top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Carrier transport in nanoscale MOS transistors / / Hideaki Tsuchiya, Yoshinari Kamakura
Carrier transport in nanoscale MOS transistors / / Hideaki Tsuchiya, Yoshinari Kamakura
Autore Tsuchiya Hideaki
Pubbl/distr/stampa Singapore : , : Wiley, , 2016
Descrizione fisica 1 online resource (387 pages) : illustrations
Disciplina 621.38152
Altri autori (Persone) KamakuraYoshinari
Soggetto topico Nanoelectromechanical systems
Electron transport
Metal oxide semiconductors
ISBN 1-118-87172-3
1-118-87171-5
1-118-87173-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface ix -- Acknowledgements xi -- 1 Emerging Technologies 1 -- 1.1 Moore's Law and the Power Crisis 1 -- 1.2 Novel Device Architectures 2 -- 1.3 High Mobility Channel Materials 5 -- 1.4 Two?-Dimensional (2?-D) Materials 7 -- 1.5 Atomistic Modeling 8 -- 2 First?-principles calculations for Si nanostructures 12 -- 2.1 Band structure calculations 12 -- 2.1.1 Si ultrathin?-body structures 12 -- 2.1.2 Si nanowires 17 -- 2.1.3 Strain effects on band structures: From bulk to nanowire 20 -- 2.2 Tunneling current calculations through Si/SiO2/Si structures 31 -- 2.2.1 Atomic models of Si (001)/SiO2 /Si (001) structures 32 -- 2.2.2 Current?-voltage characteristics 33 -- 2.2.3 SiO2 thickness dependences 35 -- 3 Quasi?-ballistic Transport in Si Nanoscale MOSFETs 41 -- 3.1 A picture of quasi?-ballistic transport simulated using quantum?-corrected Monte Carlo simulation 41 -- 3.1.1 Device structure and simulation method 42 -- 3.1.2 Scattering rates for 3?-D electron gas 44 -- 3.1.3 Ballistic transport limit 46 -- 3.1.4 Quasi?-ballistic transport 50 -- 3.1.5 Role of elastic and inelastic phonon scattering 51 -- 3.2 Multi?-sub?-band Monte Carlo simulation considering quantum confinement in inversion layers 55 -- 3.2.1 Scattering Rates for 2?-D Electron Gas 56 -- 3.2.2 Increase in Dac for SOI MOSFETs 58 -- 3.2.3 Simulated electron mobilities in bulk Si and SOI MOSFETs 59 -- 3.2.4 Electrical characteristics of Si DG?-MOSFETs 61 -- 3.3 Extraction of quasi?-ballistic transport parameters in Si DG?-MOSFETs 64 -- 3.3.1 Backscattering coefficient 64 -- 3.3.2 Current drive 66 -- 3.3.3 Gate and drain bias dependences 67 -- 3.4 Quasi?-ballistic transport in Si junctionless transistors 69 -- 3.4.1 Device structure and simulation conditions 70 -- 3.4.2 Influence of SR scattering 71 -- 3.4.3 Influence of II scattering 74 -- 3.4.4 Backscattering coefficient 75 -- 3.5 Quasi?-ballistic transport in GAA?-Si nanowire MOSFETs 76 -- 3.5.1 Device structure and 3DMSB?-MC method 76 -- 3.5.2 Scattering rates for 1?-D electron gas 77.
3.5.3 ID-VG characteristics and backscattering coefficient 79 -- 4 Phonon Transport in Si Nanostructures 85 -- 4.1 Monte Carlo simulation method 87 -- 4.1.1 Phonon dispersion model 87 -- 4.1.2 Particle simulation of phonon transport 88 -- 4.1.3 Free flight and scattering 89 -- 4.2 Simulation of thermal conductivity 91 -- 4.2.1 Thermal conductivity of bulk silicon 91 -- 4.2.2 Thermal conductivity of silicon thin films 94 -- 4.2.3 Thermal conductivity of silicon nanowires 98 -- 4.2.4 Discussion on Boundary scattering effect 100 -- 4.3 Simulation of heat conduction in devices 102 -- 4.3.1 Simulation method 102 -- 4.3.2 Simple 1?-D structure 103 -- 4.3.3 FinFET structure 106 -- 5 Carrier Transport in High?-mobility MOSFETs 112 -- 5.1 Quantum?-corrected MC Simulation of High?-mobility MOSFETs 112 -- 5.1.1 Device Structure and Band Structures of Materials 112 -- 5.1.2 Band Parameters of Si, Ge, and III?-V Semiconductors 114 -- 5.1.3 Polar?-optical Phonon (POP) Scattering in III?-V Semiconductors 115 -- 5.1.4 Advantage of UTB Structure 116 -- 5.1.5 Drive Current of III?-V, Ge and Si n?-MOSFETs 119 -- 5.2 Source?-drain Direct Tunneling in Ultrascaled MOSFETs 124 -- 5.3 Wigner Monte Carlo (WMC) Method 125 -- 5.3.1 Wigner Transport Formalism 126 -- 5.3.2 Relation with Quantum?-corrected MC Method 129 -- 5.3.3 WMC Algorithm 131 -- 5.3.4 Description of Higher?-order Quantized Subbands 133 -- 5.3.5 Application to Resonant?-tunneling Diode 133 -- 5.4 Quantum Transport Simulation of III?-V n?-MOSFETs with Multi?-subband WMC (MSB?-WMC) Method 138 -- 5.4.1 Device Structure 138 -- 5.4.2 POP Scattering Rate for 2?-D Electron Gas 139 -- 5.4.3 ID-VG Characteristics for InGaAs DG?-MOSFETs 139 -- 5.4.4 Channel Length Dependence of SDT Leakage Current 143 -- 5.4.5 Effective Mass Dependence of Subthreshold Current Properties 144 -- 6 Atomistic Simulations of Si, Ge and III?-V Nanowire MOSFETs 151 -- 6.1 Phonon?-limited electron mobility in Si nanowires 151 -- 6.1.1 Band structure calculations 152.
6.1.2 Electron?-phonon interaction 161 -- 6.1.3 Electron mobility 162 -- 6.2 Comparison of phonon?-limited electron mobilities between Si and Ge nanowires 168 -- 6.3 Ballistic performances of Si and InAs nanowire MOSFETs 173 -- 6.3.1 Band structures 174 -- 6.3.2 Top?-of?-the?-barrier model 174 -- 6.3.3 ID-VG characteristics 177 -- 6.3.4 Quantum capacitances 178 -- 6.3.5 Power?-delay?-product 179 -- 6.4 Ballistic performances of InSb, InAs, and GaSb nanowire MOSFETs 181 -- 6.4.1 Band structures 182 -- 6.4.2 ID-VG characteristics 182 -- 6.4.3 Power?-delay?-product 186 -- Appendix A: Atomistic Poisson equation 187 -- Appendix B: Analytical expressions of electron?-phonon interaction Hamiltonian matrices 188 -- 7 2?-D Materials and Devices 191 -- 7.1 2?-D Materials 191 -- 7.1.1 Fundamental Properties of Graphene, Silicene and Germanene 192 -- 7.1.2 Features of 2?-D Materials as an FET Channel 197 -- 7.2 Graphene Nanostructures with a Bandgap 198 -- 7.2.1 Armchair?-edged Graphene Nanoribbons (A?-GNRs) 199 -- 7.2.2 Relaxation Effects of Edge Atoms 203 -- 7.2.3 Electrical Properties of A?-GNR?-FETs Under Ballistic Transport 205 -- 7.2.4 Bilayer Graphenes (BLGs) 209 -- 7.2.5 Graphene Nanomeshes (GNMs) 214 -- 7.3 Influence of Bandgap Opening on Ballistic Electron Transport in BLG and A?-GNR?-MOSFETs 215 -- 7.3.1 Small Bandgap Regime 217 -- 7.3.2 Large Bandgap Regime 219 -- 7.4 Silicene, Germanene and Graphene Nanoribbons 221 -- 7.4.1 Bandgap vs Ribbon Width 222 -- 7.4.2 Comparison of Band Structures 222 -- 7.5 Ballistic MOSFETs with Silicene, Germanene and Graphene nanoribbons 223 -- 7.5.1 ID-VG Characteristics 223 -- 7.5.2 Quantum Capacitances 224 -- 7.5.3 Channel Charge Density and Average Electron Velocity 225 -- 7.5.4 Source?-drain Direct Tunneling (SDT) 226 -- 7.6 Electron Mobility Calculation for Graphene on Substrates 228 -- 7.6.1 Band Structure 229 -- 7.6.2 Scattering Mechanisms 229 -- 7.6.3 Carrier Degeneracy 231 -- 7.6.4 Electron Mobility Considering Surface Optical Phonon Scattering of Substrates 232.
7.6.5 Electron Mobility Considering Charged Impurity Scattering 234 -- 7.7 Germanane MOSFETs 236 -- 7.7.1 Atomic Model for Germanane Nanoribbon Structure 237 -- 7.7.2 Band Structure and Electron Effective Mass 238 -- 7.7.3 Electron Mobility 240 -- Appendix A: Density?-of?-states for Carriers in Graphene 242 -- References 242 -- Index 247.
Record Nr. UNINA-9910166635603321
Tsuchiya Hideaki  
Singapore : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carrier transport in nanoscale MOS transistors / / Hideaki Tsuchiya, Yoshinari Kamakura
Carrier transport in nanoscale MOS transistors / / Hideaki Tsuchiya, Yoshinari Kamakura
Autore Tsuchiya Hideaki
Pubbl/distr/stampa Singapore : , : Wiley, , 2016
Descrizione fisica 1 online resource (387 pages) : illustrations
Disciplina 621.38152
Altri autori (Persone) KamakuraYoshinari
Soggetto topico Nanoelectromechanical systems
Electron transport
Metal oxide semiconductors
ISBN 1-118-87172-3
1-118-87171-5
1-118-87173-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface ix -- Acknowledgements xi -- 1 Emerging Technologies 1 -- 1.1 Moore's Law and the Power Crisis 1 -- 1.2 Novel Device Architectures 2 -- 1.3 High Mobility Channel Materials 5 -- 1.4 Two?-Dimensional (2?-D) Materials 7 -- 1.5 Atomistic Modeling 8 -- 2 First?-principles calculations for Si nanostructures 12 -- 2.1 Band structure calculations 12 -- 2.1.1 Si ultrathin?-body structures 12 -- 2.1.2 Si nanowires 17 -- 2.1.3 Strain effects on band structures: From bulk to nanowire 20 -- 2.2 Tunneling current calculations through Si/SiO2/Si structures 31 -- 2.2.1 Atomic models of Si (001)/SiO2 /Si (001) structures 32 -- 2.2.2 Current?-voltage characteristics 33 -- 2.2.3 SiO2 thickness dependences 35 -- 3 Quasi?-ballistic Transport in Si Nanoscale MOSFETs 41 -- 3.1 A picture of quasi?-ballistic transport simulated using quantum?-corrected Monte Carlo simulation 41 -- 3.1.1 Device structure and simulation method 42 -- 3.1.2 Scattering rates for 3?-D electron gas 44 -- 3.1.3 Ballistic transport limit 46 -- 3.1.4 Quasi?-ballistic transport 50 -- 3.1.5 Role of elastic and inelastic phonon scattering 51 -- 3.2 Multi?-sub?-band Monte Carlo simulation considering quantum confinement in inversion layers 55 -- 3.2.1 Scattering Rates for 2?-D Electron Gas 56 -- 3.2.2 Increase in Dac for SOI MOSFETs 58 -- 3.2.3 Simulated electron mobilities in bulk Si and SOI MOSFETs 59 -- 3.2.4 Electrical characteristics of Si DG?-MOSFETs 61 -- 3.3 Extraction of quasi?-ballistic transport parameters in Si DG?-MOSFETs 64 -- 3.3.1 Backscattering coefficient 64 -- 3.3.2 Current drive 66 -- 3.3.3 Gate and drain bias dependences 67 -- 3.4 Quasi?-ballistic transport in Si junctionless transistors 69 -- 3.4.1 Device structure and simulation conditions 70 -- 3.4.2 Influence of SR scattering 71 -- 3.4.3 Influence of II scattering 74 -- 3.4.4 Backscattering coefficient 75 -- 3.5 Quasi?-ballistic transport in GAA?-Si nanowire MOSFETs 76 -- 3.5.1 Device structure and 3DMSB?-MC method 76 -- 3.5.2 Scattering rates for 1?-D electron gas 77.
3.5.3 ID-VG characteristics and backscattering coefficient 79 -- 4 Phonon Transport in Si Nanostructures 85 -- 4.1 Monte Carlo simulation method 87 -- 4.1.1 Phonon dispersion model 87 -- 4.1.2 Particle simulation of phonon transport 88 -- 4.1.3 Free flight and scattering 89 -- 4.2 Simulation of thermal conductivity 91 -- 4.2.1 Thermal conductivity of bulk silicon 91 -- 4.2.2 Thermal conductivity of silicon thin films 94 -- 4.2.3 Thermal conductivity of silicon nanowires 98 -- 4.2.4 Discussion on Boundary scattering effect 100 -- 4.3 Simulation of heat conduction in devices 102 -- 4.3.1 Simulation method 102 -- 4.3.2 Simple 1?-D structure 103 -- 4.3.3 FinFET structure 106 -- 5 Carrier Transport in High?-mobility MOSFETs 112 -- 5.1 Quantum?-corrected MC Simulation of High?-mobility MOSFETs 112 -- 5.1.1 Device Structure and Band Structures of Materials 112 -- 5.1.2 Band Parameters of Si, Ge, and III?-V Semiconductors 114 -- 5.1.3 Polar?-optical Phonon (POP) Scattering in III?-V Semiconductors 115 -- 5.1.4 Advantage of UTB Structure 116 -- 5.1.5 Drive Current of III?-V, Ge and Si n?-MOSFETs 119 -- 5.2 Source?-drain Direct Tunneling in Ultrascaled MOSFETs 124 -- 5.3 Wigner Monte Carlo (WMC) Method 125 -- 5.3.1 Wigner Transport Formalism 126 -- 5.3.2 Relation with Quantum?-corrected MC Method 129 -- 5.3.3 WMC Algorithm 131 -- 5.3.4 Description of Higher?-order Quantized Subbands 133 -- 5.3.5 Application to Resonant?-tunneling Diode 133 -- 5.4 Quantum Transport Simulation of III?-V n?-MOSFETs with Multi?-subband WMC (MSB?-WMC) Method 138 -- 5.4.1 Device Structure 138 -- 5.4.2 POP Scattering Rate for 2?-D Electron Gas 139 -- 5.4.3 ID-VG Characteristics for InGaAs DG?-MOSFETs 139 -- 5.4.4 Channel Length Dependence of SDT Leakage Current 143 -- 5.4.5 Effective Mass Dependence of Subthreshold Current Properties 144 -- 6 Atomistic Simulations of Si, Ge and III?-V Nanowire MOSFETs 151 -- 6.1 Phonon?-limited electron mobility in Si nanowires 151 -- 6.1.1 Band structure calculations 152.
6.1.2 Electron?-phonon interaction 161 -- 6.1.3 Electron mobility 162 -- 6.2 Comparison of phonon?-limited electron mobilities between Si and Ge nanowires 168 -- 6.3 Ballistic performances of Si and InAs nanowire MOSFETs 173 -- 6.3.1 Band structures 174 -- 6.3.2 Top?-of?-the?-barrier model 174 -- 6.3.3 ID-VG characteristics 177 -- 6.3.4 Quantum capacitances 178 -- 6.3.5 Power?-delay?-product 179 -- 6.4 Ballistic performances of InSb, InAs, and GaSb nanowire MOSFETs 181 -- 6.4.1 Band structures 182 -- 6.4.2 ID-VG characteristics 182 -- 6.4.3 Power?-delay?-product 186 -- Appendix A: Atomistic Poisson equation 187 -- Appendix B: Analytical expressions of electron?-phonon interaction Hamiltonian matrices 188 -- 7 2?-D Materials and Devices 191 -- 7.1 2?-D Materials 191 -- 7.1.1 Fundamental Properties of Graphene, Silicene and Germanene 192 -- 7.1.2 Features of 2?-D Materials as an FET Channel 197 -- 7.2 Graphene Nanostructures with a Bandgap 198 -- 7.2.1 Armchair?-edged Graphene Nanoribbons (A?-GNRs) 199 -- 7.2.2 Relaxation Effects of Edge Atoms 203 -- 7.2.3 Electrical Properties of A?-GNR?-FETs Under Ballistic Transport 205 -- 7.2.4 Bilayer Graphenes (BLGs) 209 -- 7.2.5 Graphene Nanomeshes (GNMs) 214 -- 7.3 Influence of Bandgap Opening on Ballistic Electron Transport in BLG and A?-GNR?-MOSFETs 215 -- 7.3.1 Small Bandgap Regime 217 -- 7.3.2 Large Bandgap Regime 219 -- 7.4 Silicene, Germanene and Graphene Nanoribbons 221 -- 7.4.1 Bandgap vs Ribbon Width 222 -- 7.4.2 Comparison of Band Structures 222 -- 7.5 Ballistic MOSFETs with Silicene, Germanene and Graphene nanoribbons 223 -- 7.5.1 ID-VG Characteristics 223 -- 7.5.2 Quantum Capacitances 224 -- 7.5.3 Channel Charge Density and Average Electron Velocity 225 -- 7.5.4 Source?-drain Direct Tunneling (SDT) 226 -- 7.6 Electron Mobility Calculation for Graphene on Substrates 228 -- 7.6.1 Band Structure 229 -- 7.6.2 Scattering Mechanisms 229 -- 7.6.3 Carrier Degeneracy 231 -- 7.6.4 Electron Mobility Considering Surface Optical Phonon Scattering of Substrates 232.
7.6.5 Electron Mobility Considering Charged Impurity Scattering 234 -- 7.7 Germanane MOSFETs 236 -- 7.7.1 Atomic Model for Germanane Nanoribbon Structure 237 -- 7.7.2 Band Structure and Electron Effective Mass 238 -- 7.7.3 Electron Mobility 240 -- Appendix A: Density?-of?-states for Carriers in Graphene 242 -- References 242 -- Index 247.
Record Nr. UNINA-9910830798903321
Tsuchiya Hideaki  
Singapore : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cryogenic parametric characterization of gallium nitride switches / / Marcelo C. Gonzalez, Lee W. Kohlman, and Andrew J. Trunek
Cryogenic parametric characterization of gallium nitride switches / / Marcelo C. Gonzalez, Lee W. Kohlman, and Andrew J. Trunek
Autore Gonzalez Marcelo C.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , October 2018
Descrizione fisica 1 online resource (iii, 26 pages) : color illustrations
Collana NASA/TP
Soggetto topico Field effect transistors
Gallium nitrides
Metal oxide semiconductors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711565803321
Gonzalez Marcelo C.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , October 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The future of semiconductor oxides in next-generation solar cells / / Monica Lira-Cantu, editor
The future of semiconductor oxides in next-generation solar cells / / Monica Lira-Cantu, editor
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , [2018]
Descrizione fisica 1 online resource (543 pages) : illustrations
Disciplina 621.38152
Collana Metal oxide series
Soggetto topico Metal oxide semiconductors
ISBN 0-12-811165-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Synthesis of ZnO Nanostructures for Solar Cells - A Focus on Dye Sensitized and Perovskite Solar Cells / Thierry Pauporté -- Synthesis by Low Temperature Solution Processing of Ferroelectric Perovskite Oxide Thin Films as Candidate Materials for Photovoltaic Applications / Iñigo Bretos, Ridaro Jiménez, Jesús Ricote and M. Lourdes Calzada -- Alternative Binary and Ternary Metal Oxides for Dye- and Quantum Dot-Sensitized Solar Cells / Cyril Aumaitre, Damien Joly, Dmitry Aldakov and Renaud Demadrille -- Oxide Hole Transport Materials in Inverted Planar Perovskite Solar Cells / Senyun Ye, Zhiwei Liu, Zuqiang Bian and Chunhui Huang -- Metal-oxide Based Charge Extraction and Recombination Layers for Organic Solar Cells / Thomas Reidl -- Dye-Sensitized Solar Cells / Anders Hagfeldt and Nikolaos Vlachopoulos -- Semiconducting Metal Oxides for High Performance Perovskite Solar Cells /Jin-Wook Lee, Lei Meng and Yang Yang -- Metal Oxides in Photovoltaics : All-Oxide, Ferroic, and Perovskite Solar Cells / Amador Pérez-Tomás, Alba Mingorance, David Tanenbaum and Mónica Lira-Cantú -- Graphene Oxide-like Materials in Organic and Perovskite Solar Cells / Emmanuel Kymakis and Dimitrios Konios -- Application of Graphene and Graphene Derivatives/Oxide Nanomaterials for Solar Cells / Rodrigo Szostak, Andreia Morais, Saulo A. Carminati, Saionara V. Costa, Paulo E. Marchezi and Ana F. Nogueira -- All-Oxide Solar Cells / Theodoros Dimopoulos -- Oxide Layers in Organic Solar Cells for an Optimal Photon Management / Paola Mantilla-Perez, Quan Liu, Silvia Colodrero, Pablo Romero-Gomez and Jordi Martorell.
Record Nr. UNINA-9910583493303321
Amsterdam, Netherlands : , : Elsevier, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lightning pin injection test [[electronic resource] ] : MOSFETS in "ON" state / / Jay J. Ely ... [and others]
Lightning pin injection test [[electronic resource] ] : MOSFETS in "ON" state / / Jay J. Ely ... [and others]
Pubbl/distr/stampa Hampton, Va. : , : National Aeronautics and Space Administration, Langley Research Center, , [2011]
Descrizione fisica 1 online resource (33 pages) : color illustrations
Altri autori (Persone) ElyJay J
Collana NASA/TM
Soggetto topico X ray inspection
Damage assessment
Lightning
Metal oxide semiconductors
Optical microscopes
Waveforms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Lightning pin injection test
Record Nr. UNINA-9910700601403321
Hampton, Va. : , : National Aeronautics and Space Administration, Langley Research Center, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide varistors : from microstructure to macro-characteristics / / Jinliang He
Metal oxide varistors : from microstructure to macro-characteristics / / Jinliang He
Autore He Jinliang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (484 pages)
Disciplina 621.38152
Soggetto topico Metal oxide semiconductors
Varistors
Soggetto genere / forma Electronic books.
ISBN 3-527-68405-0
3-527-68404-2
3-527-68403-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910555050003321
He Jinliang  
Weinheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide varistors : from microstructure to macro-characteristics / / Jinliang He
Metal oxide varistors : from microstructure to macro-characteristics / / Jinliang He
Autore He Jinliang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (484 pages)
Disciplina 621.38152
Soggetto topico Metal oxide semiconductors
Varistors
ISBN 3-527-68405-0
3-527-68404-2
3-527-68403-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910830739303321
He Jinliang  
Weinheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MOS devices for low-voltage and low-energy applications / / Yasuhisa Omura, Abhijit Mallik, and Naoto Matsuo
MOS devices for low-voltage and low-energy applications / / Yasuhisa Omura, Abhijit Mallik, and Naoto Matsuo
Autore Omura Y (Yasuhisa)
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017
Descrizione fisica 1 online resource (758 pages) : illustrations, tables, graphs
Disciplina 621.3815/284
Soggetto topico Metal oxide semiconductors
Metal oxide semiconductor field-effect transistors
Low voltage integrated circuits
Low voltage systems - Industrial applications
ISBN 1-5231-1527-0
1-119-10738-5
1-119-10736-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface XV -- Acknowledgments Xvi -- Part I Introduction To Low Voltage And Low Energy Devices 1 -- 1 Why Are Low Voltage And Low Energy Devices Desired? 3 -- References 4 -- 2 History Of Low Voltage And Low Power Devices 5 -- 2.1 Scaling Scheme And Low Voltage Requests 5 -- 2.2 Silicon On Insulator Devices And Real History 8 -- References 10 -- 3 Performance Prospects Of Subthreshold Logic Circuits 12 -- 3.1 Introduction 12 -- 3.2 Subthreshold Logic And Its Issues 12 -- 3.3 Is Subthreshold Logic The Best Solution? 13 -- References 13 -- Part Ii Summary Of Physics Of Modern Semiconductor Devices 15 -- 4 Overview 17 -- References 18 -- 5 Bulk Mosfet 19 -- 5.1 Theoretical Basis Of Bulk Mosfet Operation 19 -- 5.2 Subthreshold Characteristics: "Boff State" 19 -- 5.2.1 Fundamental Theory 19 -- 5.2.2 Influence Of Btbt Current 23 -- 5.2.3 Points To Be Remarked 24 -- 5.3 Post Threshold Characteristics: "Bon State" 24 -- 5.3.1 Fundamental Theory 24 -- 5.3.2 Self Heating Effects 26 -- 5.3.3 Parasitic Bipolar Effects 27 -- 5.4 Comprehensive Summary Of Short Channel Effects 27 -- References 28 -- 6 Soi Mosfet 29 -- 6.1 Partially Depleted Silicon On Insulator Metal Oxide Semiconductor Field Effect Transistors 29 -- 6.2 Fully Depleted (Fd) Soi Mosfet 30 -- 6.2.1 Subthreshold Characteristics 30 -- 6.2.2 Post Threshold Characteristics 36 -- 6.2.3 Comprehensive Summary Of Short Channel Effects 41 -- 6.3 Accumulation Mode (Am) Soi Mosfet 41 -- 6.3.1 Aspects Of Device Structure 41 -- 6.3.2 Subthreshold Characteristics 42 -- 6.3.3 Drain Current Component (I) Body Current (Id,Body) 43 -- 6.3.4 Drain Current Component (Ii) Surface Accumulation -- Layer Current (Id,Acc) 45 -- 6.3.5 Optional Discussions On The Accumulation Mode Soi Mosfet 45 -- 6.4 Finfet And Triple Gate Fet 46 -- 6.4.1 Introduction 46 -- 6.4.2 Device Structures And Simulations 46 -- 6.4.3 Results And Discussion 47 -- 6.4.4 Summary 49 -- 6.5 Gate All Around Mosfet 50 -- References 51 -- 7 Tunnel Field Effect Transistors (Tfets) 53.
7.1 Overview 53 -- 7.2 Model of Double‐Gate Lateral Tunnel FET and Device Performance Perspective 53 -- 7.2.1 Introduction 53 -- 7.2.2 Device Modeling 54 -- 7.2.3 Numerical Calculation Results and Discussion 61 -- 7.2.4 Summary 65 -- 7.3 Model of Vertical Tunnel FET and Aspects of its Characteristics 65 -- 7.3.1 Introduction 65 -- 7.3.2 Device Structure and Model Concept 65 -- 7.3.3 Comparing Model Results with TCAD Results 69 -- 7.3.4 Consideration of the Impact of Tunnel Dimensionality on Drivability 72 -- 7.3.5 Summary 75 -- 7.4 Appendix Integration of Eqs. (7.14) / (7.16) 76 -- References 78 -- Part III POTENTIAL OF CONVENTIONAL BULK MOSFETs 81 -- 8 Performance Evaluation of Analog Circuits with Deep Submicrometer MOSFETs in the Subthreshold Regime of Operation 83 -- 8.1 Introduction 83 -- 8.2 Subthreshold Operation and Device Simulation 84 -- 8.3 Model Description 85 -- 8.4 Results 86 -- 8.5 Summary 90 -- References 90 -- 9 Impact of Halo Doping on the Subthreshold Performance of Deep‐Submicrometer CMOS Devices and Circuits for Ultralow Power Analog/Mixed‐Signal Applications 91 -- 9.1 Introduction 91 -- 9.2 Device Structures and Simulation 92 -- 9.3 Subthreshold Operation 93 -- 9.4 Device Optimization for Subthreshold Analog Operation 95 -- 9.5 Subthreshold Analog Circuit Performance 98 -- 9.6 CMOS Amplifiers with Large Geometry Devices 105 -- 9.7 Summary 106 -- References 107 -- 10 Study of the Subthreshold Performance and the Effect of Channel Engineering on Deep Submicron Single‐Stage CMOS Amplifiers 108 -- 10.1 Introduction 108 -- 10.2 Circuit Description 108 -- 10.3 Device Structure and Simulation 110 -- 10.4 Results and Discussion 110 -- 10.5 PTAT as a Temperature Sensor 116 -- 10.6 Summary 116 -- References 116 -- 11 Subthreshold Performance of Dual‐Material Gate CMOS Devices and Circuits for Ultralow Power Analog/Mixed‐Signal Applications 117 -- 11.1 Introduction 117 -- 11.2 Device Structure and Simulation 118 -- 11.3 Results and Discussion 120 -- 11.4 Summary 126.
References 127 -- 12 Performance Prospect of Low‐Power Bulk MOSFETs 128 -- Reference 129 -- Part IV POTENTIAL OF FULLY‐DEPLETED SOI MOSFETs 131 -- 13 Demand for High‐Performance SOI Devices 133 -- 14 Demonstration of 100 nm Gate SOI CMOS with a Thin Buried Oxide Layer and its Impact on Device Technology 134 -- 14.1 Introduction 134 -- 14.2 Device Design Concept for 100 nm Gate SOI CMOS 134 -- 14.3 Device Fabrication 136 -- 14.4 Performance of 100‐nm‐ and 85‐nm Gate Devices 137 -- 14.4.1 Threshold and Subthreshold Characteristics 137 -- 14.4.2 Drain Current (ID)‐Drain Voltage (VD) and ID‐Gate Voltage (VG) Characteristics of 100‐nm‐Gate MOSFET/SIMOX 138 -- 14.4.3 ID / VD and ID / VG Characteristics of 85‐nm‐Gate MOSFET/SIMOX 142 -- 14.4.4 Switching Performance 142 -- 14.5 Discussion 142 -- 14.5.1 Threshold Voltage Balance in Ultrathin CMOS/SOI Devices 142 -- 14.6 Summary 144 -- References 145 -- 15 Discussion on Design Feasibility and Prospect of High‐Performance Sub‐50 nm Channel Single‐Gate SOI MOSFET Based on the ITRS Roadmap 147 -- 15.1 Introduction 147 -- 15.2 Device Structure and Simulations 148 -- 15.3 Proposed Model for Minimum Channel Length 149 -- 15.3.1 Minimum Channel Length Model Constructed using Extract A 149 -- 15.3.2 Minimum Channel Length Model Constructed using Extract B 150 -- 15.4 Performance Prospects of Scaled SOI MOSFETs 152 -- 15.4.1 Dynamic Operation Characteristics of Scaled SG SOI MOSFETs 152 -- 15.4.2 Tradeoff and Optimization of Standby Power Consumption and Dynamic Operation 157 -- 15.5 Summary 162 -- References 162 -- 16 Performance Prospects of Fully Depleted SOI MOSFET‐Based Diodes Applied to Schenkel Circuits for RF‐ID Chips 164 -- 16.1 Introduction 164 -- 16.2 Remaining Issues with Conventional Schenkel Circuits and an Advanced Proposal 165 -- 16.3 Simulation‐Based Consideration of RF Performance of SOI‐QD 172 -- 16.4 Summary 176 -- 16.5 Appendix: A Simulation Model for Minority Carrier Lifetime 177 -- 16.6 Appendix: Design Guideline for SOI‐QDs 177.
References 178 -- 17 The Potential and the Drawbacks of Underlap Single‐Gate Ultrathin SOI MOSFET 180 -- 17.1 Introduction 180 -- 17.2 Simulations 181 -- 17.3 Results and Discussion 183 -- 17.3.1 DC Characteristics and Switching Performance: Device A 183 -- 17.3.2 RF Analog Characteristics: Device A 184 -- 17.3.3 Impact of High‐κ Gate Dielectric on Performance of USU SOI MOSFET Devices: Devices B and C 185 -- 17.3.4 Impact of Simulation Model on Simulation Results 189 -- 17.4 Summary 192 -- References 192 -- 18 Practical Source/Drain Diffusion and Body Doping Layouts for High‐Performance and Low‐Energy Triple‐Gate SOI MOSFETs 194 -- 18.1 Introduction 194 -- 18.2 Device Structures and Simulation Model 195 -- 18.3 Results and Discussion 196 -- 18.3.1 Impact of S/D‐Underlying Layer on ION, IOFF, and Subthreshold Swing 196 -- 18.3.2 Tradeoff of Short‐Channel Effects and Drivability 196 -- 18.4 Summary 201 -- References 201 -- 19 Gate Field Engineering and Source/Drain Diffusion Engineering for High‐Performance Si Wire Gate‐All‐Around MOSFET and Low‐Power Strategy in a Sub‐30 nm‐Channel Regime 203 -- 19.1 Introduction 203 -- 19.2 Device Structures Assumed and Physical Parameters 204 -- 19.3 Simulation Results and Discussion 206 -- 19.3.1 Performance of Sub‐30 nm‐Channel Devices and Aspects of Device Characteristics 206 -- 19.3.2 Impact of Cross‐Section of Si Wire on Short‐Channel Effects and Drivability 212 -- 19.3.3 Minimizing Standby Power Consumption of GAA SOI MOSFET 216 -- 19.3.4 Prospective Switching Speed Performance of GAA SOI MOSFET 217 -- 19.3.5 Parasitic Resistance Issues of GAA Wire MOSFETs 218 -- 19.3.6 Proposal for Possible GAA Wire MOSFET Structure 220 -- 19.4 Summary 221 -- 19.5 Appendix: Brief Description of Physical Models in Simulations 221 -- References 225 -- 20 Impact of Local High‐κ Insulator on Drivability and Standby Power of Gate‐All‐Around SOI MOSFET 228 -- 20.1 Introduction 228 -- 20.2 Device Structure and Simulations 229 -- 20.3 Results and Discussion 230.
20.3.1 Device Characteristics of GAA Devices with Graded‐Profile Junctions 230 -- 20.3.2 Device Characteristics of GAA Devices with Abrupt Junctions 235 -- 20.3.3 Behaviors of Drivability and Off‐Current 237 -- 20.3.4 Dynamic Performance of Devices with Graded‐Profile Junctions 239 -- 20.4 Summary 239 -- References 240 -- Part V POTENTIAL OF PARTIALLY DEPLETED SOI MOSFETs 241 -- 21 Proposal for Cross‐Current Tetrode (XCT) SOI MOSFETs: A 60 dB Single‐Stage CMOS Amplifier Using High‐Gain Cross‐Current Tetrode MOSFET/SIMOX 243 -- 21.1 Introduction 243 -- 21.2 Device Fabrication 244 -- 21.3 Device Characteristics 245 -- 21.4 Performance of CMOS Amplifier 247 -- 21.5 Summary 249 -- References 249 -- 22 Device Model of the XCT‐SOI MOSFET and Scaling Scheme 250 -- 22.1 Introduction 250 -- 22.2 Device Structure and Assumptions for Modeling 251 -- 22.2.1 Device Structure and Features of XCT Device 251 -- 22.2.2 Basic Assumptions for Device Modeling 253 -- 22.2.3 Derivation of Model Equations 254 -- 22.3 Results and Discussion 258 -- 22.3.1 Measured Characteristics of XCT Devices 258 -- 22.4 Design Guidelines 261 -- 22.4.1 Drivability Control 261 -- 22.4.2 Scaling Issues 262 -- 22.4.3 Potentiality of Low‐Energy Operation of XCT CMOS Devices 265 -- 22.5 Summary 267 -- 22.6 Appendix: Calculation of MOSFET Channel Current 267 -- 22.7 Appendix: Basic Condition for Drivability Control 271 -- References 271 -- 23 Low‐Power Multivoltage Reference Circuit Using XCT‐SOI MOSFET 274 -- 23.1 Introduction 274 -- 23.2 Device Structure and Assumptions for Simulations 274 -- 23.2.1 Device Structure and Features 274 -- 23.2.2 Assumptions for Simulations 277 -- 23.3 Proposal for Voltage Reference Circuits and Simulation Results 278 -- 23.3.1 Two‐Reference Voltage Circuit 278 -- 23.3.2 Three‐Reference Voltage Circuit 283 -- 23.4 Summary 283 -- References 284 -- 24 Low‐Energy Operation Mechanisms for XCT‐SOI CMOS Devices: Prospects for a Sub‐20 nm Regime 285 -- 24.1 Introduction 285 -- 24.2 Device Structure and Assumptions for Modeling 286.
24.3 Circuit Simulation Results of SOI CMOS and XCT‐SOI CMOS 288 -- 24.4 Further Scaling Potential of XCT‐SOI MOSFET 291 -- 24.5 Performance Expected from the Scaled XCT‐SOI MOSFET 292 -- 24.6 Summary 296 -- References 296 -- Part VI QUANTUM EFFECTS AND APPLICATIONS / 1 297 -- 25 Overview 299 -- References 299 -- 26 Si Resonant Tunneling MOS Transistor 301 -- 26.1 Introduction 301 -- 26.2 Configuration of SRTMOST 302 -- 26.2.1 Structure and Electrostatic Potential 302 -- 26.2.2 Operation Principle and Subthreshold Characteristics 304 -- 26.3 Device Performance of SRTMOST 307 -- 26.3.1 Transistor Characteristics of SRTMOST 307 -- 26.3.2 Logic Circuit Using SRTMOST 310 -- 26.4 Summary 312 -- References 312 -- 27 Tunneling Dielectric Thin‐Film Transistor 314 -- 27.1 Introduction 314 -- 27.2 Fundamental Device Structure 315 -- 27.3 Experiment 315 -- 27.3.1 Experimental Method 315 -- 27.3.2 Calculation Method 317 -- 27.4 Results and Discussion 320 -- 27.4.1 Evaluation of SiNx Film 320 -- 27.4.2 Characteristics of the TDTFT 320 -- 27.4.3 TFT Performance at Low Temperatures 324 -- 27.4.4 TFT Performance at High Temperatures 324 -- 27.4.5 Suppression of the Hump Effect by the TDTFT 330 -- 27.5 Summary 336 -- References 336 -- 28 Proposal for a Tunnel‐Barrier Junction (TBJ) MOSFET 339 -- 28.1 Introduction 339 -- 28.2 Device Structure and Model 339 -- 28.3 Calculation Results 340 -- 28.4 Summary 343 -- References 343 -- 29 Performance Prediction of SOI Tunneling‐Barrier‐Junction MOSFET 344 -- 29.1 Introduction 344 -- 29.2 Simulation Model 345 -- 29.3 Simulation Results and Discussion 349 -- 29.3.1 Fundamental Properties of TBJ MOSFET 349 -- 29.3.2 Optimization of Device Parameters and Materials 349 -- 29.4 Summary 357 -- References 357 -- 30 Physics‐Based Model for TBJ‐MOSFETs and High‐Frequency Performance Prospects 358 -- 30.1 Introduction 358 -- 30.2 Device Structure and Device Model for Simulations 359 -- 30.3 Simulation Results and Discussion 360 -- 30.3.1 Current Drivability 361.
30.3.2 Threshold Voltage Issue 362 -- 30.3.3 Subthreshold Characteristics 363 -- 30.3.4 Radio‐Frequency Characteristics 363 -- 30.4 Summary 365 -- References 365 -- 31 Low‐Power High‐Temperature‐Operation‐Tolerant (HTOT) SOI MOSFET 367 -- 31.1 Introduction 367 -- 31.2 Device Structure and Simulations 368 -- 31.3 Results and Discussion 371 -- 31.3.1 Room‐Temperature Characteristics 371 -- 31.3.2 High‐Temperature Characteristics 373 -- 31.4 Summary 377 -- References 379 -- Part VII QUANTUM EFFECTS AND APPLICATIONS / 2 381 -- 32 Overview of Tunnel Field‐Effect Transistor 383 -- References 385 -- 33 Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field‐Effect Transistor 386 -- 33.1 Introduction 386 -- 33.2 Device Structure and Simulation 387 -- 33.3 Results and Discussion 387 -- 33.3.1 Effects of Variation in the Spacer Dielectric Constant 387 -- 33.3.2 Effects of Variation in the Spacer Width 391 -- 33.3.3 Effects of Variation in the Source Doping Concentration 392 -- 33.3.4 Effects of a Gate‐Source Overlap 394 -- 33.3.5 Effects of a Gate‐Channel Underlap 394 -- 33.4 Summary 397 -- References 397 -- 34 The Impact of a Fringing Field on the Device Performance of a P‐Channel Tunnel Field‐Effect Transistor with a High‐κ Gate Dielectric 399 -- 34.1 Introduction 399 -- 34.2 Device Structure and Simulation 399 -- 34.3 Results and Discussion 400 -- 34.3.1 Effects of Variation in the Gate Dielectric Constant 400 -- 34.3.2 Effects of Variation in the Spacer Dielectric Constant 408 -- 34.4 Summary 410 -- References 410 -- 35 Impact of a Spacer‐Drain Overlap on the Characteristics of a Silicon Tunnel Field‐Effect Transistor Based on Vertical Tunneling 412 -- 35.1 Introduction 412 -- 35.2 Device Structure and Process Steps 413 -- 35.3 Simulation Setup 414 -- 35.4 Results and Discussion 416 -- 35.4.1 Impact of Variation in the Spacer‐Drain Overlap 416 -- 35.4.2 Influence of Drain on the Device Characteristics 424 -- 35.4.3 Impact of Scaling 426.
35.5 Summary 429 -- References 430 -- 36 Gate‐on‐Germanium Source Tunnel Field‐Effect Transistor Enabling Sub‐0.5‐V Operation 431 -- 36.1 Introduction 431 -- 36.2 Proposed Device Structure 431 -- 36.3 Simulation Setup 432 -- 36.4 Results and Discussion 434 -- 36.4.1 Device Characteristics 434 -- 36.4.2 Effects of Different Structural Parameters 435 -- 36.4.3 Optimization of Different Structural Parameters 436 -- 36.5 Summary 445 -- References 445 -- Part VIII PROSPECTS OF LOW‐ENERGY DEVICE TECHNOLOLGY AND APPLICATIONS 447 -- 37 Performance Comparison of Modern Devices 449 -- References 450 -- 38 Emerging Device Technology and the Future of MOSFET 452 -- 38.1 Studies to Realize High‐Performance MOSFETs based on Unconventional Materials 452 -- 38.2 Challenging Studies to Realize High‐Performance MOSFETs based on the Nonconventional Doctrine 453 -- References 454 -- 39 How Devices Are and Should Be Applied to Circuits 456 -- 39.1 Past Approach 456 -- 39.2 Latest Studies 456 -- References 457 -- 40 Prospects for Low‐Energy Device Technology and Applications 458 -- References 459 -- Bibliography 460 -- Index 463.
Record Nr. UNINA-9910157536603321
Omura Y (Yasuhisa)  
Singapore ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MOS devices for low-voltage and low-energy applications / / Yasuhisa Omura, Abhijit Mallik, and Naoto Matsuo
MOS devices for low-voltage and low-energy applications / / Yasuhisa Omura, Abhijit Mallik, and Naoto Matsuo
Autore Omura Y (Yasuhisa)
Pubbl/distr/stampa Singapore ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017
Descrizione fisica 1 online resource (758 pages) : illustrations, tables, graphs
Disciplina 621.3815/284
Soggetto topico Metal oxide semiconductors
Metal oxide semiconductor field-effect transistors
Low voltage integrated circuits
Low voltage systems - Industrial applications
ISBN 1-5231-1527-0
1-119-10738-5
1-119-10736-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface XV -- Acknowledgments Xvi -- Part I Introduction To Low Voltage And Low Energy Devices 1 -- 1 Why Are Low Voltage And Low Energy Devices Desired? 3 -- References 4 -- 2 History Of Low Voltage And Low Power Devices 5 -- 2.1 Scaling Scheme And Low Voltage Requests 5 -- 2.2 Silicon On Insulator Devices And Real History 8 -- References 10 -- 3 Performance Prospects Of Subthreshold Logic Circuits 12 -- 3.1 Introduction 12 -- 3.2 Subthreshold Logic And Its Issues 12 -- 3.3 Is Subthreshold Logic The Best Solution? 13 -- References 13 -- Part Ii Summary Of Physics Of Modern Semiconductor Devices 15 -- 4 Overview 17 -- References 18 -- 5 Bulk Mosfet 19 -- 5.1 Theoretical Basis Of Bulk Mosfet Operation 19 -- 5.2 Subthreshold Characteristics: "Boff State" 19 -- 5.2.1 Fundamental Theory 19 -- 5.2.2 Influence Of Btbt Current 23 -- 5.2.3 Points To Be Remarked 24 -- 5.3 Post Threshold Characteristics: "Bon State" 24 -- 5.3.1 Fundamental Theory 24 -- 5.3.2 Self Heating Effects 26 -- 5.3.3 Parasitic Bipolar Effects 27 -- 5.4 Comprehensive Summary Of Short Channel Effects 27 -- References 28 -- 6 Soi Mosfet 29 -- 6.1 Partially Depleted Silicon On Insulator Metal Oxide Semiconductor Field Effect Transistors 29 -- 6.2 Fully Depleted (Fd) Soi Mosfet 30 -- 6.2.1 Subthreshold Characteristics 30 -- 6.2.2 Post Threshold Characteristics 36 -- 6.2.3 Comprehensive Summary Of Short Channel Effects 41 -- 6.3 Accumulation Mode (Am) Soi Mosfet 41 -- 6.3.1 Aspects Of Device Structure 41 -- 6.3.2 Subthreshold Characteristics 42 -- 6.3.3 Drain Current Component (I) Body Current (Id,Body) 43 -- 6.3.4 Drain Current Component (Ii) Surface Accumulation -- Layer Current (Id,Acc) 45 -- 6.3.5 Optional Discussions On The Accumulation Mode Soi Mosfet 45 -- 6.4 Finfet And Triple Gate Fet 46 -- 6.4.1 Introduction 46 -- 6.4.2 Device Structures And Simulations 46 -- 6.4.3 Results And Discussion 47 -- 6.4.4 Summary 49 -- 6.5 Gate All Around Mosfet 50 -- References 51 -- 7 Tunnel Field Effect Transistors (Tfets) 53.
7.1 Overview 53 -- 7.2 Model of Double‐Gate Lateral Tunnel FET and Device Performance Perspective 53 -- 7.2.1 Introduction 53 -- 7.2.2 Device Modeling 54 -- 7.2.3 Numerical Calculation Results and Discussion 61 -- 7.2.4 Summary 65 -- 7.3 Model of Vertical Tunnel FET and Aspects of its Characteristics 65 -- 7.3.1 Introduction 65 -- 7.3.2 Device Structure and Model Concept 65 -- 7.3.3 Comparing Model Results with TCAD Results 69 -- 7.3.4 Consideration of the Impact of Tunnel Dimensionality on Drivability 72 -- 7.3.5 Summary 75 -- 7.4 Appendix Integration of Eqs. (7.14) / (7.16) 76 -- References 78 -- Part III POTENTIAL OF CONVENTIONAL BULK MOSFETs 81 -- 8 Performance Evaluation of Analog Circuits with Deep Submicrometer MOSFETs in the Subthreshold Regime of Operation 83 -- 8.1 Introduction 83 -- 8.2 Subthreshold Operation and Device Simulation 84 -- 8.3 Model Description 85 -- 8.4 Results 86 -- 8.5 Summary 90 -- References 90 -- 9 Impact of Halo Doping on the Subthreshold Performance of Deep‐Submicrometer CMOS Devices and Circuits for Ultralow Power Analog/Mixed‐Signal Applications 91 -- 9.1 Introduction 91 -- 9.2 Device Structures and Simulation 92 -- 9.3 Subthreshold Operation 93 -- 9.4 Device Optimization for Subthreshold Analog Operation 95 -- 9.5 Subthreshold Analog Circuit Performance 98 -- 9.6 CMOS Amplifiers with Large Geometry Devices 105 -- 9.7 Summary 106 -- References 107 -- 10 Study of the Subthreshold Performance and the Effect of Channel Engineering on Deep Submicron Single‐Stage CMOS Amplifiers 108 -- 10.1 Introduction 108 -- 10.2 Circuit Description 108 -- 10.3 Device Structure and Simulation 110 -- 10.4 Results and Discussion 110 -- 10.5 PTAT as a Temperature Sensor 116 -- 10.6 Summary 116 -- References 116 -- 11 Subthreshold Performance of Dual‐Material Gate CMOS Devices and Circuits for Ultralow Power Analog/Mixed‐Signal Applications 117 -- 11.1 Introduction 117 -- 11.2 Device Structure and Simulation 118 -- 11.3 Results and Discussion 120 -- 11.4 Summary 126.
References 127 -- 12 Performance Prospect of Low‐Power Bulk MOSFETs 128 -- Reference 129 -- Part IV POTENTIAL OF FULLY‐DEPLETED SOI MOSFETs 131 -- 13 Demand for High‐Performance SOI Devices 133 -- 14 Demonstration of 100 nm Gate SOI CMOS with a Thin Buried Oxide Layer and its Impact on Device Technology 134 -- 14.1 Introduction 134 -- 14.2 Device Design Concept for 100 nm Gate SOI CMOS 134 -- 14.3 Device Fabrication 136 -- 14.4 Performance of 100‐nm‐ and 85‐nm Gate Devices 137 -- 14.4.1 Threshold and Subthreshold Characteristics 137 -- 14.4.2 Drain Current (ID)‐Drain Voltage (VD) and ID‐Gate Voltage (VG) Characteristics of 100‐nm‐Gate MOSFET/SIMOX 138 -- 14.4.3 ID / VD and ID / VG Characteristics of 85‐nm‐Gate MOSFET/SIMOX 142 -- 14.4.4 Switching Performance 142 -- 14.5 Discussion 142 -- 14.5.1 Threshold Voltage Balance in Ultrathin CMOS/SOI Devices 142 -- 14.6 Summary 144 -- References 145 -- 15 Discussion on Design Feasibility and Prospect of High‐Performance Sub‐50 nm Channel Single‐Gate SOI MOSFET Based on the ITRS Roadmap 147 -- 15.1 Introduction 147 -- 15.2 Device Structure and Simulations 148 -- 15.3 Proposed Model for Minimum Channel Length 149 -- 15.3.1 Minimum Channel Length Model Constructed using Extract A 149 -- 15.3.2 Minimum Channel Length Model Constructed using Extract B 150 -- 15.4 Performance Prospects of Scaled SOI MOSFETs 152 -- 15.4.1 Dynamic Operation Characteristics of Scaled SG SOI MOSFETs 152 -- 15.4.2 Tradeoff and Optimization of Standby Power Consumption and Dynamic Operation 157 -- 15.5 Summary 162 -- References 162 -- 16 Performance Prospects of Fully Depleted SOI MOSFET‐Based Diodes Applied to Schenkel Circuits for RF‐ID Chips 164 -- 16.1 Introduction 164 -- 16.2 Remaining Issues with Conventional Schenkel Circuits and an Advanced Proposal 165 -- 16.3 Simulation‐Based Consideration of RF Performance of SOI‐QD 172 -- 16.4 Summary 176 -- 16.5 Appendix: A Simulation Model for Minority Carrier Lifetime 177 -- 16.6 Appendix: Design Guideline for SOI‐QDs 177.
References 178 -- 17 The Potential and the Drawbacks of Underlap Single‐Gate Ultrathin SOI MOSFET 180 -- 17.1 Introduction 180 -- 17.2 Simulations 181 -- 17.3 Results and Discussion 183 -- 17.3.1 DC Characteristics and Switching Performance: Device A 183 -- 17.3.2 RF Analog Characteristics: Device A 184 -- 17.3.3 Impact of High‐κ Gate Dielectric on Performance of USU SOI MOSFET Devices: Devices B and C 185 -- 17.3.4 Impact of Simulation Model on Simulation Results 189 -- 17.4 Summary 192 -- References 192 -- 18 Practical Source/Drain Diffusion and Body Doping Layouts for High‐Performance and Low‐Energy Triple‐Gate SOI MOSFETs 194 -- 18.1 Introduction 194 -- 18.2 Device Structures and Simulation Model 195 -- 18.3 Results and Discussion 196 -- 18.3.1 Impact of S/D‐Underlying Layer on ION, IOFF, and Subthreshold Swing 196 -- 18.3.2 Tradeoff of Short‐Channel Effects and Drivability 196 -- 18.4 Summary 201 -- References 201 -- 19 Gate Field Engineering and Source/Drain Diffusion Engineering for High‐Performance Si Wire Gate‐All‐Around MOSFET and Low‐Power Strategy in a Sub‐30 nm‐Channel Regime 203 -- 19.1 Introduction 203 -- 19.2 Device Structures Assumed and Physical Parameters 204 -- 19.3 Simulation Results and Discussion 206 -- 19.3.1 Performance of Sub‐30 nm‐Channel Devices and Aspects of Device Characteristics 206 -- 19.3.2 Impact of Cross‐Section of Si Wire on Short‐Channel Effects and Drivability 212 -- 19.3.3 Minimizing Standby Power Consumption of GAA SOI MOSFET 216 -- 19.3.4 Prospective Switching Speed Performance of GAA SOI MOSFET 217 -- 19.3.5 Parasitic Resistance Issues of GAA Wire MOSFETs 218 -- 19.3.6 Proposal for Possible GAA Wire MOSFET Structure 220 -- 19.4 Summary 221 -- 19.5 Appendix: Brief Description of Physical Models in Simulations 221 -- References 225 -- 20 Impact of Local High‐κ Insulator on Drivability and Standby Power of Gate‐All‐Around SOI MOSFET 228 -- 20.1 Introduction 228 -- 20.2 Device Structure and Simulations 229 -- 20.3 Results and Discussion 230.
20.3.1 Device Characteristics of GAA Devices with Graded‐Profile Junctions 230 -- 20.3.2 Device Characteristics of GAA Devices with Abrupt Junctions 235 -- 20.3.3 Behaviors of Drivability and Off‐Current 237 -- 20.3.4 Dynamic Performance of Devices with Graded‐Profile Junctions 239 -- 20.4 Summary 239 -- References 240 -- Part V POTENTIAL OF PARTIALLY DEPLETED SOI MOSFETs 241 -- 21 Proposal for Cross‐Current Tetrode (XCT) SOI MOSFETs: A 60 dB Single‐Stage CMOS Amplifier Using High‐Gain Cross‐Current Tetrode MOSFET/SIMOX 243 -- 21.1 Introduction 243 -- 21.2 Device Fabrication 244 -- 21.3 Device Characteristics 245 -- 21.4 Performance of CMOS Amplifier 247 -- 21.5 Summary 249 -- References 249 -- 22 Device Model of the XCT‐SOI MOSFET and Scaling Scheme 250 -- 22.1 Introduction 250 -- 22.2 Device Structure and Assumptions for Modeling 251 -- 22.2.1 Device Structure and Features of XCT Device 251 -- 22.2.2 Basic Assumptions for Device Modeling 253 -- 22.2.3 Derivation of Model Equations 254 -- 22.3 Results and Discussion 258 -- 22.3.1 Measured Characteristics of XCT Devices 258 -- 22.4 Design Guidelines 261 -- 22.4.1 Drivability Control 261 -- 22.4.2 Scaling Issues 262 -- 22.4.3 Potentiality of Low‐Energy Operation of XCT CMOS Devices 265 -- 22.5 Summary 267 -- 22.6 Appendix: Calculation of MOSFET Channel Current 267 -- 22.7 Appendix: Basic Condition for Drivability Control 271 -- References 271 -- 23 Low‐Power Multivoltage Reference Circuit Using XCT‐SOI MOSFET 274 -- 23.1 Introduction 274 -- 23.2 Device Structure and Assumptions for Simulations 274 -- 23.2.1 Device Structure and Features 274 -- 23.2.2 Assumptions for Simulations 277 -- 23.3 Proposal for Voltage Reference Circuits and Simulation Results 278 -- 23.3.1 Two‐Reference Voltage Circuit 278 -- 23.3.2 Three‐Reference Voltage Circuit 283 -- 23.4 Summary 283 -- References 284 -- 24 Low‐Energy Operation Mechanisms for XCT‐SOI CMOS Devices: Prospects for a Sub‐20 nm Regime 285 -- 24.1 Introduction 285 -- 24.2 Device Structure and Assumptions for Modeling 286.
24.3 Circuit Simulation Results of SOI CMOS and XCT‐SOI CMOS 288 -- 24.4 Further Scaling Potential of XCT‐SOI MOSFET 291 -- 24.5 Performance Expected from the Scaled XCT‐SOI MOSFET 292 -- 24.6 Summary 296 -- References 296 -- Part VI QUANTUM EFFECTS AND APPLICATIONS / 1 297 -- 25 Overview 299 -- References 299 -- 26 Si Resonant Tunneling MOS Transistor 301 -- 26.1 Introduction 301 -- 26.2 Configuration of SRTMOST 302 -- 26.2.1 Structure and Electrostatic Potential 302 -- 26.2.2 Operation Principle and Subthreshold Characteristics 304 -- 26.3 Device Performance of SRTMOST 307 -- 26.3.1 Transistor Characteristics of SRTMOST 307 -- 26.3.2 Logic Circuit Using SRTMOST 310 -- 26.4 Summary 312 -- References 312 -- 27 Tunneling Dielectric Thin‐Film Transistor 314 -- 27.1 Introduction 314 -- 27.2 Fundamental Device Structure 315 -- 27.3 Experiment 315 -- 27.3.1 Experimental Method 315 -- 27.3.2 Calculation Method 317 -- 27.4 Results and Discussion 320 -- 27.4.1 Evaluation of SiNx Film 320 -- 27.4.2 Characteristics of the TDTFT 320 -- 27.4.3 TFT Performance at Low Temperatures 324 -- 27.4.4 TFT Performance at High Temperatures 324 -- 27.4.5 Suppression of the Hump Effect by the TDTFT 330 -- 27.5 Summary 336 -- References 336 -- 28 Proposal for a Tunnel‐Barrier Junction (TBJ) MOSFET 339 -- 28.1 Introduction 339 -- 28.2 Device Structure and Model 339 -- 28.3 Calculation Results 340 -- 28.4 Summary 343 -- References 343 -- 29 Performance Prediction of SOI Tunneling‐Barrier‐Junction MOSFET 344 -- 29.1 Introduction 344 -- 29.2 Simulation Model 345 -- 29.3 Simulation Results and Discussion 349 -- 29.3.1 Fundamental Properties of TBJ MOSFET 349 -- 29.3.2 Optimization of Device Parameters and Materials 349 -- 29.4 Summary 357 -- References 357 -- 30 Physics‐Based Model for TBJ‐MOSFETs and High‐Frequency Performance Prospects 358 -- 30.1 Introduction 358 -- 30.2 Device Structure and Device Model for Simulations 359 -- 30.3 Simulation Results and Discussion 360 -- 30.3.1 Current Drivability 361.
30.3.2 Threshold Voltage Issue 362 -- 30.3.3 Subthreshold Characteristics 363 -- 30.3.4 Radio‐Frequency Characteristics 363 -- 30.4 Summary 365 -- References 365 -- 31 Low‐Power High‐Temperature‐Operation‐Tolerant (HTOT) SOI MOSFET 367 -- 31.1 Introduction 367 -- 31.2 Device Structure and Simulations 368 -- 31.3 Results and Discussion 371 -- 31.3.1 Room‐Temperature Characteristics 371 -- 31.3.2 High‐Temperature Characteristics 373 -- 31.4 Summary 377 -- References 379 -- Part VII QUANTUM EFFECTS AND APPLICATIONS / 2 381 -- 32 Overview of Tunnel Field‐Effect Transistor 383 -- References 385 -- 33 Impact of a Spacer Dielectric and a Gate Overlap/Underlap on the Device Performance of a Tunnel Field‐Effect Transistor 386 -- 33.1 Introduction 386 -- 33.2 Device Structure and Simulation 387 -- 33.3 Results and Discussion 387 -- 33.3.1 Effects of Variation in the Spacer Dielectric Constant 387 -- 33.3.2 Effects of Variation in the Spacer Width 391 -- 33.3.3 Effects of Variation in the Source Doping Concentration 392 -- 33.3.4 Effects of a Gate‐Source Overlap 394 -- 33.3.5 Effects of a Gate‐Channel Underlap 394 -- 33.4 Summary 397 -- References 397 -- 34 The Impact of a Fringing Field on the Device Performance of a P‐Channel Tunnel Field‐Effect Transistor with a High‐κ Gate Dielectric 399 -- 34.1 Introduction 399 -- 34.2 Device Structure and Simulation 399 -- 34.3 Results and Discussion 400 -- 34.3.1 Effects of Variation in the Gate Dielectric Constant 400 -- 34.3.2 Effects of Variation in the Spacer Dielectric Constant 408 -- 34.4 Summary 410 -- References 410 -- 35 Impact of a Spacer‐Drain Overlap on the Characteristics of a Silicon Tunnel Field‐Effect Transistor Based on Vertical Tunneling 412 -- 35.1 Introduction 412 -- 35.2 Device Structure and Process Steps 413 -- 35.3 Simulation Setup 414 -- 35.4 Results and Discussion 416 -- 35.4.1 Impact of Variation in the Spacer‐Drain Overlap 416 -- 35.4.2 Influence of Drain on the Device Characteristics 424 -- 35.4.3 Impact of Scaling 426.
35.5 Summary 429 -- References 430 -- 36 Gate‐on‐Germanium Source Tunnel Field‐Effect Transistor Enabling Sub‐0.5‐V Operation 431 -- 36.1 Introduction 431 -- 36.2 Proposed Device Structure 431 -- 36.3 Simulation Setup 432 -- 36.4 Results and Discussion 434 -- 36.4.1 Device Characteristics 434 -- 36.4.2 Effects of Different Structural Parameters 435 -- 36.4.3 Optimization of Different Structural Parameters 436 -- 36.5 Summary 445 -- References 445 -- Part VIII PROSPECTS OF LOW‐ENERGY DEVICE TECHNOLOLGY AND APPLICATIONS 447 -- 37 Performance Comparison of Modern Devices 449 -- References 450 -- 38 Emerging Device Technology and the Future of MOSFET 452 -- 38.1 Studies to Realize High‐Performance MOSFETs based on Unconventional Materials 452 -- 38.2 Challenging Studies to Realize High‐Performance MOSFETs based on the Nonconventional Doctrine 453 -- References 454 -- 39 How Devices Are and Should Be Applied to Circuits 456 -- 39.1 Past Approach 456 -- 39.2 Latest Studies 456 -- References 457 -- 40 Prospects for Low‐Energy Device Technology and Applications 458 -- References 459 -- Bibliography 460 -- Index 463.
Record Nr. UNINA-9910830903103321
Omura Y (Yasuhisa)  
Singapore ; ; Hoboken, NJ : , : John Wiley & Sons, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MOSFET in circuit design : Metal-Oxide-Semiconductor Field-Effect Transistors for discrete and integrated-circuit technology / Robert H. Crawford
MOSFET in circuit design : Metal-Oxide-Semiconductor Field-Effect Transistors for discrete and integrated-circuit technology / Robert H. Crawford
Autore Crawford, Robert H.
Pubbl/distr/stampa New York : McGraw-Hill Book Co., 1967
Descrizione fisica xiii, 146 p. : ill. ; 26 cm.
Collana Texas instruments electronics series
Soggetto topico Metal oxide semiconductors
Classificazione 621.3.1
621.3.2
621.3.9.2
621.381'53
TK7871.95
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001098809707536
Crawford, Robert H.  
New York : McGraw-Hill Book Co., 1967
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui