top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Descrizione fisica 1 online resource (719 pages)
Disciplina 620/.50286
Soggetto topico Metal nanoparticles
Metal nanoparticles - Industrial applications
Nanostructured materials - Synthesis
Soggetto genere / forma Electronic books.
ISBN 1-119-41887-9
1-119-41886-0
1-119-41890-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555026103321
Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Green metal nanoparticles : synthesis, characterization and their applications / / edited by Suvardhan Kanchi and Shakeel Ahmed
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Descrizione fisica 1 online resource (719 pages)
Disciplina 620/.50286
Soggetto topico Metal nanoparticles
Metal nanoparticles - Industrial applications
Nanostructured materials - Synthesis
ISBN 1-119-41887-9
1-119-41886-0
1-119-41890-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830747903321
Hoboken, New Jersey : , : Wiley-Scrivener, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger
Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger
Pubbl/distr/stampa Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons Ltd., , [2022]
Descrizione fisica 1 online resource (894 pages)
Disciplina 579.24
Soggetto topico Metal nanoparticles
Soggetto genere / forma Electronic books.
ISBN 1-119-43676-1
1-119-43678-8
1-119-43679-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Metal Oxides and Specific Functional Properties at the Nanoscale -- 1.1 A Cross‐Sectional Topic in Materials Science and Technology -- 1.2 Metal Oxides: Bonding and Characteristic Features -- 1.3 Regimes of Size‐Dependent Property Changes and Confinement Effects -- 1.4 Distribution of Nanoparticle Properties -- 1.5 Structure and Morphology -- 1.5.1 Confinement and Structural Disorder -- 1.5.2 Surface Free Energy Contributions and Metastability -- 1.5.3 Shape -- 1.6 Electronic Structure and Defects -- 1.6.1 Size‐Dependent Defect Formation Energies and Their Impact on Surface Reactivity -- 1.7 Surface Chemistry -- 1.8 Metal Oxide Nanoparticle Ensembles as Dynamic Systems -- 1.9 Organization of This Book -- References -- Chapter 2 Application of Metal Oxide Nanoparticles and their Economic Impact -- 2.1 Introduction -- 2.1.1 Nanomaterials and Nanoobjects -- 2.1.2 Selection of Metal Oxide Nanoparticles -- 2.2 Scientific and Patent Landscape -- 2.3 Types of Metal Oxide Nanoparticles, Properties, and Application Overview -- 2.4 Use Forms of Metal Oxide Nanoparticles and Related Processing -- 2.4.1 Metal Oxide Nanoparticle Powders for Ceramics -- 2.4.2 Metal Oxide Nanoparticle Dispersions -- 2.4.3 Composites -- 2.4.3.1 Polymer Based Composites (Bulk and Coatings) -- 2.4.3.2 Metal Reinforcement -- 2.4.4 Combination with Powders of Micrometer Sized Particles -- 2.5 Application Fields of Metal Oxide Nanoparticles -- 2.5.1 Agriculture -- 2.5.2 Sensors and Analytics -- 2.5.3 Automotive -- 2.5.4 Biomedicine/Dental -- 2.5.4.1 Therapy -- 2.5.5 Catalysis -- 2.5.6 Consumer Products: Cosmetics, Food, Textiles -- 2.5.7 Construction -- 2.5.8 Electronics and Magnetics -- 2.5.9 Energy -- 2.5.10 Environment, Resource Efficiency, Processing.
2.5.11 Oil Field Chemicals and Petroleum Industries -- 2.5.12 Optics/Optoelectronics and Photonics -- 2.6 Economic Impact -- 2.7 Conclusions and Outlook -- Abbreviations -- References -- Part II Particle Synthesis: Principles of Selected Bottom‐up Strategies -- Chapter 3 Nanoparticle Synthesis in the Gas Phase -- 3.1 Introduction -- 3.2 Some Key Issues of Particle Formation in the Gas Phase and in Liquids -- 3.3 Gas Phase Chemistry, Particle Dynamics, and Agglomeration -- 3.4 Gas‐to‐Particle Conversion -- 3.4.1 Physical Processes -- 3.4.2 Chemical Processes -- 3.5 Particle‐to‐Particle Conversion -- 3.5.1 Approaches and Precursors -- 3.5.2 Particle Formation -- 3.5.3 Experimental Realization -- 3.5.4 Spray Pyrolysis and Flame‐Assisted Spray Pyrolysis -- 3.6 Gas Phase Functionalization Approaches -- References -- Chapter 4 Liquid‐Phase Synthesis of Metal Oxide Nanoparticles -- 4.1 Introduction -- 4.2 General Aspects -- 4.2.1 Liquid‐Phase Chemistry -- 4.2.2 Nucleation, Growth, and Crystallization -- 4.3 Synthetic Procedures -- 4.3.1 (Co)Precipitation -- 4.3.2 Sol-Gel Processing -- 4.3.3 Polyol‐Mediated Synthesis/Pechini Method -- 4.3.4 Hot‐Injection Method -- 4.3.5 Hydrothermal/Solvothermal Processing -- 4.3.6 Microwave‐Assisted Synthesis -- 4.3.7 Sonication‐Assisted Synthesis -- 4.3.8 Synthesis in Confined Spaces -- 4.4 Summary -- References -- Chapter 5 Controlled Impurity Admixture: From Doped Systems to Composites -- 5.1 Introduction -- 5.2 Liquid‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.3 Gas‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.4 Solid‐State Synthesis of Doped Metal Oxide Nanoparticles -- 5.5 Phase Segregation: Formation of Heterostructures -- 5.6 Core/Shell and Heteromultimers -- 5.7 Summary and Conclusions -- References -- Part III Nanoparticle Formulation: A Selection of Processing and Application Routes.
Chapter 6 Colloidal Processing -- 6.1 Towards Complex Shaped and Compositionally Well‐Defined Ceramics: The Need for Colloidal Processing -- 6.2 Colloidal Processing Fundamentals -- 6.2.1 Interparticle Forces -- 6.2.1.1 Electric Double Layer Forces -- 6.2.1.2 Polymer‐Induced Forces -- 6.2.2 Forming and Consolidation Techniques -- 6.2.2.1 Drained Casting Techniques -- 6.2.2.2 Tape‐Casting Techniques -- 6.2.2.3 Constant Volume Techniques -- 6.2.2.4 Drying and Cracking -- 6.3 Rheology of Suspensions -- 6.4 Electrostatic Heteroaggregation of Metal Oxide Nanoparticles -- 6.4.1 Modification of Colloidal Stability by Heteroaggregation -- 6.4.2 Structure Evolution upon Heteroaggregation -- 6.4.3 Rheological Properties of Heterocolloids -- 6.4.4 Functional Properties of Heteroaggregates -- 6.5 Ice‐Templating‐Enabled Porous Ceramic Structures: Impact of Nanoparticles -- 6.5.1 Ice‐Templating of Colloidal Particles -- 6.5.2 Capabilities of Metal Oxide Nanoparticles in Ice‐Templating -- 6.5.2.1 Optimization of the Mechanical Properties of Green Bodies and Sintered Parts -- 6.5.2.2 Hierarchical Porosity and High Surface Area Materials -- 6.5.2.3 Triple Phase Boundaries Between Percolating Solid Networks and a Hierarchical Pore System -- 6.6 From Colloidal Processing to Nanoparticle Assembly -- Nomenclature -- List of Abbreviations -- References -- Chapter 7 Fabrication of Metal Oxide Nanostructures by Materials Printing -- 7.1 Introduction -- 7.2 Traditional Coating and Printing Techniques -- 7.3 Inkjet Printing -- 7.3.1 A Brief Introduction into IJP Technology and the Process Scheme -- 7.3.2 Functional Ink Formulation Issues -- 7.3.3 Drop Generation -- 7.3.4 Drop Interaction with the Substrate -- 7.3.5 Drop Drying and Pattern Formation -- 7.3.6 Printing Quality -- 7.3.7 Equipment and Printing Devices -- 7.4 Printing of Metal Oxide Structures: The Materials Aspect.
7.4.1 Insulating Metal Oxides -- 7.4.2 Semiconducting Metal Oxides -- 7.4.3 Conducting Metal Oxides -- 7.5 Examples for Complex Printed Functional Structures: The Device Aspect -- 7.5.1 Printed Photoelectrochemical Cell -- 7.5.2 Flexible pH Sensors by Large Scale Layer‐by‐layer Inkjet Printing -- 7.6 Conclusions and Outlook -- References -- Chapter 8 Nanoscale Sintering -- 8.1 Background -- 8.2 Challenges and New Aspects of Nanoparticle Material Sintering -- 8.3 Questionable Nature of Existing Sintering Theories -- 8.4 3D Reconstruction -- 8.4.1 Focused Ion Beam Cross‐Sectioning and SEM Imaging -- 8.4.2 X‐ray Microtomography -- 8.5 Functions of Pores -- 8.6 Sintering of Small Features -- 8.6.1 New Sintering Questions -- 8.6.2 Role of Pore Number in Small Feature Sintering -- 8.6.3 Grain Boundary Diffusion vs. Grain Boundary Migration in Small Feature Sintering -- 8.6.4 Ceramic Type Effect on Small Feature Sintering -- 8.6.5 Atmosphere Effect on Small Feature Sintering -- 8.7 Summary -- Acknowledgment -- References -- Part IV Metal Oxide Nanoparticle Characterization at Different Length Scales -- Chapter 9 Structure: Scattering Techniques -- 9.1 Introduction -- 9.1.1 Scattering and Diffraction -- 9.1.2 What to Learn from a Diffraction Experiment? -- 9.2 Theoretical Background -- 9.2.1 Crystal Lattice, Planes, and Bragg's Law -- 9.2.1.1 Crystal Planes and Interplanar Distance -- 9.2.1.2 The Reciprocal Lattice -- 9.2.1.3 Bragg's Law -- 9.2.2 The Intensity of a Bragg Peak -- 9.2.3 The Profile of a Bragg Peak -- 9.2.3.1 Instrumental Broadening -- 9.2.3.2 Sample Broadening -- 9.2.3.3 Analytical Description of Peak Shapes -- 9.3 Experimental Setup -- 9.3.1 Single vs. Polycrystalline Samples -- 9.3.2 Powder Diffraction Methods -- 9.3.2.1 Reflection Geometry -- 9.3.2.2 Transmission Geometry -- 9.3.2.3 Grazing Incident Diffraction (GID).
9.3.2.4 Sample Preparation -- 9.4 Some Selected Applications -- 9.4.1 Qualitative Phase Analysis -- 9.4.2 Quantitative Phase Analysis - The Rietveld Method -- 9.4.3 Microstructure Analysis: Size and Strain -- 9.5 X‐ray Diffraction on Magnetite Nanoparticles -- 9.6 Conclusion -- Nomenclature -- List of Abbreviations -- References -- Chapter 10 Morphology, Structure, and Chemical Composition: Transmission Electron Microscopy and Elemental Analysis -- 10.1 Size, Shape, and Composition of Oxide Nanoparticles -- 10.2 Interaction of the Incident Electrons with a Specimen -- 10.3 The Transmission Electron Microscope -- 10.3.1 Microscope Design and Operation Modes -- 10.3.2 Contrast Type and Image Formation -- 10.3.3 Resolution Limits of TEM Images -- 10.4 Imaging and Analysis of Morphology -- 10.4.1 Sample Preparation -- 10.4.2 Shape Retrieving -- 10.4.2.1 Aligned Nanocrystals -- 10.4.2.2 Randomly Oriented Nanocrystals -- 10.4.3 Particle Size Determination -- 10.5 Crystallographic Phase Identification - Electron Diffraction -- 10.5.1 Bragg Condition - Kinematical and Dynamical Diffraction -- 10.5.2 Selected Area Electron Diffraction (SAED) -- 10.5.3 Nanodiffraction -- 10.6 Chemical Composition Mapping - EDX and EELS Nanospectroscopy -- 10.6.1 Correlating Image with Spectroscopic EDX and EELS Information - Data Cubes -- 10.6.2 Composition Mapping with EDX Spectroscopy -- 10.6.3 Chemical State Imaging with EELS Spectroscopy -- Nomenclature -- List of Abbreviations -- References -- Chapter 11 Electronic and Chemical Properties: X‐Ray Absorption and Photoemission -- 11.1 Introduction and Scope of the Chapter -- 11.2 Basics of X‐rays - Matter Interaction -- 11.3 X‐Ray Photoelectron Spectroscopy (XPS) -- 11.3.1 Theoretical Background -- 11.3.2 Features and Analysis of X‐ray Photoelectron Spectra.
11.3.3 XPS Investigation of Metal Oxide Nanoparticles and Metal Oxide Colloidal Suspensions.
Record Nr. UNINA-9910555072003321
Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons Ltd., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger
Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger
Pubbl/distr/stampa Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons Ltd., , [2022]
Descrizione fisica 1 online resource (894 pages)
Disciplina 579.24
Soggetto topico Metal nanoparticles
ISBN 1-119-43676-1
1-119-43678-8
1-119-43679-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Metal Oxides and Specific Functional Properties at the Nanoscale -- 1.1 A Cross‐Sectional Topic in Materials Science and Technology -- 1.2 Metal Oxides: Bonding and Characteristic Features -- 1.3 Regimes of Size‐Dependent Property Changes and Confinement Effects -- 1.4 Distribution of Nanoparticle Properties -- 1.5 Structure and Morphology -- 1.5.1 Confinement and Structural Disorder -- 1.5.2 Surface Free Energy Contributions and Metastability -- 1.5.3 Shape -- 1.6 Electronic Structure and Defects -- 1.6.1 Size‐Dependent Defect Formation Energies and Their Impact on Surface Reactivity -- 1.7 Surface Chemistry -- 1.8 Metal Oxide Nanoparticle Ensembles as Dynamic Systems -- 1.9 Organization of This Book -- References -- Chapter 2 Application of Metal Oxide Nanoparticles and their Economic Impact -- 2.1 Introduction -- 2.1.1 Nanomaterials and Nanoobjects -- 2.1.2 Selection of Metal Oxide Nanoparticles -- 2.2 Scientific and Patent Landscape -- 2.3 Types of Metal Oxide Nanoparticles, Properties, and Application Overview -- 2.4 Use Forms of Metal Oxide Nanoparticles and Related Processing -- 2.4.1 Metal Oxide Nanoparticle Powders for Ceramics -- 2.4.2 Metal Oxide Nanoparticle Dispersions -- 2.4.3 Composites -- 2.4.3.1 Polymer Based Composites (Bulk and Coatings) -- 2.4.3.2 Metal Reinforcement -- 2.4.4 Combination with Powders of Micrometer Sized Particles -- 2.5 Application Fields of Metal Oxide Nanoparticles -- 2.5.1 Agriculture -- 2.5.2 Sensors and Analytics -- 2.5.3 Automotive -- 2.5.4 Biomedicine/Dental -- 2.5.4.1 Therapy -- 2.5.5 Catalysis -- 2.5.6 Consumer Products: Cosmetics, Food, Textiles -- 2.5.7 Construction -- 2.5.8 Electronics and Magnetics -- 2.5.9 Energy -- 2.5.10 Environment, Resource Efficiency, Processing.
2.5.11 Oil Field Chemicals and Petroleum Industries -- 2.5.12 Optics/Optoelectronics and Photonics -- 2.6 Economic Impact -- 2.7 Conclusions and Outlook -- Abbreviations -- References -- Part II Particle Synthesis: Principles of Selected Bottom‐up Strategies -- Chapter 3 Nanoparticle Synthesis in the Gas Phase -- 3.1 Introduction -- 3.2 Some Key Issues of Particle Formation in the Gas Phase and in Liquids -- 3.3 Gas Phase Chemistry, Particle Dynamics, and Agglomeration -- 3.4 Gas‐to‐Particle Conversion -- 3.4.1 Physical Processes -- 3.4.2 Chemical Processes -- 3.5 Particle‐to‐Particle Conversion -- 3.5.1 Approaches and Precursors -- 3.5.2 Particle Formation -- 3.5.3 Experimental Realization -- 3.5.4 Spray Pyrolysis and Flame‐Assisted Spray Pyrolysis -- 3.6 Gas Phase Functionalization Approaches -- References -- Chapter 4 Liquid‐Phase Synthesis of Metal Oxide Nanoparticles -- 4.1 Introduction -- 4.2 General Aspects -- 4.2.1 Liquid‐Phase Chemistry -- 4.2.2 Nucleation, Growth, and Crystallization -- 4.3 Synthetic Procedures -- 4.3.1 (Co)Precipitation -- 4.3.2 Sol-Gel Processing -- 4.3.3 Polyol‐Mediated Synthesis/Pechini Method -- 4.3.4 Hot‐Injection Method -- 4.3.5 Hydrothermal/Solvothermal Processing -- 4.3.6 Microwave‐Assisted Synthesis -- 4.3.7 Sonication‐Assisted Synthesis -- 4.3.8 Synthesis in Confined Spaces -- 4.4 Summary -- References -- Chapter 5 Controlled Impurity Admixture: From Doped Systems to Composites -- 5.1 Introduction -- 5.2 Liquid‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.3 Gas‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.4 Solid‐State Synthesis of Doped Metal Oxide Nanoparticles -- 5.5 Phase Segregation: Formation of Heterostructures -- 5.6 Core/Shell and Heteromultimers -- 5.7 Summary and Conclusions -- References -- Part III Nanoparticle Formulation: A Selection of Processing and Application Routes.
Chapter 6 Colloidal Processing -- 6.1 Towards Complex Shaped and Compositionally Well‐Defined Ceramics: The Need for Colloidal Processing -- 6.2 Colloidal Processing Fundamentals -- 6.2.1 Interparticle Forces -- 6.2.1.1 Electric Double Layer Forces -- 6.2.1.2 Polymer‐Induced Forces -- 6.2.2 Forming and Consolidation Techniques -- 6.2.2.1 Drained Casting Techniques -- 6.2.2.2 Tape‐Casting Techniques -- 6.2.2.3 Constant Volume Techniques -- 6.2.2.4 Drying and Cracking -- 6.3 Rheology of Suspensions -- 6.4 Electrostatic Heteroaggregation of Metal Oxide Nanoparticles -- 6.4.1 Modification of Colloidal Stability by Heteroaggregation -- 6.4.2 Structure Evolution upon Heteroaggregation -- 6.4.3 Rheological Properties of Heterocolloids -- 6.4.4 Functional Properties of Heteroaggregates -- 6.5 Ice‐Templating‐Enabled Porous Ceramic Structures: Impact of Nanoparticles -- 6.5.1 Ice‐Templating of Colloidal Particles -- 6.5.2 Capabilities of Metal Oxide Nanoparticles in Ice‐Templating -- 6.5.2.1 Optimization of the Mechanical Properties of Green Bodies and Sintered Parts -- 6.5.2.2 Hierarchical Porosity and High Surface Area Materials -- 6.5.2.3 Triple Phase Boundaries Between Percolating Solid Networks and a Hierarchical Pore System -- 6.6 From Colloidal Processing to Nanoparticle Assembly -- Nomenclature -- List of Abbreviations -- References -- Chapter 7 Fabrication of Metal Oxide Nanostructures by Materials Printing -- 7.1 Introduction -- 7.2 Traditional Coating and Printing Techniques -- 7.3 Inkjet Printing -- 7.3.1 A Brief Introduction into IJP Technology and the Process Scheme -- 7.3.2 Functional Ink Formulation Issues -- 7.3.3 Drop Generation -- 7.3.4 Drop Interaction with the Substrate -- 7.3.5 Drop Drying and Pattern Formation -- 7.3.6 Printing Quality -- 7.3.7 Equipment and Printing Devices -- 7.4 Printing of Metal Oxide Structures: The Materials Aspect.
7.4.1 Insulating Metal Oxides -- 7.4.2 Semiconducting Metal Oxides -- 7.4.3 Conducting Metal Oxides -- 7.5 Examples for Complex Printed Functional Structures: The Device Aspect -- 7.5.1 Printed Photoelectrochemical Cell -- 7.5.2 Flexible pH Sensors by Large Scale Layer‐by‐layer Inkjet Printing -- 7.6 Conclusions and Outlook -- References -- Chapter 8 Nanoscale Sintering -- 8.1 Background -- 8.2 Challenges and New Aspects of Nanoparticle Material Sintering -- 8.3 Questionable Nature of Existing Sintering Theories -- 8.4 3D Reconstruction -- 8.4.1 Focused Ion Beam Cross‐Sectioning and SEM Imaging -- 8.4.2 X‐ray Microtomography -- 8.5 Functions of Pores -- 8.6 Sintering of Small Features -- 8.6.1 New Sintering Questions -- 8.6.2 Role of Pore Number in Small Feature Sintering -- 8.6.3 Grain Boundary Diffusion vs. Grain Boundary Migration in Small Feature Sintering -- 8.6.4 Ceramic Type Effect on Small Feature Sintering -- 8.6.5 Atmosphere Effect on Small Feature Sintering -- 8.7 Summary -- Acknowledgment -- References -- Part IV Metal Oxide Nanoparticle Characterization at Different Length Scales -- Chapter 9 Structure: Scattering Techniques -- 9.1 Introduction -- 9.1.1 Scattering and Diffraction -- 9.1.2 What to Learn from a Diffraction Experiment? -- 9.2 Theoretical Background -- 9.2.1 Crystal Lattice, Planes, and Bragg's Law -- 9.2.1.1 Crystal Planes and Interplanar Distance -- 9.2.1.2 The Reciprocal Lattice -- 9.2.1.3 Bragg's Law -- 9.2.2 The Intensity of a Bragg Peak -- 9.2.3 The Profile of a Bragg Peak -- 9.2.3.1 Instrumental Broadening -- 9.2.3.2 Sample Broadening -- 9.2.3.3 Analytical Description of Peak Shapes -- 9.3 Experimental Setup -- 9.3.1 Single vs. Polycrystalline Samples -- 9.3.2 Powder Diffraction Methods -- 9.3.2.1 Reflection Geometry -- 9.3.2.2 Transmission Geometry -- 9.3.2.3 Grazing Incident Diffraction (GID).
9.3.2.4 Sample Preparation -- 9.4 Some Selected Applications -- 9.4.1 Qualitative Phase Analysis -- 9.4.2 Quantitative Phase Analysis - The Rietveld Method -- 9.4.3 Microstructure Analysis: Size and Strain -- 9.5 X‐ray Diffraction on Magnetite Nanoparticles -- 9.6 Conclusion -- Nomenclature -- List of Abbreviations -- References -- Chapter 10 Morphology, Structure, and Chemical Composition: Transmission Electron Microscopy and Elemental Analysis -- 10.1 Size, Shape, and Composition of Oxide Nanoparticles -- 10.2 Interaction of the Incident Electrons with a Specimen -- 10.3 The Transmission Electron Microscope -- 10.3.1 Microscope Design and Operation Modes -- 10.3.2 Contrast Type and Image Formation -- 10.3.3 Resolution Limits of TEM Images -- 10.4 Imaging and Analysis of Morphology -- 10.4.1 Sample Preparation -- 10.4.2 Shape Retrieving -- 10.4.2.1 Aligned Nanocrystals -- 10.4.2.2 Randomly Oriented Nanocrystals -- 10.4.3 Particle Size Determination -- 10.5 Crystallographic Phase Identification - Electron Diffraction -- 10.5.1 Bragg Condition - Kinematical and Dynamical Diffraction -- 10.5.2 Selected Area Electron Diffraction (SAED) -- 10.5.3 Nanodiffraction -- 10.6 Chemical Composition Mapping - EDX and EELS Nanospectroscopy -- 10.6.1 Correlating Image with Spectroscopic EDX and EELS Information - Data Cubes -- 10.6.2 Composition Mapping with EDX Spectroscopy -- 10.6.3 Chemical State Imaging with EELS Spectroscopy -- Nomenclature -- List of Abbreviations -- References -- Chapter 11 Electronic and Chemical Properties: X‐Ray Absorption and Photoemission -- 11.1 Introduction and Scope of the Chapter -- 11.2 Basics of X‐rays - Matter Interaction -- 11.3 X‐Ray Photoelectron Spectroscopy (XPS) -- 11.3.1 Theoretical Background -- 11.3.2 Features and Analysis of X‐ray Photoelectron Spectra.
11.3.3 XPS Investigation of Metal Oxide Nanoparticles and Metal Oxide Colloidal Suspensions.
Record Nr. UNINA-9910831076903321
Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons Ltd., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nano/micro metal-organic frameworks : a platform for electrochemical energy applications / / Huan Pang, editor
Nano/micro metal-organic frameworks : a platform for electrochemical energy applications / / Huan Pang, editor
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (V, 212 p. 78 illus., 75 illus. in color.)
Disciplina 547.05
Soggetto topico Metal-organic frameworks
Metal nanoparticles
ISBN 981-16-4071-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Nano/Micro MOF-based materials -- Chapter 2 MOF derivatives -- Chapter 3 Batteries -- Chapter 4 Supercapacitors -- Chapter 5 MOF-derived materials for energy conversion -- Chapter 6 Summary and Perspectives.
Record Nr. UNINA-9910495171403321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Surfaces and interfaces of metal oxide thin films, multilayers, nanoparticles and nano-composites : in memory of Prof. Dr. Hanns-Ulrich Habermeier / / edited by Alejandro G. Roca [and seven others]
Surfaces and interfaces of metal oxide thin films, multilayers, nanoparticles and nano-composites : in memory of Prof. Dr. Hanns-Ulrich Habermeier / / edited by Alejandro G. Roca [and seven others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (289 pages)
Disciplina 620.115
Soggetto topico Metal nanoparticles
Metallic oxides
ISBN 3-030-74073-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910502632003321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui