top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Autore Khapalov Alexander Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (177 pages)
Disciplina 620.106
Collana Advances in Mathematical Fluid Mechanics
Soggetto topico Fluid mechanics - Mathematical models
Mecànica de fluids
Models matemàtics
Biomimètica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-85285-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case.
8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A.
9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions.
11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References.
Record Nr. UNISA-996466398103316
Khapalov Alexander Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Autore Khapalov Alexander Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (177 pages)
Disciplina 620.106
Collana Advances in Mathematical Fluid Mechanics
Soggetto topico Fluid mechanics - Mathematical models
Mecànica de fluids
Models matemàtics
Biomimètica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-85285-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case.
8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A.
9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions.
11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References.
Record Nr. UNINA-9910508447603321
Khapalov Alexander Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluids Under Control / / edited by Tomáš Bodnár, Giovanni P. Galdi, Šárka Nečasová
Fluids Under Control / / edited by Tomáš Bodnár, Giovanni P. Galdi, Šárka Nečasová
Autore Bodnár Tomás
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (376 pages)
Disciplina 515.7
Altri autori (Persone) GaldiGiovanni P
NečasováSárka
Collana Advances in Mathematical Fluid Mechanics
Soggetto topico Functional analysis
System theory
Control theory
Differential equations
Continuum mechanics
Functional Analysis
Systems Theory, Control
Differential Equations
Continuum Mechanics
Mecànica de fluids
Soggetto genere / forma Llibres electrònics
ISBN 9783031473555
3031473558
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto On the stabilization problem by feedback control -- UCP of Static Over-determined Eigen-problems -- Flutter stabilization of a Flow-Plate System -- Turbulence control -- From model-based to machine learned -- Design Through Analysis.
Record Nr. UNINA-9910842493203321
Bodnár Tomás  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluids under Control : The 2021 Prague-Sum Workshop Lectures / / Tomás Bodnár, Giovanni P. Galdi, and Sárka Necasová, editors
Fluids under Control : The 2021 Prague-Sum Workshop Lectures / / Tomás Bodnár, Giovanni P. Galdi, and Sárka Necasová, editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Descrizione fisica 1 online resource (XIII, 359 p. 1 illus.)
Disciplina 532
Collana Advances in Mathematical Fluid Mechanics Series
Soggetto topico Fluid mechanics
Mecànica de fluids
Matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
Soggetto non controllato Physics
Science
ISBN 3-031-27625-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto On the weak and variational entropy solutions for the steady Navier-Stokes-Fourier system with Dirichlet boundary condition for the temperature -- Stability estimates for a viscous incompressible flow past a rigid body with time-dependent motion -- Existence and regularity of a magnetohydrodynamic system with Navier-type boundary conditions in 2-D -- On asymptotic stability of Boussinesq equations -- Controllability of one dimensional Burgers-particle interaction model -- Optimal control for two-dimensional Navier-Stokes equations with slippage -- Asymptotic behavior of the Navier-Stokes type problem -- On an approach to the global well-posedness of quasilinear parabolic- hyperbolic coupled system in unbounded domains.
Record Nr. UNINA-9910726272403321
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalized Lorenz-Mie Theories / / by Gérard Gouesbet, Gérard Gréhan
Generalized Lorenz-Mie Theories / / by Gérard Gouesbet, Gérard Gréhan
Autore Gouesbet Gérard
Edizione [3rd ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (411 pages)
Disciplina 535.43
Altri autori (Persone) GréhanGérard
Soggetto topico Topological groups
Lie groups
Fluid mechanics
Electrodynamics
Telecommunication
Topological Groups and Lie Groups
Engineering Fluid Dynamics
Classical Electrodynamics
Microwaves, RF Engineering and Optical Communications
Electrodinàmica
Mecànica de fluids
Equacions de Maxwell
Soggetto genere / forma Llibres electrònics
ISBN 3-031-25949-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Background in Maxwell’s Electromagnetism and Maxwell’s Equations -- Resolution of Special Maxwell‘s Equations -- Generalized Lorenz-Mie Theories in the Strict Sense, and other GLMTs -- Gaussian Beams, and Other Beams -- Finite Series -- Special Cases of Axisymmetric and Gaussian Beams -- The Localized Approximation and Localized Beam Models -- Applications, and Miscellaneous Issues -- Conclusion.
Record Nr. UNINA-9910731483203321
Gouesbet Gérard  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High performance simulation for industrial paint shop applications / / Kevin Verma, Robert Wille
High performance simulation for industrial paint shop applications / / Kevin Verma, Robert Wille
Autore Verma Kevin
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (145 pages)
Disciplina 620.106
Soggetto topico Fluid mechanics - Computer simulation
Coating processes - Computer simulation
High performance computing
Càlcul intensiu (Informàtica)
Mecànica de fluids
Superfícies (Tecnologia)
Simulació per ordinador
Soggetto genere / forma Llibres electrònics
ISBN 3-030-71625-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Introduction and Background -- 1 Introduction -- -- 2 Background -- 2.1 Computational Fluid Dynamics -- 2.1.1 Fundamentals -- 2.1.2 Governing Equations -- 2.1.3 Discretization Techniques -- 2.1.3.1 Grid-Based Methods -- 2.1.3.2 Particle-Based Methods -- 2.2 High Performance Computing -- 2.2.1 Fundamentals -- 2.2.2 Shared Memory Parallelism -- 2.2.3 Distributed Memory Parallelism -- 2.2.4 General-Purpose Computing on Graphics Processing Units -- 2.3 Automotive Paint Shop -- 2.3.1 Overview -- 2.3.2 Challenges -- Part II Grid-Based Methods -- 3 Overview -- 3.1 Finite Difference Method -- 3.1.1 Formulation -- 3.1.2 Grid Discretization -- 3.2 Electrophoretic Deposition Coatings -- 4 Simulation of Electrophoretic Deposition Coatings -- 4.1 Background -- 4.1.1 State of the Art -- 4.1.2 Formulation -- 4.2 General Idea -- 4.2.1 Numerical Modeling of EPD -- 4.2.2 Grid Discretization -- 4.3 Simulation of EPD Coatings -- 4.3.1 Implementation of Numerical Model -- 4.3.2 Overset Grid Implementation -- 4.3.2.1 Grid Ω16h -- 4.3.2.2 Grid Ω8h -- 4.3.2.3 Grid Ω2h -- 4.3.2.4 Grid Ωh -- 4.3.2.5 Discussion and Resulting Overall Algorithm -- 4.4 Experimental Evaluations -- 4.4.1 Validation with Analytical Data -- 4.4.2 Validation with Industrial Data -- 4.4.3 Performance Discussion -- 4.5 Summary -- Part III Volumetric Decomposition Methods -- 5 Overview -- 5.1 Fundamentals -- 5.2 Drawback -- 6 Volumetric Decomposition on Shared Memory Architectures -- 6.1 Background -- 6.1.1 State of the Art -- 6.1.2 Basic Architecture -- 6.2 Parallel Simulation of Electrophoretic Deposition -- 6.2.1 Outer Parallel Layer -- 6.2.2 Inner Parallel Layer -- 6.2.2.1 Identifying Critical Vertices -- 6.2.2.2 Constructing the Volume Decomposition -- 6.2.2.3 Integrating Bottlenecks -- 6.3 Experimental Evaluations.
6.3.1 Speedup for the Reeb Graph Construction -- 6.3.2 Speedup for the Entire Simulation -- 6.4 Summary -- 7 Volumetric Decomposition on Distributed Memory Architectures -- 7.1 Basic Architecture -- 7.2 Implementation of the Distributed Algorithm -- 7.2.1 Workload Distribution -- 7.2.2 Memory Optimization -- 7.2.3 Load Balancing -- 7.3 Experimental Evaluations -- 7.3.1 Test Environment and Considered Data Set -- 7.3.2 Speedup in the Reeb Graph Construction -- 7.3.3 Speedup in the Entire Simulation -- 7.4 Summary -- Part IV Particle-Based Methods -- 8 Overview -- 8.1 SPH Fundamentals -- 8.1.1 Formulation -- 8.1.2 Internal Forces -- 8.1.3 External Forces -- 8.2 SPH Variants -- 8.2.1 Basic Variants -- 8.2.2 Predictive-Corrective Incompressible SPH -- 8.3 SPH and High Performance Computing -- 8.3.1 CPU Parallelization -- 8.3.2 GPU Parallelization -- 9 SPH on Multi-GPU Architectures -- 9.1 Background -- 9.1.1 Basic Architecture -- 9.1.2 Motivation -- 9.2 Advanced Load Balancing -- 9.2.1 General Idea -- 9.2.2 Using Internal Cache -- 9.2.3 Using Pointers -- 9.3 Experimental Evaluations -- 9.3.1 Experimental Setup -- 9.3.2 Dam Break Simulation -- 9.3.3 Spray Wash Simulation -- 9.4 Summary -- 10 SPH Variants on Multi-GPU Architectures -- 10.1 Background -- 10.2 Distributed Multi-GPU Architecture -- 10.3 Optimization Techniques -- 10.3.1 Load Balancing -- 10.3.2 Overlapping Memory Transfers -- 10.3.3 Optimizing Particle Data Representation -- 10.3.4 Optimizing Exchange of Halos -- 10.4 Experimental Evaluations -- 10.4.1 Experimental Setup -- 10.4.2 Dam Break Simulation -- 10.4.3 Water Splashing Simulation -- 10.5 Summary -- Part V Conclusion -- 11 Conclusion -- References -- Index.
Record Nr. UNINA-9910483851303321
Verma Kevin  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An Introduction to Fluid Mechanics / / by Chung Fang
An Introduction to Fluid Mechanics / / by Chung Fang
Autore Fang Chung
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIX, 643 p. 240 illus., 1 illus. in color.)
Disciplina 620.106
Collana Springer Textbooks in Earth Sciences, Geography and Environment
Soggetto topico Mecànica de fluids
Fluid mechanics
Engineering geology
Engineering—Geology
Foundations
Hydraulics
Geotechnical engineering
Engineering Fluid Dynamics
Geoengineering, Foundations, Hydraulics
Geotechnical Engineering & Applied Earth Sciences
Soggetto genere / forma Llibres electrònics
ISBN 9783319918211
3319918214
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Essentials of Tensor Calculus- Fundamental Concepts- Continuum Mechanics and Balance Equations -- Fluid Statics -- Ideal Fluid Flows -- Viscous Fluid Flows -- Compressible Fluid Flows -- Dimensional Analysis and Similitude -- Appendix: A Brief History of the Development of Fluid Mechanics.
Record Nr. UNINA-9910337897403321
Fang Chung  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Journal of thermal science : international journal of thermal and fluid sciences
Journal of thermal science : international journal of thermal and fluid sciences
Pubbl/distr/stampa Beijing, : Journal of thermal Science, : Distributed by Institute of Engineering Thermophysics, Chinese Academy of Sciences
Descrizione fisica 1 online resource
Soggetto topico Thermodynamics
Heat - Transmission
Combustion
Fluid mechanics
Chaleur - Transmission
Mécanique des fluides
Termodinàmica
Transmissió de la calor
Combustió
Mecànica de fluids
Soggetto genere / forma Periodicals.
Revistes electròniques
ISSN 1993-033X
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti International journal of thermal and fluid sciences
Record Nr. UNINA-9910131375603321
Beijing, : Journal of thermal Science, : Distributed by Institute of Engineering Thermophysics, Chinese Academy of Sciences
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný
Autore Feireisl Eduard
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (299 pages)
Disciplina 620.106
Collana Nečas Center series
Soggetto topico Fluid mechanics
Fluid mechanics - Mathematical models
Thermodynamics
Mecànica de fluids
Soggetto genere / forma Llibres electrònics
ISBN 3-030-94793-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996472039403316
Feireisl Eduard  
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný
Mathematics of open fluid systems / / Eduard Feireisl and Antonin Novotný
Autore Feireisl Eduard
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (299 pages)
Disciplina 620.106
Collana Nečas Center series
Soggetto topico Fluid mechanics
Fluid mechanics - Mathematical models
Thermodynamics
Mecànica de fluids
Soggetto genere / forma Llibres electrònics
ISBN 3-030-94793-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910558491203321
Feireisl Eduard  
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui