Active particles . Volume 3 : advances in theory, models, and applications / / Nicola Bellomo, José Antonio Carrillo, and Eitan Tadmor, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 519.3 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical optimization
Mathematical optimization - Computer programs Models matemàtics Optimització matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-93302-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Variability and Heterogeneity in Natural Swarms: Experiments and Modeling -- 1 Introduction -- 2 Sources of Variability in Nature -- 2.1 Development as a Source of Variation -- 2.2 Transient Changes in the Behavior of Individuals -- 2.3 Environmentally Induced Variations -- 2.4 Social Structure -- 2.5 Inherent/Intrinsic Properties and Animal Personality -- 2.6 Variability in Microorganisms -- 3 Experiments with Heterogeneous Swarms -- 3.1 Fish -- 3.2 Mammals -- 3.3 Insects -- 3.4 Microorganisms -- 4 Modeling Heterogeneous Collective Motion -- 4.1 Continuous Models -- 4.2 Agent-Based Models -- 4.3 Specific Examples: Locust -- 4.4 Specific Examples: Microorganisms and Cells -- 5 Summary and Concluding Remarks -- References -- Active Crowds -- 1 Introduction -- 2 Models for Active Particles -- 2.1 Continuous Random Walks -- 2.1.1 Excluded-Volume Interactions -- 2.2 Discrete Random Walks -- 2.3 Hybrid Random Walks -- 3 Models for Externally Activated Particles -- 3.1 Continuous Models -- 3.2 Discrete Models -- 4 General Model Structure -- 4.1 Wasserstein Gradient Flows -- 4.2 Entropy Dissipation -- 5 Boundary Effects -- 5.1 Mass Conserving Boundary Conditions -- 5.2 Flux Boundary Conditions -- 5.3 Other Boundary Conditions -- 6 Active Crowds in the Life and Social Science -- 6.1 Pedestrian Dynamics -- 6.2 Transport in Biological Systems -- 7 Numerical Simulations -- 7.1 One Spatial Dimension -- 7.2 Two Spatial Dimensions -- References -- Mathematical Modeling of Cell Collective Motion Triggered by Self-Generated Gradients -- 1 Introduction -- 2 The Keller-Segel Model and Variations -- 2.1 The Construction of Waves by Keller and Segel -- 2.2 Positivity and Stability Issues -- 2.3 Variations on the Keller-Segel Model -- 2.4 Beyond the Keller-Segel Model: Two Scenarios for SGG.
3 Scenario 1: Strongest Advection at the Back -- 4 Scenario 2: Cell Leakage Compensated by Growth -- 5 Conclusion and Perspectives -- References -- Clustering Dynamics on Graphs: From Spectral Clustering to Mean Shift Through Fokker-Planck Interpolation -- 1 Introduction -- 1.1 Mean Shift-Based Methods -- 1.1.1 Lifting the Dynamics to the Wasserstein Space -- 1.2 Spectral Methods -- 1.2.1 Normalized Versions of the Graph Laplacian -- 1.2.2 More General Spectral Embeddings -- 1.3 Outline -- 2 Mean Shift and Fokker-Planck Dynamics on Graphs -- 2.1 Dynamic Interpretation of Spectral Embeddings -- 2.2 The Mean Shift Algorithm on Graphs -- 2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows -- 2.2.2 Quickshift and KNF -- 3 Fokker-Planck Equations on Graphs -- 3.1 Fokker-Planck Equations on Graphs via Interpolation -- 3.2 Fokker-Planck Equation on Graphs via Reweighing and Connections to Graph Mean Shift -- 4 Continuum Limits of Fokker-Planck Equations on Graphs and Implications -- 4.1 Continuum Limit of Mean Shift Dynamics on Graphs -- 4.2 Continuum Limits of Fokker-Planck Equations on Graphs -- 4.3 The Witten Laplacian and Some Implications for Data Clustering -- 5 Numerical Examples -- 5.1 Numerical Method -- 5.2 Simulations -- 5.2.1 Graph Dynamics as Density Dynamics -- 5.2.2 Comparison of Graph Dynamics and PDE Dynamics -- 5.2.3 Clustering Dynamics -- 5.2.4 Effect of the Kernel Density Estimate on Clustering -- 5.2.5 Effect of Data Distribution on Clustering -- 5.2.6 Blue Sky Problem -- 5.2.7 Density vs. Geometry -- References -- Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings -- 1 Introduction -- 2 The Random Batch Methods -- 2.1 The RBM Algorithms -- 2.2 Convergence Analysis -- 2.3 An Illustrating Example: Wealth Evolution -- 3 The Mean-Field Limit -- 4 Molecular Dynamics. 4.1 RBM with Kernel Splitting -- 4.2 Random Batch Ewald: An Importance Sampling in the Fourier Space -- 5 Statistical Sampling -- 5.1 Random Batch Monte Carlo for Many-Body Systems -- 5.2 RBM-SVGD: A Stochastic Version of Stein Variational Gradient Descent -- 6 Agent-Based Models for Collective Dynamics -- 6.1 The Cucker-Smale Model -- 6.2 Consensus Models -- 7 Quantum Dynamics -- 7.1 A Theoretical Result on the N-Body Schrödinger Equation -- 7.1.1 Mathematical Setting and Main Result -- 7.2 Quantum Monte Carlo Methods -- 7.2.1 The Random Batch Method for VMC -- 7.2.2 The Random Batch Method for DMC -- References -- Trends in Consensus-Based Optimization -- 1 Introduction -- 1.1 Notation and Assumptions -- 1.1.1 The Weighted Average -- 2 Consensus-Based Global Optimization Methods -- 2.1 Original Statement of the Method -- 2.1.1 Particle Scheme -- 2.1.2 Mean-Field Limit -- 2.1.3 Analytical Results for the Original Scheme Without Heaviside Function -- 2.1.4 Numerical Methods -- 2.2 Variant 1: Component-Wise Diffusion and Random Batches -- 2.2.1 Component-Wise Geometric Brownian Motion -- 2.2.2 Random Batch Method -- 2.2.3 Implementation and Numerical Results -- 2.3 Variant 2: Component-Wise Common Diffusion -- 2.3.1 Analytical Results -- 2.3.2 Numerical Results -- 3 Relationship of CBO and Particle Swarm Optimization -- 3.1 Variant 4: Personal Best Information -- 3.1.1 Performance -- 4 CBO with State Constraints -- 4.1 Variant 5: Dynamics Constrained to Hyper-Surfaces -- 4.1.1 Analytical Results -- 5 Overview of Applications -- 5.1 Global Optimization Problems: Comparison to Heuristic Methods -- 5.2 Machine Learning -- 5.3 Global Optimization with Constrained State Space -- 5.4 PDE Versus SDE Simulations -- 6 Conclusion, Outlook and Open problems -- References. |
Record Nr. | UNISA-996466417303316 |
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Active particles . Volume 3 : advances in theory, models, and applications / / Nicola Bellomo, José Antonio Carrillo, and Eitan Tadmor, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 519.3 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical optimization
Mathematical optimization - Computer programs Models matemàtics Optimització matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-93302-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Variability and Heterogeneity in Natural Swarms: Experiments and Modeling -- 1 Introduction -- 2 Sources of Variability in Nature -- 2.1 Development as a Source of Variation -- 2.2 Transient Changes in the Behavior of Individuals -- 2.3 Environmentally Induced Variations -- 2.4 Social Structure -- 2.5 Inherent/Intrinsic Properties and Animal Personality -- 2.6 Variability in Microorganisms -- 3 Experiments with Heterogeneous Swarms -- 3.1 Fish -- 3.2 Mammals -- 3.3 Insects -- 3.4 Microorganisms -- 4 Modeling Heterogeneous Collective Motion -- 4.1 Continuous Models -- 4.2 Agent-Based Models -- 4.3 Specific Examples: Locust -- 4.4 Specific Examples: Microorganisms and Cells -- 5 Summary and Concluding Remarks -- References -- Active Crowds -- 1 Introduction -- 2 Models for Active Particles -- 2.1 Continuous Random Walks -- 2.1.1 Excluded-Volume Interactions -- 2.2 Discrete Random Walks -- 2.3 Hybrid Random Walks -- 3 Models for Externally Activated Particles -- 3.1 Continuous Models -- 3.2 Discrete Models -- 4 General Model Structure -- 4.1 Wasserstein Gradient Flows -- 4.2 Entropy Dissipation -- 5 Boundary Effects -- 5.1 Mass Conserving Boundary Conditions -- 5.2 Flux Boundary Conditions -- 5.3 Other Boundary Conditions -- 6 Active Crowds in the Life and Social Science -- 6.1 Pedestrian Dynamics -- 6.2 Transport in Biological Systems -- 7 Numerical Simulations -- 7.1 One Spatial Dimension -- 7.2 Two Spatial Dimensions -- References -- Mathematical Modeling of Cell Collective Motion Triggered by Self-Generated Gradients -- 1 Introduction -- 2 The Keller-Segel Model and Variations -- 2.1 The Construction of Waves by Keller and Segel -- 2.2 Positivity and Stability Issues -- 2.3 Variations on the Keller-Segel Model -- 2.4 Beyond the Keller-Segel Model: Two Scenarios for SGG.
3 Scenario 1: Strongest Advection at the Back -- 4 Scenario 2: Cell Leakage Compensated by Growth -- 5 Conclusion and Perspectives -- References -- Clustering Dynamics on Graphs: From Spectral Clustering to Mean Shift Through Fokker-Planck Interpolation -- 1 Introduction -- 1.1 Mean Shift-Based Methods -- 1.1.1 Lifting the Dynamics to the Wasserstein Space -- 1.2 Spectral Methods -- 1.2.1 Normalized Versions of the Graph Laplacian -- 1.2.2 More General Spectral Embeddings -- 1.3 Outline -- 2 Mean Shift and Fokker-Planck Dynamics on Graphs -- 2.1 Dynamic Interpretation of Spectral Embeddings -- 2.2 The Mean Shift Algorithm on Graphs -- 2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows -- 2.2.2 Quickshift and KNF -- 3 Fokker-Planck Equations on Graphs -- 3.1 Fokker-Planck Equations on Graphs via Interpolation -- 3.2 Fokker-Planck Equation on Graphs via Reweighing and Connections to Graph Mean Shift -- 4 Continuum Limits of Fokker-Planck Equations on Graphs and Implications -- 4.1 Continuum Limit of Mean Shift Dynamics on Graphs -- 4.2 Continuum Limits of Fokker-Planck Equations on Graphs -- 4.3 The Witten Laplacian and Some Implications for Data Clustering -- 5 Numerical Examples -- 5.1 Numerical Method -- 5.2 Simulations -- 5.2.1 Graph Dynamics as Density Dynamics -- 5.2.2 Comparison of Graph Dynamics and PDE Dynamics -- 5.2.3 Clustering Dynamics -- 5.2.4 Effect of the Kernel Density Estimate on Clustering -- 5.2.5 Effect of Data Distribution on Clustering -- 5.2.6 Blue Sky Problem -- 5.2.7 Density vs. Geometry -- References -- Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings -- 1 Introduction -- 2 The Random Batch Methods -- 2.1 The RBM Algorithms -- 2.2 Convergence Analysis -- 2.3 An Illustrating Example: Wealth Evolution -- 3 The Mean-Field Limit -- 4 Molecular Dynamics. 4.1 RBM with Kernel Splitting -- 4.2 Random Batch Ewald: An Importance Sampling in the Fourier Space -- 5 Statistical Sampling -- 5.1 Random Batch Monte Carlo for Many-Body Systems -- 5.2 RBM-SVGD: A Stochastic Version of Stein Variational Gradient Descent -- 6 Agent-Based Models for Collective Dynamics -- 6.1 The Cucker-Smale Model -- 6.2 Consensus Models -- 7 Quantum Dynamics -- 7.1 A Theoretical Result on the N-Body Schrödinger Equation -- 7.1.1 Mathematical Setting and Main Result -- 7.2 Quantum Monte Carlo Methods -- 7.2.1 The Random Batch Method for VMC -- 7.2.2 The Random Batch Method for DMC -- References -- Trends in Consensus-Based Optimization -- 1 Introduction -- 1.1 Notation and Assumptions -- 1.1.1 The Weighted Average -- 2 Consensus-Based Global Optimization Methods -- 2.1 Original Statement of the Method -- 2.1.1 Particle Scheme -- 2.1.2 Mean-Field Limit -- 2.1.3 Analytical Results for the Original Scheme Without Heaviside Function -- 2.1.4 Numerical Methods -- 2.2 Variant 1: Component-Wise Diffusion and Random Batches -- 2.2.1 Component-Wise Geometric Brownian Motion -- 2.2.2 Random Batch Method -- 2.2.3 Implementation and Numerical Results -- 2.3 Variant 2: Component-Wise Common Diffusion -- 2.3.1 Analytical Results -- 2.3.2 Numerical Results -- 3 Relationship of CBO and Particle Swarm Optimization -- 3.1 Variant 4: Personal Best Information -- 3.1.1 Performance -- 4 CBO with State Constraints -- 4.1 Variant 5: Dynamics Constrained to Hyper-Surfaces -- 4.1.1 Analytical Results -- 5 Overview of Applications -- 5.1 Global Optimization Problems: Comparison to Heuristic Methods -- 5.2 Machine Learning -- 5.3 Global Optimization with Constrained State Space -- 5.4 PDE Versus SDE Simulations -- 6 Conclusion, Outlook and Open problems -- References. |
Record Nr. | UNINA-9910556880003321 |
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Discrete optimization in chemical space reference manual [[electronic resource] /] / by B.C. Rinderspacher |
Autore | Rinderspacher B. Christopher (Berend Christopher), <1974-> |
Pubbl/distr/stampa | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2012] |
Descrizione fisica | 1 online resource (xix, 392 pages) : illustrations |
Collana | ARL-TR |
Soggetto topico |
Mathematical optimization - Computer programs
Computer software Molecules - Mathematical models |
Soggetto genere / forma | Handbooks and manuals. |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910702380403321 |
Rinderspacher B. Christopher (Berend Christopher), <1974-> | ||
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary computation in scheduling / / edited by Amir H. Gandomi [and four others] |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2020] |
Descrizione fisica | 1 online resource (408 pages) |
Disciplina | 519.3 |
Soggetto topico |
Mathematical optimization - Computer programs
Scheduling - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-57386-6
1-119-57387-4 1-119-57429-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910554857703321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary computation in scheduling / / edited by Amir H. Gandomi [and four others] |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2020] |
Descrizione fisica | 1 online resource (408 pages) |
Disciplina | 519.3 |
Soggetto topico |
Mathematical optimization - Computer programs
Scheduling - Mathematical models |
ISBN |
1-119-57386-6
1-119-57387-4 1-119-57429-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Evolutionary computation in scheduling : a scientometric analysis / Amir H. Gandomi, Ali Emrouznejad, Iman Rahimi -- Role and impacts of ant colony optimization in job shop scheduling problems : a detail analysis / P.Deepalakshmi, K. Shankar -- Advanced ant colony optimization in healthcare scheduling / Reza Behmanesh, Iman Rahimi, Mostafa Zandieh, Amir H. Gandomi -- Task scheduling in heterogeneous computing systems using swarm intelligence / S Sarathambekai, K Umamaheswari -- Computationally efficient scheduling schemes for multiple antenna systems using evolutionary algorithm and swarm optimization / Prabina Pattanayak, Preetam Kumar -- An efficient modified red deer algorithm to solve a truck scheduling problem considering time windows and deadline for trucks' departure / Amir Mohammad Fathollahi-Fard, Abbas Ahmadi, Mohsen S. Sajadieh -- Application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization / Javidan Kazemi Kordestani, Mohammad Reza Meybodi -- Task scheduling in cloud environments : a survey on population-based evolutionary algorithms / Fahimeh Ramezani, Mohsen Naderpour, Javid Taheri, Jack Romanous, Albert Y. Zomaya -- Scheduling of robotic disassembly in remanufacturing using bees algorithm / Jiayi Liu, Wenjun Xu, Zude Zhou, Duc Truong Pham -- A modified fireworks algorithm to solve the heat and power generation scheduling problem in power system studies / Mohammad Sadegh Javadi, Ali Esmaeel Nezhad, Seyed-Ehsan Razavi, Abdollah Ahmadi, João P.S. Catalão. |
Record Nr. | UNINA-9910830011903321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Global journal of technology and optimization |
Pubbl/distr/stampa | Tronoh, Malaysia, : Power Control and Optimization |
Descrizione fisica | 1 online resource |
Soggetto topico |
Technology
Mathematical optimization - Computer programs |
Soggetto genere / forma | Periodicals. |
ISSN | 2229-8711 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Global journal of technology & optimization
GJTO Global journal on technology and optimization |
Record Nr. | UNINA-9910891414503321 |
Tronoh, Malaysia, : Power Control and Optimization | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multi-parametric optimization and control / / Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, Richard Oberdieck |
Autore | Pistikopoulos Efstratios N. |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 519.7 |
Soggetto topico | Mathematical optimization - Computer programs |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-26519-3
1-119-26515-0 1-119-26524-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555050103321 |
Pistikopoulos Efstratios N. | ||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multi-parametric optimization and control / / Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, Richard Oberdieck |
Autore | Pistikopoulos Efstratios N. |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 519.7 |
Soggetto topico | Mathematical optimization - Computer programs |
ISBN |
1-119-26519-3
1-119-26515-0 1-119-26524-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830392703321 |
Pistikopoulos Efstratios N. | ||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optimal control of nonsmooth distributed parameter systems / / Dan Tiba |
Autore | Tiba Dan <1953-> |
Edizione | [1st ed. 1990.] |
Pubbl/distr/stampa | Berlin : , : Springer, , [1990] |
Descrizione fisica | 1 online resource (VIII, 160 p.) |
Disciplina | 629.8312 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Control theory - Data processing
Mathematical optimization - Computer programs |
ISBN | 3-540-46755-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Elements of nonlinear analysis -- Semilinear equations -- Variational inequalities -- Free boundary problems. |
Record Nr. | UNISA-996466586803316 |
Tiba Dan <1953-> | ||
Berlin : , : Springer, , [1990] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|