge0.4 Using Two Narrowband Filters -- 8.2.2 Measurement for the Case σ/λ ≥ 0.4 Using a Broadband Filter -- 8.2.3 Actual Field Measurements of σ -- 8.2.4 Telescope Aberrations Do not Affect the Measured σ Values -- 8.2.5 Convergence of σ as λ2to λ1.
8.2.6 Measurement of σ for the Case σ/λ<.
Record Nr. UNINA-9910616387503321
McKechnie T. Stewart  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
General theory of light propagation and imaging through the atmosphere / / T. Stewart McKechnie
Autore McKechnie T. Stewart
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (694 pages)
Disciplina 700.94409034
Collana Progress in Optical Science and Photonics
Soggetto topico Light - Scattering
Meteorological optics
ISBN 9783030988289
9783030988272
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- References -- Contents -- In Memoriam -- About the Author -- 1 History of the Telescope and Its Remarkable Contribution to Scientific Discovery (and the 400-Year Journey from Galileo to a Rigorous General Theory of Imaging Through Earth's Turbulent Atmosphere) -- 1.1 Telescope Imaging Through Earth's Turbulent Atmosphere -- 1.2 Kolmogorov Theory (Mid-1960s) -- 1.3 Origins of the New General Theory -- 1.4 Publication of the New General Theory (1989/90) -- 1.5 Definitive Confirmation of Cores in Star Images -- 1.5.1 The UKIRT 3.8-m Instrument and Star Image Cores -- 1.6 Horace Babcock and Adaptive Optics -- 1.7 Pivotal Equation Yielded by the New General Theory -- 1.8 Future Direction of Ground-Based Observational Astronomy -- 1.9 Final Destination! -- References -- 2 Introduction -- 2.1 Principal Cause of Differences Between Kolmogorov Theory and the New General Theory -- 2.1.1 Visible and IR Star Images for Large Turbulence Structure -- 2.1.2 Visible and IR Star Images for Small Turbulence Structure -- 2.2 Significant Features of the New General Theory -- 2.3 Book Content Preview -- 2.4 Kolmogorov Theory -- 2.4.1 Kolmogorov Theory and Its Damage Legacy -- 2.5 The New General Theory -- References -- 3 Terms, Definitions, and Theoretical Foundations -- 3.1 Air Refractive Index -- 3.1.1 Air Temperature and Altitude -- 3.1.2 Air Pressure and Altitude -- 3.1.3 Integrated Optical Path Difference Over the Entire Atmospheric Depth -- 3.1.4 Effect of Humidity -- 3.1.5 Effect of Dispersion -- 3.1.6 Random Variables Associated with Atmospheric Turbulence -- 3.1.7 Astronomical Refraction -- 3.1.8 Atmospheric Extinction -- 3.2 Point-Objects -- 3.3 The Electromagnetic Spectrum -- 3.4 Quasi-Monochromatic Light -- 3.5 Amplitude and Phase of Light Waves Disrupted by Turbulence -- 3.6 The Atmosphere Considered as a Stochastic Process.
3.6.1 Spatial and Temporal Stationarity and the Ensemble Average -- 3.6.2 Standard Error and Standard Deviation -- 3.6.3 Autocovariance and Autocorrelation Functions, the Variance, and Rms -- 3.6.4 The Atmospheric Refractive Index Field -- 3.7 Scalar Diffraction Theory -- 3.7.1 Scalar Diffraction Theory Applied to Atmospheric Propagation -- 3.7.2 Scalar Diffraction Theory Applied to Telescope Imaging -- 3.7.3 Monochromatic Light Fields -- 3.7.4 Analytic Signal -- 3.7.5 Complex Amplitude -- 3.7.6 Intensity -- 3.7.7 Irradiance -- 3.7.8 Polychromatic Light Fields -- 3.8 Coherence Terminology -- 3.9 Free-Space Propagation -- 3.9.1 Maxwell's Electromagnetic Wave Equations -- 3.9.2 Helmholtz Equation -- 3.9.3 Solutions for Infinitely Extensive Plane Waves -- 3.10 Mathematical Notations and Quantity Dimensions -- References -- 4 Diffraction -- 4.1 Diffraction by an Aperture -- 4.1.1 Fresnel Number -- 4.1.2 Fresnel-Kirchoff Diffraction Formula -- 4.1.3 Fresnel Near-Field Diffraction -- 4.1.4 Stationary Phase -- 4.1.5 Fraunhofer Far-Field Diffraction -- 4.2 Optical System Terminology -- 4.2.1 Telescopes, Telescope Objectives, and Eyepieces -- 4.2.2 Aperture Stops, Pupils, Conjugate Distances, Focal Lengths, and F/Numbers -- 4.2.3 Light Rays and Ray Terminology -- 4.2.4 Objects at Finite Distances -- 4.2.5 Objects at Infinite Distances -- 4.2.6 Pupil Functions -- 4.3 The Amplitude Point Spread Function -- 4.3.1 For Diffraction-Limited Telescopes with Circular Apertures -- 4.4 The Intensity Point Spread Function -- 4.4.1 The Airy Pattern -- 4.5 Strehl Intensity -- 4.5.1 Expressed in Terms of Rms Wavefront Error -- 4.5.2 For Circularly Symmetric Images -- 4.6 Rayleigh Resolution Criterion -- 4.7 Images of Extended Objects -- 4.7.1 Superposition Property -- 4.7.2 Nonlinear Optical Phenomena -- 4.7.3 Isoplanaticity -- 4.7.4 Convolution Integrals.
4.7.5 Images of Coherently Illuminated Extended Objects -- 4.7.6 Images of Incoherently Illuminated Extended Objects -- 4.7.7 Images of Partially Coherently Illuminated Extended Objects -- 4.8 Images of Two-Point Objects -- 4.8.1 Incoherently Illuminated Two-Point Objects -- 4.8.2 Coherently Illuminated Two-Point Objects -- 4.9 Stellar Speckle Patterns -- 4.10 Effect of Central Obstruction on Telescope Point Spread Functions -- 4.11 Mathematical Notation Used in This Chapter -- References -- 5 Wave Propagation After Scattering by a Thin Atmospheric Layer -- 5.1 Characterizing Atmospheric Paths and Telescopes by MTFs and OTFs -- 5.2 The Atmospheric Refractive Index -- 5.3 Wave Propagation in the Geometrical Optics Region -- 5.3.1 Optical Path Difference -- 5.3.2 Phase Angle of the Exiting Wave -- 5.3.3 Complex Amplitude of the Exiting Wave -- 5.3.4 The Two-Point Two-Wavelength Correlation Function for Exiting Waves -- 5.3.5 Complex Coherence Factor for Exiting Waves -- 5.3.6 Illustrative Plots of the Complex Coherence Factor -- 5.3.7 Illustrative Plots of the Two-Point Two-Wavelength Correlation Function -- 5.4 Near-Field Propagation of the Complex Amplitude -- 5.5 Near-Field Propagation of the Two-Point Two-Wavelength Correlation Function -- 5.5.1 Cases Where the Function Conserves -- 5.5.2 General Case of Non-Conservation of the Function -- 5.6 Near-Field Propagation of the Complex Coherence Factor -- 5.7 Development of Scintillation After Light Scattering by a Thin Layer -- 5.7.1 Dependence of Scintillation on Turbulence Scale Sizes in the Layer -- 5.7.2 Dependence of Scintillation on the Various Controlling Parameters -- 5.7.3 Effective Fresnel Numbers for Atmospheric Paths -- 5.8 Mathematical Notation Used in This Chapter -- References -- 6 Wave Propagation Over Extended Atmospheric Paths.
6.1 Atmospheric MTF Expressions Developed by Hufnagel and Stanley -- 6.1.1 Hufnagel and Stanley's General Expression for the Atmospheric MTF -- 6.1.2 Hufnagel and Stanley's Kolmogorov-Based Expression for the Atmospheric MTF -- 6.2 Layered Model Representations of Extended Atmospheric Paths -- 6.2.1 Two Equivalent Random Phase Screen Atmospheric Path Models -- 6.2.2 Properties of the Phase Screens in the Uncorrelated Random Phase Screen Path Model -- 6.2.3 Effect of Individual Random Phase Screens on Transmitted Light Waves -- 6.3 General Expression for the Two-Point Two-Wavelength Correlation Function -- 6.3.1 Case of Isotropic Turbulence -- 6.3.2 The Functional Form When ρ( ξ, ) is Gaussian -- 6.4 General Expression for the Atmospheric MTF -- 6.4.1 Case of Isotropic Turbulence -- 6.4.2 Functional Forms When ρ( ξ, ) is Gaussian -- 6.4.3 Comparison of the General Expression to that of Hufnagel and Stanley -- 6.5 Equivalent Phase Screen Representation of an Atmospheric Path -- 6.5.1 Relationship Between ρ(ξ, η) and the Refractive Index Structure Function, DN -- 6.5.2 Location of the Equivalent Phase Screen in the Atmospheric Path -- 6.5.3 Complex Amplitude Properties Arising from an Equivalent Phase Screen -- 6.5.4 Properties of the OPD Fluctuation Created by an Equivalent Phase Screen -- 6.6 General Expressions for M and S that Include Dispersion -- 6.7 Mathematical Notation Used in This Chapter -- References -- 7 Properties of Point-Object Images Formed by Telescopes -- 7.1 Long- and Short-Exposure Images of Point-Objects -- 7.2 Telescope Coordinate Systems -- 7.3 The Complex Amplitude in an Instantaneous Point-Object Image -- 7.4 Telescope OTFs and MTFs -- 7.4.1 Telescope OTF and MTF for Incoherent Illumination -- 7.4.2 Amplitude Transfer Function of a Telescope for Coherent Illumination.
7.5 Two-Point Two-Wavelength Correlation Function of the Complex Amplitudes in the Image -- 7.5.1 Characterizing the Influence of the Telescope Optics -- 7.5.2 Unit-Normalized Form of the Function -- 7.5.3 The Function at a Single Point in the Image -- 7.5.4 The Spectral Correlation Function at the Center of a Point-Object Image -- 7.6 Complex Coherence Factor of the Complex Amplitude in the Image -- 7.7 Average Intensity Envelopes for Point-Object Images -- 7.8 Statistics of the Complex Amplitude in Point-Object Images Formed by Large Telescopes -- 7.8.1 Reed's Theorem for Gaussian-Distributed Complex Random Variables -- 7.8.2 Unit-Normalized Two-Point Two-Wavelength Correlation Function of the Image Intensities -- 7.8.3 Two-Wavelength Correlation Function of the Intensity at a Single Point in the Image -- 7.8.4 Two-Wavelength Correlation Function of the Complex Amplitude at a Single Point in the Image -- 7.9 OTF for an Entire End-To-End Imaging Path -- 7.9.1 OTF for an Entire End-To-End Imaging Path for Space Telescopes -- 7.9.2 OTF and Intensity PSF for a Diffraction-Limited Telescope with Circular Aperture -- 7.10 Mathematical Notation Used in This Chapter -- References -- 8 Atmospheric Path Characterization -- 8.1 Obtaining the Atmospheric MTF from Point-Object Images -- 8.1.1 For Large Diffraction-Limited Telescopes -- 8.1.2 Long- and Short-Exposure Atmospheric MTFs -- 8.1.3 Effective End-to-End OTF for a Telescope Equipped with Adaptive Optics -- 8.1.4 Atmospheric MTF Plots and Corresponding Intensity Envelopes -- 8.2 Measurement of the rms OPD Fluctuation -- 8.2.1 Measurement for the Case σ/λge0.4 Using Two Narrowband Filters -- 8.2.2 Measurement for the Case σ/λ ≥ 0.4 Using a Broadband Filter -- 8.2.3 Actual Field Measurements of σ -- 8.2.4 Telescope Aberrations Do not Affect the Measured σ Values -- 8.2.5 Convergence of σ as λ2to λ1.
8.2.6 Measurement of σ for the Case σ/λ<.
Record Nr. UNISA-996495164203316
McKechnie T. Stewart  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
International geophysics series [[electronic resource] ] : Physics of the aurora and airglow
International geophysics series [[electronic resource] ] : Physics of the aurora and airglow
Autore Marshall John <1954->
Pubbl/distr/stampa Burlington, : Elsevier Science, 1961
Descrizione fisica 1 online resource (723 p.)
Disciplina 538.768
538/.768
Altri autori (Persone) PlumbR. Alan
Collana International Geophysics
Soggetto topico Auroras
Auroras - Bibliography
Meteorological optics
Meteorological optics - Bibliography
Radiation
Meteorology & Climatology
Earth & Environmental Sciences
ISBN 1-118-66804-9
1-283-52556-9
0-08-095440-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Physics of the Aurora and Airglow; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Radiation in Spectral Lines; 1.1. Temperature and Thermal Equilibrium; 1.2. The Classical Theory of Spectral Lines; 1.3. Quantum Concepts of Spectral Lines; 1.4. Molecular Bands; 1.5. Excitation and Ionization Processes; Chapter 2. Scattering of Radiation in Finite Atmospheres; 2.1. Introduction; 2.2. Equation of Radiative Transfer; 2.3. Applications of the Transfer Equation to Photometry; 2.4. The X - and Y-Functions in Problems of Radiative Transfe
2.5. Correction of Photometric Observations of the Airglow for Tropospheric ScatteringChapter 3. Magnetic Fields, Charged Particles, and the Upper Atmosphere; 3.1. The Geomagnetic Field; 3.2. Motions of Charged Particles in Electric and Magnetic Fields; 3.3. Propagation of Electromagnetic Waves in an Ionized Atmosphere; 3.4. The Ionosphere; 3.5. Model Atmospheres; Chapter 4. Occurrence of Aurorae in Space and Time; 4.1. Geographic Distribution and Periodic Variations; 4.2. Characteristics of Auroral Displays; 4.3. Aurorae and Related Phenomena; Chapter 5. Auroral Spectroscopy and Photometry
5.1. Spectral Identifications5.2. Spectral Photometry of Aurora; Chapter 6. The Radio-Aurora; 6.1. Observed Characteristics; 6.2. Theory of Auroral Reflections; Chapter 7. Physical Processes in the Auroral Atmosphere; 7.1. Proton Bombardment; 7.2. Electron Bombardment; 7.3. Atmospheric Electrons; 7.4. Theory of the Auroral Spectrum; Chapter 8. Auroral Particles in Space; 8.1. Interplanetary Space; 8.2. Auroral Particles in the Geomagnetic Field; Chapter 9. The Airglow Spectrum; 9.1. Nightglow; 9.2. Twilight and Day Airglow; Chapter 10. Analysis of Twilight Observations for Emission Heights
10.1. Apparent Heights zs: The Shadow of the Solid Earth10.2. Height Measurements with Atmospheric Screening; 10.3. Height and Vertical Distribution of Observed Emissions; Chapter 11. Theory of the Twilight and Day Airglow; 11.1. Resonance Scattering and Fluorescence for an Optically Thin Layer; 11.2. Excitation of N2+ First Negative Bands; 11.3. Photon Scattering by Atmospheric Sodium; 11.4. Photochemistry and Ionization of Atmospheric Sodium; 11.5. Theory of the Oxygen Red Lines; 11.6. Excitation of Other Emissions; Chapter 12. Spectral Photometry of the Nightglow
12.1. Methods of Height Determinations12.2. Spectroscopic Temperatures; 12.3. Intensities, Polarization, and Geographic and Time Variations; Chapter 13. Excitation of the Nightglow; 13.1. Introduction: Mechanisms of Nightglow Excitation; 13.2. Excitation by Recombination in the Ionosphere; 13.3. Excitation by Particle Collisions; 13.4. Photochemical Reactions in an Oxygen-Nitrogen Atmosphere; 13.5. Excitation of Emissions from Minor Constituents; Appendixes; APPENDIX I: A Table of Physical Constants; APPENDIX II: The Rayleigh: A Photometric Unit for the Aurora and Airglow
APPENDIX III: A Short List of Airglow-Aurora Observing Stations
Record Nr. UNINA-9910138866803321
Marshall John <1954->  
Burlington, : Elsevier Science, 1961
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
International geophysics series : Physics of the aurora and airglow
International geophysics series : Physics of the aurora and airglow
Autore Marshall John <1954->
Pubbl/distr/stampa Burlington, : Elsevier Science, 1961
Descrizione fisica 1 online resource (xviii, 704 pages) : illustrations
Disciplina 538.768
538/.768
Altri autori (Persone) PlumbR. Alan <1948->
Collana International Geophysics
Soggetto topico Auroras
Meteorological optics
Radiation
ISBN 1-118-66804-9
1-283-52556-9
0-08-095440-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Physics of the Aurora and Airglow; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Radiation in Spectral Lines; 1.1. Temperature and Thermal Equilibrium; 1.2. The Classical Theory of Spectral Lines; 1.3. Quantum Concepts of Spectral Lines; 1.4. Molecular Bands; 1.5. Excitation and Ionization Processes; Chapter 2. Scattering of Radiation in Finite Atmospheres; 2.1. Introduction; 2.2. Equation of Radiative Transfer; 2.3. Applications of the Transfer Equation to Photometry; 2.4. The X - and Y-Functions in Problems of Radiative Transfe
2.5. Correction of Photometric Observations of the Airglow for Tropospheric Scattering; Chapter 3. Magnetic Fields, Charged Particles, and the Upper Atmosphere; 3.1. The Geomagnetic Field; 3.2. Motions of Charged Particles in Electric and Magnetic Fields; 3.3. Propagation of Electromagnetic Waves in an Ionized Atmosphere; 3.4. The Ionosphere; 3.5. Model Atmospheres; Chapter 4. Occurrence of Aurorae in Space and Time; 4.1. Geographic Distribution and Periodic Variations; 4.2. Characteristics of Auroral Displays; 4.3. Aurorae and Related Phenomena; Chapter 5. Auroral Spectroscopy and Photometry
5.1. Spectral Identifications; 5.2. Spectral Photometry of Aurora; Chapter 6. The Radio-Aurora; 6.1. Observed Characteristics; 6.2. Theory of Auroral Reflections; Chapter 7. Physical Processes in the Auroral Atmosphere; 7.1. Proton Bombardment; 7.2. Electron Bombardment; 7.3. Atmospheric Electrons; 7.4. Theory of the Auroral Spectrum; Chapter 8. Auroral Particles in Space; 8.1. Interplanetary Space; 8.2. Auroral Particles in the Geomagnetic Field; Chapter 9. The Airglow Spectrum; 9.1. Nightglow; 9.2. Twilight and Day Airglow; Chapter 10. Analysis of Twilight Observations for Emission Heights
10.1. Apparent Heights zs: The Shadow of the Solid Earth; 10.2. Height Measurements with Atmospheric Screening; 10.3. Height and Vertical Distribution of Observed Emissions; Chapter 11. Theory of the Twilight and Day Airglow; 11.1. Resonance Scattering and Fluorescence for an Optically Thin Layer; 11.2. Excitation of N2+ First Negative Bands; 11.3. Photon Scattering by Atmospheric Sodium; 11.4. Photochemistry and Ionization of Atmospheric Sodium; 11.5. Theory of the Oxygen Red Lines; 11.6. Excitation of Other Emissions; Chapter 12. Spectral Photometry of the Nightglow
12.1. Methods of Height Determinations; 12.2. Spectroscopic Temperatures; 12.3. Intensities, Polarization, and Geographic and Time Variations; Chapter 13. Excitation of the Nightglow; 13.1. Introduction: Mechanisms of Nightglow Excitation; 13.2. Excitation by Recombination in the Ionosphere; 13.3. Excitation by Particle Collisions; 13.4. Photochemical Reactions in an Oxygen-Nitrogen Atmosphere; 13.5. Excitation of Emissions from Minor Constituents; Appendixes; APPENDIX I: A Table of Physical Constants; APPENDIX II: The Rayleigh: A Photometric Unit for the Aurora and Airglow; APPENDIX III: A Short List of Airglow-Aurora Observing Stations
Record Nr. UNISA-996197522903316
Marshall John <1954->  
Burlington, : Elsevier Science, 1961
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
International geophysics series : Physics of the aurora and airglow
International geophysics series : Physics of the aurora and airglow
Autore Marshall John <1954->
Pubbl/distr/stampa Burlington, : Elsevier Science, 1961
Descrizione fisica 1 online resource (xviii, 704 pages) : illustrations
Disciplina 538.768
538/.768
Altri autori (Persone) PlumbR. Alan <1948->
Collana International Geophysics
Soggetto topico Auroras
Meteorological optics
Radiation
ISBN 1-118-66804-9
1-283-52556-9
0-08-095440-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Physics of the Aurora and Airglow; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Radiation in Spectral Lines; 1.1. Temperature and Thermal Equilibrium; 1.2. The Classical Theory of Spectral Lines; 1.3. Quantum Concepts of Spectral Lines; 1.4. Molecular Bands; 1.5. Excitation and Ionization Processes; Chapter 2. Scattering of Radiation in Finite Atmospheres; 2.1. Introduction; 2.2. Equation of Radiative Transfer; 2.3. Applications of the Transfer Equation to Photometry; 2.4. The X - and Y-Functions in Problems of Radiative Transfe
2.5. Correction of Photometric Observations of the Airglow for Tropospheric Scattering; Chapter 3. Magnetic Fields, Charged Particles, and the Upper Atmosphere; 3.1. The Geomagnetic Field; 3.2. Motions of Charged Particles in Electric and Magnetic Fields; 3.3. Propagation of Electromagnetic Waves in an Ionized Atmosphere; 3.4. The Ionosphere; 3.5. Model Atmospheres; Chapter 4. Occurrence of Aurorae in Space and Time; 4.1. Geographic Distribution and Periodic Variations; 4.2. Characteristics of Auroral Displays; 4.3. Aurorae and Related Phenomena; Chapter 5. Auroral Spectroscopy and Photometry
5.1. Spectral Identifications; 5.2. Spectral Photometry of Aurora; Chapter 6. The Radio-Aurora; 6.1. Observed Characteristics; 6.2. Theory of Auroral Reflections; Chapter 7. Physical Processes in the Auroral Atmosphere; 7.1. Proton Bombardment; 7.2. Electron Bombardment; 7.3. Atmospheric Electrons; 7.4. Theory of the Auroral Spectrum; Chapter 8. Auroral Particles in Space; 8.1. Interplanetary Space; 8.2. Auroral Particles in the Geomagnetic Field; Chapter 9. The Airglow Spectrum; 9.1. Nightglow; 9.2. Twilight and Day Airglow; Chapter 10. Analysis of Twilight Observations for Emission Heights
10.1. Apparent Heights zs: The Shadow of the Solid Earth; 10.2. Height Measurements with Atmospheric Screening; 10.3. Height and Vertical Distribution of Observed Emissions; Chapter 11. Theory of the Twilight and Day Airglow; 11.1. Resonance Scattering and Fluorescence for an Optically Thin Layer; 11.2. Excitation of N2+ First Negative Bands; 11.3. Photon Scattering by Atmospheric Sodium; 11.4. Photochemistry and Ionization of Atmospheric Sodium; 11.5. Theory of the Oxygen Red Lines; 11.6. Excitation of Other Emissions; Chapter 12. Spectral Photometry of the Nightglow
12.1. Methods of Height Determinations; 12.2. Spectroscopic Temperatures; 12.3. Intensities, Polarization, and Geographic and Time Variations; Chapter 13. Excitation of the Nightglow; 13.1. Introduction: Mechanisms of Nightglow Excitation; 13.2. Excitation by Recombination in the Ionosphere; 13.3. Excitation by Particle Collisions; 13.4. Photochemical Reactions in an Oxygen-Nitrogen Atmosphere; 13.5. Excitation of Emissions from Minor Constituents; Appendixes; APPENDIX I: A Table of Physical Constants; APPENDIX II: The Rayleigh: A Photometric Unit for the Aurora and Airglow; APPENDIX III: A Short List of Airglow-Aurora Observing Stations
Record Nr. UNINA-9910830058603321
Marshall John <1954->  
Burlington, : Elsevier Science, 1961
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
International geophysics series : Physics of the aurora and airglow
International geophysics series : Physics of the aurora and airglow
Autore Marshall John <1954->
Pubbl/distr/stampa Burlington, : Elsevier Science, 1961
Descrizione fisica 1 online resource (xviii, 704 pages) : illustrations
Disciplina 538.768
538/.768
Altri autori (Persone) PlumbR. Alan <1948->
Collana International Geophysics
Soggetto topico Auroras
Meteorological optics
Radiation
ISBN 1-118-66804-9
1-283-52556-9
0-08-095440-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Physics of the Aurora and Airglow; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Radiation in Spectral Lines; 1.1. Temperature and Thermal Equilibrium; 1.2. The Classical Theory of Spectral Lines; 1.3. Quantum Concepts of Spectral Lines; 1.4. Molecular Bands; 1.5. Excitation and Ionization Processes; Chapter 2. Scattering of Radiation in Finite Atmospheres; 2.1. Introduction; 2.2. Equation of Radiative Transfer; 2.3. Applications of the Transfer Equation to Photometry; 2.4. The X - and Y-Functions in Problems of Radiative Transfe
2.5. Correction of Photometric Observations of the Airglow for Tropospheric Scattering; Chapter 3. Magnetic Fields, Charged Particles, and the Upper Atmosphere; 3.1. The Geomagnetic Field; 3.2. Motions of Charged Particles in Electric and Magnetic Fields; 3.3. Propagation of Electromagnetic Waves in an Ionized Atmosphere; 3.4. The Ionosphere; 3.5. Model Atmospheres; Chapter 4. Occurrence of Aurorae in Space and Time; 4.1. Geographic Distribution and Periodic Variations; 4.2. Characteristics of Auroral Displays; 4.3. Aurorae and Related Phenomena; Chapter 5. Auroral Spectroscopy and Photometry
5.1. Spectral Identifications; 5.2. Spectral Photometry of Aurora; Chapter 6. The Radio-Aurora; 6.1. Observed Characteristics; 6.2. Theory of Auroral Reflections; Chapter 7. Physical Processes in the Auroral Atmosphere; 7.1. Proton Bombardment; 7.2. Electron Bombardment; 7.3. Atmospheric Electrons; 7.4. Theory of the Auroral Spectrum; Chapter 8. Auroral Particles in Space; 8.1. Interplanetary Space; 8.2. Auroral Particles in the Geomagnetic Field; Chapter 9. The Airglow Spectrum; 9.1. Nightglow; 9.2. Twilight and Day Airglow; Chapter 10. Analysis of Twilight Observations for Emission Heights
10.1. Apparent Heights zs: The Shadow of the Solid Earth; 10.2. Height Measurements with Atmospheric Screening; 10.3. Height and Vertical Distribution of Observed Emissions; Chapter 11. Theory of the Twilight and Day Airglow; 11.1. Resonance Scattering and Fluorescence for an Optically Thin Layer; 11.2. Excitation of N2+ First Negative Bands; 11.3. Photon Scattering by Atmospheric Sodium; 11.4. Photochemistry and Ionization of Atmospheric Sodium; 11.5. Theory of the Oxygen Red Lines; 11.6. Excitation of Other Emissions; Chapter 12. Spectral Photometry of the Nightglow
12.1. Methods of Height Determinations; 12.2. Spectroscopic Temperatures; 12.3. Intensities, Polarization, and Geographic and Time Variations; Chapter 13. Excitation of the Nightglow; 13.1. Introduction: Mechanisms of Nightglow Excitation; 13.2. Excitation by Recombination in the Ionosphere; 13.3. Excitation by Particle Collisions; 13.4. Photochemical Reactions in an Oxygen-Nitrogen Atmosphere; 13.5. Excitation of Emissions from Minor Constituents; Appendixes; APPENDIX I: A Table of Physical Constants; APPENDIX II: The Rayleigh: A Photometric Unit for the Aurora and Airglow; APPENDIX III: A Short List of Airglow-Aurora Observing Stations
Record Nr. UNINA-9910841884603321
Marshall John <1954->  
Burlington, : Elsevier Science, 1961
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microphysical influences on electro-optic signal propagation in complex areas / / Arnold Tunick and Gary Carhart
Microphysical influences on electro-optic signal propagation in complex areas / / Arnold Tunick and Gary Carhart
Autore Tunick Arnold
Pubbl/distr/stampa Adelphi, MD : , : Army Research Laboratory, , December 2005
Descrizione fisica 1 online resource (vi, 14 pages) : illustrations
Soggetto topico Electrooptics
Electrooptical devices - Atmospheric effects
Fluid dynamics
Meteorological optics
Forest meteorology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910705882903321
Tunick Arnold  
Adelphi, MD : , : Army Research Laboratory, , December 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Monte Carlo methods in atmospheric optics / G.I. Marchuk...[et al.]
The Monte Carlo methods in atmospheric optics / G.I. Marchuk...[et al.]
Autore Marchuk, G.I.
Pubbl/distr/stampa Berlin : Springer, 1980
Descrizione fisica viii, 208 p. : ill. ; 24 cm.
Collana Springer series in optical sciences ; 12
Soggetto topico Meteorological optics
Monte Carlo method
Classificazione 52.9.35
53.2.4
510.65
551.5'27
QC975.2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001098149707536
Marchuk, G.I.  
Berlin : Springer, 1980
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui