Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov |
Autore | Khapalov Alexander Y. |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
Descrizione fisica | 1 online resource (177 pages) |
Disciplina | 620.106 |
Collana | Advances in Mathematical Fluid Mechanics |
Soggetto topico |
Fluid mechanics - Mathematical models
Mecànica de fluids Models matemàtics Biomimètica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-85285-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case. 8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A. 9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions. 11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References. |
Record Nr. | UNISA-996466398103316 |
Khapalov Alexander Y. | ||
Cham, Switzerland : , : Birkhäuser, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov |
Autore | Khapalov Alexander Y. |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2021] |
Descrizione fisica | 1 online resource (177 pages) |
Disciplina | 620.106 |
Collana | Advances in Mathematical Fluid Mechanics |
Soggetto topico |
Fluid mechanics - Mathematical models
Mecànica de fluids Models matemàtics Biomimètica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-85285-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case. 8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A. 9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions. 11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References. |
Record Nr. | UNINA-9910508447603321 |
Khapalov Alexander Y. | ||
Cham, Switzerland : , : Birkhäuser, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fluids Under Control / / edited by Tomáš Bodnár, Giovanni P. Galdi, Šárka Nečasová |
Autore | Bodnár Tomás |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2024 |
Descrizione fisica | 1 online resource (376 pages) |
Disciplina | 515.7 |
Altri autori (Persone) |
GaldiGiovanni P
NečasováSárka |
Collana | Advances in Mathematical Fluid Mechanics |
Soggetto topico |
Functional analysis
System theory Control theory Differential equations Continuum mechanics Functional Analysis Systems Theory, Control Differential Equations Continuum Mechanics Mecànica de fluids |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783031473555
3031473558 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | On the stabilization problem by feedback control -- UCP of Static Over-determined Eigen-problems -- Flutter stabilization of a Flow-Plate System -- Turbulence control -- From model-based to machine learned -- Design Through Analysis. |
Record Nr. | UNINA-9910842493203321 |
Bodnár Tomás | ||
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fluids under Control : The 2021 Prague-Sum Workshop Lectures / / Tomás Bodnár, Giovanni P. Galdi, and Sárka Necasová, editors |
Edizione | [First edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023] |
Descrizione fisica | 1 online resource (XIII, 359 p. 1 illus.) |
Disciplina | 532 |
Collana | Advances in Mathematical Fluid Mechanics Series |
Soggetto topico |
Fluid mechanics
Mecànica de fluids Matemàtica |
Soggetto genere / forma |
Congressos
Llibres electrònics |
Soggetto non controllato |
Physics
Science |
ISBN | 3-031-27625-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | On the weak and variational entropy solutions for the steady Navier-Stokes-Fourier system with Dirichlet boundary condition for the temperature -- Stability estimates for a viscous incompressible flow past a rigid body with time-dependent motion -- Existence and regularity of a magnetohydrodynamic system with Navier-type boundary conditions in 2-D -- On asymptotic stability of Boussinesq equations -- Controllability of one dimensional Burgers-particle interaction model -- Optimal control for two-dimensional Navier-Stokes equations with slippage -- Asymptotic behavior of the Navier-Stokes type problem -- On an approach to the global well-posedness of quasilinear parabolic- hyperbolic coupled system in unbounded domains. |
Record Nr. | UNINA-9910726272403321 |
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Generalized Lorenz-Mie Theories / / by Gérard Gouesbet, Gérard Gréhan |
Autore | Gouesbet Gérard |
Edizione | [3rd ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (411 pages) |
Disciplina | 535.43 |
Altri autori (Persone) | GréhanGérard |
Soggetto topico |
Topological groups
Lie groups Fluid mechanics Electrodynamics Telecommunication Topological Groups and Lie Groups Engineering Fluid Dynamics Classical Electrodynamics Microwaves, RF Engineering and Optical Communications Electrodinàmica Mecànica de fluids Equacions de Maxwell |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-25949-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Background in Maxwell’s Electromagnetism and Maxwell’s Equations -- Resolution of Special Maxwell‘s Equations -- Generalized Lorenz-Mie Theories in the Strict Sense, and other GLMTs -- Gaussian Beams, and Other Beams -- Finite Series -- Special Cases of Axisymmetric and Gaussian Beams -- The Localized Approximation and Localized Beam Models -- Applications, and Miscellaneous Issues -- Conclusion. |
Record Nr. | UNINA-9910731483203321 |
Gouesbet Gérard | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High performance simulation for industrial paint shop applications / / Kevin Verma, Robert Wille |
Autore | Verma Kevin |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (145 pages) |
Disciplina | 620.106 |
Soggetto topico |
Fluid mechanics - Computer simulation
Coating processes - Computer simulation High performance computing Càlcul intensiu (Informàtica) Mecànica de fluids Superfícies (Tecnologia) Simulació per ordinador |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-71625-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Part I Introduction and Background -- 1 Introduction -- -- 2 Background -- 2.1 Computational Fluid Dynamics -- 2.1.1 Fundamentals -- 2.1.2 Governing Equations -- 2.1.3 Discretization Techniques -- 2.1.3.1 Grid-Based Methods -- 2.1.3.2 Particle-Based Methods -- 2.2 High Performance Computing -- 2.2.1 Fundamentals -- 2.2.2 Shared Memory Parallelism -- 2.2.3 Distributed Memory Parallelism -- 2.2.4 General-Purpose Computing on Graphics Processing Units -- 2.3 Automotive Paint Shop -- 2.3.1 Overview -- 2.3.2 Challenges -- Part II Grid-Based Methods -- 3 Overview -- 3.1 Finite Difference Method -- 3.1.1 Formulation -- 3.1.2 Grid Discretization -- 3.2 Electrophoretic Deposition Coatings -- 4 Simulation of Electrophoretic Deposition Coatings -- 4.1 Background -- 4.1.1 State of the Art -- 4.1.2 Formulation -- 4.2 General Idea -- 4.2.1 Numerical Modeling of EPD -- 4.2.2 Grid Discretization -- 4.3 Simulation of EPD Coatings -- 4.3.1 Implementation of Numerical Model -- 4.3.2 Overset Grid Implementation -- 4.3.2.1 Grid Ω16h -- 4.3.2.2 Grid Ω8h -- 4.3.2.3 Grid Ω2h -- 4.3.2.4 Grid Ωh -- 4.3.2.5 Discussion and Resulting Overall Algorithm -- 4.4 Experimental Evaluations -- 4.4.1 Validation with Analytical Data -- 4.4.2 Validation with Industrial Data -- 4.4.3 Performance Discussion -- 4.5 Summary -- Part III Volumetric Decomposition Methods -- 5 Overview -- 5.1 Fundamentals -- 5.2 Drawback -- 6 Volumetric Decomposition on Shared Memory Architectures -- 6.1 Background -- 6.1.1 State of the Art -- 6.1.2 Basic Architecture -- 6.2 Parallel Simulation of Electrophoretic Deposition -- 6.2.1 Outer Parallel Layer -- 6.2.2 Inner Parallel Layer -- 6.2.2.1 Identifying Critical Vertices -- 6.2.2.2 Constructing the Volume Decomposition -- 6.2.2.3 Integrating Bottlenecks -- 6.3 Experimental Evaluations.
6.3.1 Speedup for the Reeb Graph Construction -- 6.3.2 Speedup for the Entire Simulation -- 6.4 Summary -- 7 Volumetric Decomposition on Distributed Memory Architectures -- 7.1 Basic Architecture -- 7.2 Implementation of the Distributed Algorithm -- 7.2.1 Workload Distribution -- 7.2.2 Memory Optimization -- 7.2.3 Load Balancing -- 7.3 Experimental Evaluations -- 7.3.1 Test Environment and Considered Data Set -- 7.3.2 Speedup in the Reeb Graph Construction -- 7.3.3 Speedup in the Entire Simulation -- 7.4 Summary -- Part IV Particle-Based Methods -- 8 Overview -- 8.1 SPH Fundamentals -- 8.1.1 Formulation -- 8.1.2 Internal Forces -- 8.1.3 External Forces -- 8.2 SPH Variants -- 8.2.1 Basic Variants -- 8.2.2 Predictive-Corrective Incompressible SPH -- 8.3 SPH and High Performance Computing -- 8.3.1 CPU Parallelization -- 8.3.2 GPU Parallelization -- 9 SPH on Multi-GPU Architectures -- 9.1 Background -- 9.1.1 Basic Architecture -- 9.1.2 Motivation -- 9.2 Advanced Load Balancing -- 9.2.1 General Idea -- 9.2.2 Using Internal Cache -- 9.2.3 Using Pointers -- 9.3 Experimental Evaluations -- 9.3.1 Experimental Setup -- 9.3.2 Dam Break Simulation -- 9.3.3 Spray Wash Simulation -- 9.4 Summary -- 10 SPH Variants on Multi-GPU Architectures -- 10.1 Background -- 10.2 Distributed Multi-GPU Architecture -- 10.3 Optimization Techniques -- 10.3.1 Load Balancing -- 10.3.2 Overlapping Memory Transfers -- 10.3.3 Optimizing Particle Data Representation -- 10.3.4 Optimizing Exchange of Halos -- 10.4 Experimental Evaluations -- 10.4.1 Experimental Setup -- 10.4.2 Dam Break Simulation -- 10.4.3 Water Splashing Simulation -- 10.5 Summary -- Part V Conclusion -- 11 Conclusion -- References -- Index. |
Record Nr. | UNINA-9910483851303321 |
Verma Kevin | ||
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An Introduction to Fluid Mechanics / / by Chung Fang |
Autore | Fang Chung |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XIX, 643 p. 240 illus., 1 illus. in color.) |
Disciplina | 620.106 |
Collana | Springer Textbooks in Earth Sciences, Geography and Environment |
Soggetto topico |
Mecànica de fluids
Fluid mechanics Engineering geology Engineering—Geology Foundations Hydraulics Geotechnical engineering Engineering Fluid Dynamics Geoengineering, Foundations, Hydraulics Geotechnical Engineering & Applied Earth Sciences |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783319918211
3319918214 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Essentials of Tensor Calculus- Fundamental Concepts- Continuum Mechanics and Balance Equations -- Fluid Statics -- Ideal Fluid Flows -- Viscous Fluid Flows -- Compressible Fluid Flows -- Dimensional Analysis and Similitude -- Appendix: A Brief History of the Development of Fluid Mechanics. |
Record Nr. | UNINA-9910337897403321 |
Fang Chung | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Journal of thermal science : international journal of thermal and fluid sciences |
Pubbl/distr/stampa | Beijing, : Journal of thermal Science, : Distributed by Institute of Engineering Thermophysics, Chinese Academy of Sciences |
Descrizione fisica | 1 online resource |
Soggetto topico |
Thermodynamics
Heat - Transmission Combustion Fluid mechanics Chaleur - Transmission Mécanique des fluides Termodinàmica Transmissió de la calor Combustió Mecànica de fluids |
Soggetto genere / forma |
Periodicals.
Revistes electròniques |
ISSN | 1993-033X |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti | International journal of thermal and fluid sciences |
Record Nr. | UNINA-9910131375603321 |
Beijing, : Journal of thermal Science, : Distributed by Institute of Engineering Thermophysics, Chinese Academy of Sciences | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný |
Autore | Feireisl Eduard |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (299 pages) |
Disciplina | 620.106 |
Collana | Nečas Center series |
Soggetto topico |
Fluid mechanics
Fluid mechanics - Mathematical models Thermodynamics Mecànica de fluids |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-94793-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996472039403316 |
Feireisl Eduard | ||
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný |
Autore | Feireisl Eduard |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (299 pages) |
Disciplina | 620.106 |
Collana | Nečas Center series |
Soggetto topico |
Fluid mechanics
Fluid mechanics - Mathematical models Thermodynamics Mecànica de fluids |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-94793-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910558491203321 |
Feireisl Eduard | ||
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|