top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chromium and nickel powders made by reduction of their oxides with magnesium, lithium, or sodium vapors / / by Alan Arias
Chromium and nickel powders made by reduction of their oxides with magnesium, lithium, or sodium vapors / / by Alan Arias
Autore Arias Alan
Pubbl/distr/stampa Washington, D.C. : , : National Aeronautics and Space Administration, , August 1968
Descrizione fisica 1 online resource (ii, 20 pages) : illustrations
Collana NASA technical note
Soggetto topico Chromium
Nickel
Metal powders
Particles
Dispersion strengthening
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910715036003321
Arias Alan  
Washington, D.C. : , : National Aeronautics and Space Administration, , August 1968
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explosibility of metal powders / / by Murray Jacobson, Austin R. Cooper and John Nagy
Explosibility of metal powders / / by Murray Jacobson, Austin R. Cooper and John Nagy
Autore Jacobson M (Murray)
Pubbl/distr/stampa [Washington, D.C.] : , : United States Department of the Interior, Bureau of Mines, , 1964
Descrizione fisica 1 online resource (25 pages) : illustrations
Collana Report of investigations
Soggetto topico Dust explosions
Metal powders
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910706750903321
Jacobson M (Murray)  
[Washington, D.C.] : , : United States Department of the Interior, Bureau of Mines, , 1964
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal nanopowders : production, characterization, and energetic applications / / edited by Alexander Gromov and Ulrich Teipel
Metal nanopowders : production, characterization, and energetic applications / / edited by Alexander Gromov and Ulrich Teipel
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag, , 2014
Descrizione fisica 1 online resource (441 p.)
Disciplina 671.37
Soggetto topico Metal powders
Nanostructured materials
ISBN 3-527-68071-3
3-527-68069-1
3-527-68072-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal Nanopowders; Contents; Foreword; List of Contributors; Introduction; Chapter 1 Estimation of Thermodynamic Data of Metallic Nanoparticles Based on Bulk Values; 1.1 Introduction; 1.2 Thermodynamic Background; 1.3 Size-Dependent Materials Data of Nanoparticles; 1.4 Comparison of Experimental and Calculated Melting Temperatures; 1.5 Comparison with Data for the Entropy of Melting; 1.6 Discussion of the Results; 1.7 Conclusions; 1.A Appendix: Zeros and Extrema of the Free Enthalpy of Melting Gm-nano; References; Chapter 2 Numerical Simulation of Individual Metallic Nanoparticles
2.1 Introduction2.2 Molecular Dynamics Simulation; 2.2.1 Motion of Atoms; 2.2.2 Temperature and Potential Energy; 2.2.3 Ensembles; 2.2.4 Energy Minimization; 2.2.5 Force Field; 2.2.6 Potential Truncation and Neighbor List; 2.2.7 Simulation Program and Platform; 2.3 Size-Dependent Properties; 2.3.1 Introduction; 2.3.2 Simulation Setting; 2.3.3 Size-Dependent Melting Phenomenon; 2.4 Sintering Study of Two Nanoparticles; 2.4.1 Introduction; 2.4.2 Simulation Setting; 2.4.3 Sintering Process Characterization; 2.5 Oxidation of Nanoparticles in the Presence of Oxygen; 2.5.1 Introduction
2.5.2 Simulation Setting2.5.3 Characterization of the Oxidation Process; 2.6 Heating and Cooling of a Core-Shell Structured Particle; 2.6.1 Simulation Method; 2.6.2 Heating Simulation; 2.6.2.1 Solidification Simulation; 2.7 Chapter Summary; References; Chapter 3 Electroexplosive Nanometals; 3.1 Introduction; 3.2 Electrical Explosion of Wires Technology for Nanometals Production; 3.2.1 The Physics of the Process of Electrical Explosion of Wires; 3.2.2 Nonequilibrium State of EEW Products -Nanometals; 3.2.3 The Equipment Design for nMe Production by Electrical Explosion of Wires Method
3.2.4 Comparative Characteristics of the Technology of Electrical Explosion of Wires3.2.5 The Methods for the Regulation of the Properties of Nanometals Produced by Electrical Explosion of Wires; 3.3 Conclusion; Acknowledgments; References; Chapter 4 Metal Nanopowders Production; 4.1 Introduction; 4.2 EEW Method of Nanopowder Production; 4.2.1 Electrical Explosion of Wires Phenomenon; 4.2.2 Nanopowder Production Equipment; 4.3 Recondensation NP-Producing Methods: Plasma-Based Technology; 4.3.1 Fundamentals of Plasma-Chemical NP Production; 4.3.2 Vortex-Stabilized Plasma Reactor
4.3.3 Starting Material Metering Device (Dispenser)4.3.4 Disperse Material Trapping Devices (Cyclone Collectors and Filters); 4.3.5 NP Encapsulation Unit; 4.4 Characteristics of Al Nanopowders; 4.5 Nanopowder Chemical Passivation; 4.6 Microencapsulation of Al Nanoparticles; 4.7 The Process of Producing Nanopowders of Aluminum by Plasma-Based Technology; 4.7.1 Production of Aluminum Nanopowder; 4.7.2 Some Properties of Produced Nanopowders of Aluminum, Boron, Aluminum Boride, and Silicon; References; Chapter 5 Characterization of Metallic Nanoparticle Agglomerates; 5.1 Introduction
5.2 Description of the Structure of Nanoparticle Agglomerates
Record Nr. UNINA-9910140279803321
Weinheim, Germany : , : Wiley-VCH Verlag, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal nanopowders : production, characterization, and energetic applications / / edited by Alexander Gromov and Ulrich Teipel
Metal nanopowders : production, characterization, and energetic applications / / edited by Alexander Gromov and Ulrich Teipel
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag, , 2014
Descrizione fisica 1 online resource (441 p.)
Disciplina 671.37
Soggetto topico Metal powders
Nanostructured materials
ISBN 3-527-68071-3
3-527-68069-1
3-527-68072-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal Nanopowders; Contents; Foreword; List of Contributors; Introduction; Chapter 1 Estimation of Thermodynamic Data of Metallic Nanoparticles Based on Bulk Values; 1.1 Introduction; 1.2 Thermodynamic Background; 1.3 Size-Dependent Materials Data of Nanoparticles; 1.4 Comparison of Experimental and Calculated Melting Temperatures; 1.5 Comparison with Data for the Entropy of Melting; 1.6 Discussion of the Results; 1.7 Conclusions; 1.A Appendix: Zeros and Extrema of the Free Enthalpy of Melting Gm-nano; References; Chapter 2 Numerical Simulation of Individual Metallic Nanoparticles
2.1 Introduction2.2 Molecular Dynamics Simulation; 2.2.1 Motion of Atoms; 2.2.2 Temperature and Potential Energy; 2.2.3 Ensembles; 2.2.4 Energy Minimization; 2.2.5 Force Field; 2.2.6 Potential Truncation and Neighbor List; 2.2.7 Simulation Program and Platform; 2.3 Size-Dependent Properties; 2.3.1 Introduction; 2.3.2 Simulation Setting; 2.3.3 Size-Dependent Melting Phenomenon; 2.4 Sintering Study of Two Nanoparticles; 2.4.1 Introduction; 2.4.2 Simulation Setting; 2.4.3 Sintering Process Characterization; 2.5 Oxidation of Nanoparticles in the Presence of Oxygen; 2.5.1 Introduction
2.5.2 Simulation Setting2.5.3 Characterization of the Oxidation Process; 2.6 Heating and Cooling of a Core-Shell Structured Particle; 2.6.1 Simulation Method; 2.6.2 Heating Simulation; 2.6.2.1 Solidification Simulation; 2.7 Chapter Summary; References; Chapter 3 Electroexplosive Nanometals; 3.1 Introduction; 3.2 Electrical Explosion of Wires Technology for Nanometals Production; 3.2.1 The Physics of the Process of Electrical Explosion of Wires; 3.2.2 Nonequilibrium State of EEW Products -Nanometals; 3.2.3 The Equipment Design for nMe Production by Electrical Explosion of Wires Method
3.2.4 Comparative Characteristics of the Technology of Electrical Explosion of Wires3.2.5 The Methods for the Regulation of the Properties of Nanometals Produced by Electrical Explosion of Wires; 3.3 Conclusion; Acknowledgments; References; Chapter 4 Metal Nanopowders Production; 4.1 Introduction; 4.2 EEW Method of Nanopowder Production; 4.2.1 Electrical Explosion of Wires Phenomenon; 4.2.2 Nanopowder Production Equipment; 4.3 Recondensation NP-Producing Methods: Plasma-Based Technology; 4.3.1 Fundamentals of Plasma-Chemical NP Production; 4.3.2 Vortex-Stabilized Plasma Reactor
4.3.3 Starting Material Metering Device (Dispenser)4.3.4 Disperse Material Trapping Devices (Cyclone Collectors and Filters); 4.3.5 NP Encapsulation Unit; 4.4 Characteristics of Al Nanopowders; 4.5 Nanopowder Chemical Passivation; 4.6 Microencapsulation of Al Nanoparticles; 4.7 The Process of Producing Nanopowders of Aluminum by Plasma-Based Technology; 4.7.1 Production of Aluminum Nanopowder; 4.7.2 Some Properties of Produced Nanopowders of Aluminum, Boron, Aluminum Boride, and Silicon; References; Chapter 5 Characterization of Metallic Nanoparticle Agglomerates; 5.1 Introduction
5.2 Description of the Structure of Nanoparticle Agglomerates
Record Nr. UNINA-9910826006703321
Weinheim, Germany : , : Wiley-VCH Verlag, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal powder-based additive manufacturing / / Kun Zhou and Changjun Han
Metal powder-based additive manufacturing / / Kun Zhou and Changjun Han
Autore Zhou Kun <1934->
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (319 pages)
Disciplina 031
Soggetto topico Additive manufacturing
Metal powders
ISBN 3-527-82224-0
3-527-82222-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Biography -- Preface -- Chapter 1 Introduction -- 1.1 History and Fundamentals of AM -- 1.2 AM Techniques -- 1.3 Metal Powder-Based AM -- 1.4 Post‐Processing -- 1.4.1 Surface Quality Improvement -- 1.4.2 Residual Stress Relief and Defect Reduction -- 1.4.3 Aesthetic Improvement -- 1.5 Powder Properties and Characterization Methods -- 1.5.1 Particle Morphology -- 1.5.2 Particle Size Distribution -- 1.5.3 Density -- 1.5.4 Flowability -- 1.5.5 Chemical Composition -- 1.5.5.1 Surface Analysis Methods -- 1.5.5.2 Bulk Analysis Methods -- 1.5.6 Microstructure -- 1.6 Challenges and Future Trends of Metal Powder-Based AM -- 1.7 Summary -- References -- Chapter 2 Metal Powder Preparation Processes -- 2.1 Atomization -- 2.1.1 Gas Atomization -- 2.1.2 Water Atomization -- 2.1.3 Plasma Atomization -- 2.1.4 Plasma Rotating Electrode Process -- 2.2 Mechanical Mixing -- 2.3 Reduction Process -- 2.3.1 Hydride-Dehydride Process -- 2.3.2 Oxide Reduction -- 2.3.3 Chloride Reduction -- 2.3.4 Carbonyl Reactions -- 2.4 Powder Modification -- 2.4.1 Plasma Spheroidization -- 2.4.2 Granulation-Sintering-Deoxygenation -- 2.4.3 Fluidized‐bed Granulation -- 2.5 Summary -- References -- Chapter 3 Laser Powder Bed Fusion -- 3.1 History -- 3.2 Fundamentals -- 3.3 Printing Process -- 3.3.1 Melt Pool -- 3.3.2 Balling -- 3.3.3 Spattering -- 3.4 Metallurgical Defects -- 3.4.1 Porosity -- 3.4.2 Cracks and Warpage -- 3.5 Powder Materials -- 3.6 Equipment -- 3.7 Typical Materials Used in LPBF -- 3.7.1 Titanium and Its Alloys -- 3.7.2 Aluminum Alloys -- 3.7.3 Nickel Alloys -- 3.7.4 Iron Alloys -- 3.7.5 Others -- 3.7.5.1 Cobalt Alloys -- 3.7.5.2 Copper Alloys -- 3.7.5.3 Magnesium Alloys -- 3.7.5.4 High‐Entropy Alloys -- 3.8 Mechanical Metamaterials for LPBF -- 3.8.1 Fundamentals of Mechanical Metamaterials.
3.8.2 Mechanical Metamaterials with High Young's Modulus -- 3.8.3 Mechanical Metamaterials with High Shear and Bulk Moduli -- 3.8.4 Mechanical Metamaterials with Zero or Negative Poisson's Ratio -- 3.9 Summary -- References -- Chapter 4 Electron Beam Melting -- 4.1 History -- 4.2 Fundamentals -- 4.3 Preheating and Melting Processes -- 4.4 Metallurgical Defects -- 4.5 Powder Materials -- 4.6 Equipment -- 4.7 Microstructures and Mechanical Properties -- 4.7.1 Titanium and Its Alloys -- 4.7.2 Nickel Alloys -- 4.7.3 Cobalt Alloys -- 4.7.4 Iron Alloys -- 4.7.5 Others -- 4.7.5.1 Copper and Its Alloys -- 4.7.5.2 High‐Entropy Alloys -- 4.8 Summary -- References -- Chapter 5 Laser‐Based Directed Energy Deposition -- 5.1 History -- 5.2 Fundamentals -- 5.3 Deposition Process -- 5.4 Metallurgical Defects -- 5.5 Powder Materials -- 5.6 Equipment -- 5.7 Microstructure and Mechanical Properties -- 5.7.1 Titanium and Its Alloys -- 5.7.2 Nickel Alloys -- 5.7.3 Iron Alloys -- 5.7.4 Others -- 5.7.4.1 Aluminum Alloys -- 5.7.4.2 Copper and Its Alloys -- 5.7.4.3 High‐Entropy Alloys -- 5.8 Summary -- References -- Chapter 6 Metal Binder Jetting -- 6.1 History -- 6.2 Fundamentals -- 6.3 Printing Process -- 6.4 Raw Materials -- 6.5 Equipment -- 6.6 Microstructure and Mechanical Properties -- 6.6.1 Iron Alloys -- 6.6.2 Nickel Alloys -- 6.6.3 Titanium and Its Alloys -- 6.6.4 Copper and Its Alloys -- 6.6.5 Refractory Metals -- 6.6.6 Others -- 6.7 Summary -- References -- Chapter 7 Applications -- 7.1 Aerospace -- 7.2 Biomedical -- 7.3 Automotive -- 7.4 Molding and Tooling -- 7.5 Energy -- 7.6 Jewelry -- 7.7 Marine, Oil, and Gas -- 7.8 Challenges and Risks -- References -- Index -- EULA.
Record Nr. UNINA-9910829998203321
Zhou Kun <1934->  
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanothermites / / Eric Lafontaine, Marc Comet
Nanothermites / / Eric Lafontaine, Marc Comet
Autore Lafontaine Eric
Pubbl/distr/stampa Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2016
Descrizione fisica 1 online resource (349 p.)
Disciplina 671.3/7
Collana Nanoscience and nanotechnology series
Soggetto topico Thermit
Metal powders
Nanoparticles
ISBN 1-119-33018-1
1-119-33020-3
1-119-32994-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Introduction; 1: Elaboration of Nanoparticles; 1.1. Solid-phase elaboration; 1.1.1. Mechanical milling; 1.1.1.1. Principle; 1.1.1.2. The main types of mills; 1.1.1.3. Milling parameters; 1.1.1.4. Mechanosynthesis; 1.1.1.5. Conclusion; 1.2. Liquid-phase elaboration; 1.2.1. Sonochemistry; 1.2.1.1. Principle; 1.2.1.2. Effects of implementation parameters; 1.2.1.2.1. Power of emission; 1.2.1.2.2. Frequency of emission; 1.2.1.2.3. Amplitude of emission; 1.2.1.2.4. Duration of emission; 1.2.1.2.5. Impact of solvent; 1.2.1.3. Conclusion
1.2.2. Microemulsion synthesis1.2.2.1. Definition; 1.2.2.2. Preparation of nanoparticles; 1.2.2.3. Mechanisms involved; 1.2.2.4. Influence of implementation parameters; 1.2.2.4.1. Concentration of surfactant; 1.2.2.4.2. Nature of surfactant; 1.2.2.4.3. Reaction rate; 1.2.2.5. Conclusion; 1.2.3. Solvothermal syntheses; 1.2.3.1. Principle; 1.2.3.2. Effect of temperature; 1.2.3.3. Effect of precursor concentration; 1.2.3.4. Effect of surfactant presence; 1.2.3.5. Effect of pH; 1.2.3.6. Effect of solvent; 1.2.3.7. Effect of anion; 1.2.3.8. Effect of duration; 1.2.3.9. Microwave-assisted synthesis
1.2.3.10. Conclusion1.2.4. Sol-gel syntheses; 1.2.4.1. Principle; 1.2.4.2. Influence of operating conditions; 1.2.4.2.1. Effect of temperature; 1.2.4.2.2. Effect of solvent; 1.2.4.2.3. Effect of pH; 1.2.4.2.4. Effect of salt addition; 1.2.4.2.5. Effect of surfactant; 1.2.4.3. Conclusion; 1.3. Gas-phase elaboration; 1.3.1. Condensation in inert gas; 1.3.1.1. Principle; 1.3.1.2. Influence of operating conditions; 1.3.1.3. Conclusion; 1.3.2. Explosion of metal wires; 1.3.2.1. Principle; 1.3.2.2. Influence of operating conditions; 1.3.2.2.1. Effect of pressure; 1.3.2.2.2. Effect of gas nature
1.3.2.3. Passivation1.3.2.4. Conclusion; 1.3.3. Thermal plasma synthesis; 1.3.3.1. Direct current (DC) and low frequencies (AC) discharges; 1.3.3.1.1. Blown arc plasma in direct current; 1.3.3.1.2. Transferred arc plasma; 1.3.3.2. RF plasma; 1.3.3.2.1. RF inductively coupled plasma; 1.3.3.2.2. RF capacitively coupled plasma; 1.3.3.3. Microwave discharge plasmas; 1.3.3.4. Thermal plasma in solution; 1.3.4. Laser ablation; 1.3.4.1. Long pulse; 1.3.4.2. Ultrashort (picoseconds and femtoseconds) pulses; 1.3.4.3. Plasma expansion under vacuum or low pressure; 1.3.4.4. Laser ablation in liquids
1.3.4.5. Effect of laser parameters1.3.4.5.1. Effect of number of pulses; 1.3.4.5.2. Effect of pulse duration; 1.3.4.5.3. Effect of wavelength; 1.3.4.5.4. Effect of fluence; 1.3.4.5.5. Effect of gas pressure; 1.3.4.5.6. Effect of solvent nature; 1.3.4.5.7. Effect of surfactants; 1.3.4.5.8. Effect on colloids in suspension; 1.3.4.6. Conclusion; 1.3.5. Pyrotechnic synthesis; 1.3.5.1. Detonation synthesis; 1.3.5.2. Deflagration synthesis; 1.3.5.3. Combustion synthesis; 1.3.5.4. Conclusion; 2: Methods for Preparing Nanothermites; 2.1. Introduction; 2.2. Physical mixing; 2.2.1. Mixing in hexane
2.2.2. Mixing in isopropanol
Record Nr. UNINA-9910136545903321
Lafontaine Eric  
Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanothermites / / Eric Lafontaine, Marc Comet
Nanothermites / / Eric Lafontaine, Marc Comet
Autore Lafontaine Eric
Pubbl/distr/stampa Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2016
Descrizione fisica 1 online resource (349 p.)
Disciplina 671.3/7
Collana Nanoscience and nanotechnology series
Soggetto topico Thermit
Metal powders
Nanoparticles
ISBN 1-119-33018-1
1-119-33020-3
1-119-32994-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Introduction; 1: Elaboration of Nanoparticles; 1.1. Solid-phase elaboration; 1.1.1. Mechanical milling; 1.1.1.1. Principle; 1.1.1.2. The main types of mills; 1.1.1.3. Milling parameters; 1.1.1.4. Mechanosynthesis; 1.1.1.5. Conclusion; 1.2. Liquid-phase elaboration; 1.2.1. Sonochemistry; 1.2.1.1. Principle; 1.2.1.2. Effects of implementation parameters; 1.2.1.2.1. Power of emission; 1.2.1.2.2. Frequency of emission; 1.2.1.2.3. Amplitude of emission; 1.2.1.2.4. Duration of emission; 1.2.1.2.5. Impact of solvent; 1.2.1.3. Conclusion
1.2.2. Microemulsion synthesis1.2.2.1. Definition; 1.2.2.2. Preparation of nanoparticles; 1.2.2.3. Mechanisms involved; 1.2.2.4. Influence of implementation parameters; 1.2.2.4.1. Concentration of surfactant; 1.2.2.4.2. Nature of surfactant; 1.2.2.4.3. Reaction rate; 1.2.2.5. Conclusion; 1.2.3. Solvothermal syntheses; 1.2.3.1. Principle; 1.2.3.2. Effect of temperature; 1.2.3.3. Effect of precursor concentration; 1.2.3.4. Effect of surfactant presence; 1.2.3.5. Effect of pH; 1.2.3.6. Effect of solvent; 1.2.3.7. Effect of anion; 1.2.3.8. Effect of duration; 1.2.3.9. Microwave-assisted synthesis
1.2.3.10. Conclusion1.2.4. Sol-gel syntheses; 1.2.4.1. Principle; 1.2.4.2. Influence of operating conditions; 1.2.4.2.1. Effect of temperature; 1.2.4.2.2. Effect of solvent; 1.2.4.2.3. Effect of pH; 1.2.4.2.4. Effect of salt addition; 1.2.4.2.5. Effect of surfactant; 1.2.4.3. Conclusion; 1.3. Gas-phase elaboration; 1.3.1. Condensation in inert gas; 1.3.1.1. Principle; 1.3.1.2. Influence of operating conditions; 1.3.1.3. Conclusion; 1.3.2. Explosion of metal wires; 1.3.2.1. Principle; 1.3.2.2. Influence of operating conditions; 1.3.2.2.1. Effect of pressure; 1.3.2.2.2. Effect of gas nature
1.3.2.3. Passivation1.3.2.4. Conclusion; 1.3.3. Thermal plasma synthesis; 1.3.3.1. Direct current (DC) and low frequencies (AC) discharges; 1.3.3.1.1. Blown arc plasma in direct current; 1.3.3.1.2. Transferred arc plasma; 1.3.3.2. RF plasma; 1.3.3.2.1. RF inductively coupled plasma; 1.3.3.2.2. RF capacitively coupled plasma; 1.3.3.3. Microwave discharge plasmas; 1.3.3.4. Thermal plasma in solution; 1.3.4. Laser ablation; 1.3.4.1. Long pulse; 1.3.4.2. Ultrashort (picoseconds and femtoseconds) pulses; 1.3.4.3. Plasma expansion under vacuum or low pressure; 1.3.4.4. Laser ablation in liquids
1.3.4.5. Effect of laser parameters1.3.4.5.1. Effect of number of pulses; 1.3.4.5.2. Effect of pulse duration; 1.3.4.5.3. Effect of wavelength; 1.3.4.5.4. Effect of fluence; 1.3.4.5.5. Effect of gas pressure; 1.3.4.5.6. Effect of solvent nature; 1.3.4.5.7. Effect of surfactants; 1.3.4.5.8. Effect on colloids in suspension; 1.3.4.6. Conclusion; 1.3.5. Pyrotechnic synthesis; 1.3.5.1. Detonation synthesis; 1.3.5.2. Deflagration synthesis; 1.3.5.3. Combustion synthesis; 1.3.5.4. Conclusion; 2: Methods for Preparing Nanothermites; 2.1. Introduction; 2.2. Physical mixing; 2.2.1. Mixing in hexane
2.2.2. Mixing in isopropanol
Record Nr. UNINA-9910830167403321
Lafontaine Eric  
Hoboken, New Jersey : , : ISTE Ltd/John Wiley and Sons Inc, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The role of chemical reactions in the mechanism of comminution of ductile metals into ultrafine powders by grinding / / by Alan Arias
The role of chemical reactions in the mechanism of comminution of ductile metals into ultrafine powders by grinding / / by Alan Arias
Autore Arias Alan
Pubbl/distr/stampa Washington, D.C. : , : National Aeronautics and Space Administration, , October 1968
Descrizione fisica 1 online resource (iii, 31 pages) : illustrations
Collana NASA technical note
Soggetto topico Ball mills - Grinding media
Metal powders
Particles - Welding
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910714076703321
Arias Alan  
Washington, D.C. : , : National Aeronautics and Space Administration, , October 1968
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui