Bio-design and manufacturing |
Pubbl/distr/stampa | [Singapore] : , : Springer Singapore |
Descrizione fisica | 1 online resource |
Soggetto topico |
Biomedical engineering
Biomedical materials Mechanical engineering Three-dimensional printing Biomedical Engineering Biocompatible Materials Bioprinting Printing, Three-Dimensional Enginyeria biomèdica Materials biomèdics Enginyeria mecànica Impressió 3D |
Soggetto genere / forma |
Periodical
Periodicals. Revistes electròniques. |
ISSN | 2522-8552 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti |
BDM
Biodesign and manufacturing Bio-design & manufacturing |
Record Nr. | UNINA-9910481968003321 |
[Singapore] : , : Springer Singapore | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioinspired Biomaterials : Advances in Tissue Engineering and Regenerative Medicine / / edited by Heung Jae Chun, Rui L. Reis, Antonella Motta, Gilson Khang |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 610.284 |
Collana | Advances in Experimental Medicine and Biology |
Soggetto topico |
Biomedical engineering
Regenerative medicine Tissue engineering Pharmaceutical technology Neurosciences Biochemical engineering Biomedical Engineering/Biotechnology Regenerative Medicine/Tissue Engineering Pharmaceutical Sciences/Technology Biochemical Engineering Materials biomèdics Enginyeria de teixits Medicina regenerativa |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-15-3258-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I. Novel Bioinspired Biomaterials for Regenerative Medicine -- Chapter 1. Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering -- Chapter 2. Application of Gellan Gum-based Scaffold for Regenerative Medicine -- Chapter 3. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin -- Part II. Bioinspired 3D Bioprinting Hydrogel for Regenerative Medicine -- Chapter 4. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting -- Chapter 5. 3D-Bioprinting of Tissue Models with Customized Bioinks -- Chapter 6. Visible Light-curable Hydrogel Systems for Tissue Engineering and Drug Delivery -- Part III. Regulation of Stem Cell Fate by Bioinspired Biomaterials -- Chapter 7. Scaffolds for Cartilage Regeneration: To Use or Not to Use -- Chapter 8. Bio-application of Inorganic Nanomaterials in Tissue Engineering -- Chapter 9. Directional Cell Migration Guide for Improved Tissue Regeneration -- Part IV. Cutting-Edge Enabling Technology for Regenerative Medicine -- Chapter 10. Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery -- Chapter 11. Application of Tissue Engineering and Regenerative Medicine in Maternal-fetal Medicine -- Chapter 12. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration -- Chapter 13. Protein-based Drug Delivery in Brain Tumor Therapy -- Chapter 14. Human Hair: Scaffold Materials for Regenerative Medicine. |
Record Nr. | UNINA-9910409687403321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery / / edited by Pranjal Chandra, Lalit M. Pandey |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (VIII, 254 p. 78 illus., 54 illus. in color.) |
Disciplina | 612.01583 |
Soggetto topico |
Biomedical engineering
Nanoscience Nanostructures Nanochemistry Engineering—Materials Biomedical Engineering/Biotechnology Nanoscale Science and Technology Materials Engineering Enginyeria biomèdica Materials biomèdics Interfícies biològiques |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-15-4790-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Engineered Drug Delivery Systems: Insights of Biointerface -- Chapter 2. Tissue Engineering Strategies for Tooth and Dento-alveolar Region with Engineered Biomaterial and Stem Cells -- Chapter 3. Antifouling Peptoid Biointerfaces -- Chapter 4.Structure and Rheology of Hydrogels: Applications in Drug Delivery -- Chapter 5. Surface Engineering in Wearable Sensors for Medical Diagnostic Applications -- Chapter 6. Modulation of Physicochemical properties of Polymers for Effective Insulin Delivery Systems -- Chapter 7. Organization of Bio-molecules in Bulk and over the Nano-substrate: Perspective to the Molecular Dynamics Simulations -- Chapter 8. Medical Diagnostics Based on Electrochemical Biosensor -- Chapter 9. Nanomaterial functionalization Strategies in Bio-interface Development for Modern Diagnostic Devices -- Chapter 10. Bio-nano-Interface Engineering Strategies of AuNPs Passivation for Next-generation Biomedical Applications -- Chapter 11. Electrooptical Analysis as Sensing System for Detection and Diagnostic Bacterial Cells. |
Record Nr. | UNINA-9910416106603321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomaterials in tissue engineering and regenerative medicine : from basic concepts to state of the art approaches / / edited by Birru Bhaskar [and three others] |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (587 pages) |
Disciplina | 610.284 |
Soggetto topico |
Biomedical materials
Regenerative medicine Tissue engineering Materials biomèdics Medicina regenerativa Enginyeria de teixits |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-0002-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- List of Abbreviations -- Part I: Fundamentals of Biomaterials -- 1: Biomaterials, Tissue Engineering, and Regenerative Medicine: A Brief Outline -- 1.1 Introduction -- 1.1.1 Biomaterials -- 1.1.2 Tissue Engineering -- 1.1.3 Regenerative Medicine -- References -- 2: Metallic Biomaterials in Tissue Engineering: Retrospect and Prospects -- 2.1 Introduction -- 2.1.1 Traditional Metallic Biomaterials -- 2.1.2 Advanced and Revolutionizing Metallic Biomaterials -- 2.1.3 Metallic Biomaterials and Biocompatibility -- 2.2 Properties of Metallic Biomaterials -- 2.2.1 Phase Transformation and Elastic Moduli -- 2.2.2 Porosity -- 2.2.3 Corrosion Resistance -- 2.2.4 Anti-Bacterial Properties -- 2.2.5 Bioactivation of Metallic Biomaterials -- 2.2.6 Biodegradation -- 2.2.7 MRI Compatibility -- 2.2.8 Radiopacity -- 2.3 Permanent Metallic Biomaterials -- 2.3.1 Stainless Steel -- 2.3.2 Co-Based Biomaterials -- 2.3.3 Ti-Based Biomaterials -- 2.3.4 Tantalum and Its Alloys -- 2.3.5 Zirconium Alloys -- 2.4 Biodegradable Metallic Biomaterials -- 2.4.1 Mg-Based Biomaterials -- 2.4.2 Zinc-Based Biomaterials -- 2.4.3 Iron-Based Biomaterials -- 2.5 Advanced Metallic Biomaterials -- 2.5.1 Bulk Metallic Glasses -- 2.5.2 Shape Memory Alloys -- 2.6 Tissue Engineering Applications of Metallic Biomaterials -- 2.6.1 Bone Tissue Engineering -- 2.6.2 Cartilage Tissue Engineering -- 2.6.3 Cardiovascular Tissue Engineering -- 2.6.4 Dental Tissue Engineering -- 2.7 Future Prospects of Metallic Biomaterials in Tissue Engineering -- References -- 3: Bioceramics in Tissue Engineering: Retrospect and Prospects -- 3.1 Introduction -- 3.2 Background Perspective -- 3.3 Bioactivity of Calcium Phosphate -- 3.3.1 Calcium Phosphates: Variants and Effects -- 3.3.2 CaPO4 Bioceramics in Tissue Engineering -- 3.3.3 Clinical Vignettes -- 3.4 Summary and Outlook.
References -- 4: Polymeric Biomaterials in Tissue Engineering: Retrospect and Prospects -- 4.1 Introduction -- 4.2 Extracellular Matrix-the Framework Enabling Tissue Growth -- 4.3 Polymeric Materials as Ideal Scaffold -- 4.4 Natural and Synthetic Polymers as Scaffolds -- 4.5 Natural Biodegradable Polymers -- 4.5.1 Collagen -- 4.5.2 Gelatin -- 4.5.3 Chitosan -- 4.5.4 Alginate -- 4.5.5 Fibrin -- 4.5.6 Hyaluronic Acid -- 4.5.7 Silk -- 4.6 Synthetic Biodegradable Polymers -- 4.6.1 Poly Lactic Acid (PLA) -- 4.6.2 Poly (glycolic acid) (PGA) -- 4.6.3 Poly (lactic-co-glycolic acid) (PLGA) -- 4.6.4 Poly(caprolactone) (PCL) -- 4.6.5 Poly Vinyl Alcohol (PVA) -- 4.6.6 Poly-β-hydroxybutyrate -- 4.6.7 Polyethylene Glycol-Based Polymers -- 4.7 Polymer Scaffold Fabrication Techniques -- 4.7.1 Conventional (Traditional) Manufacturing Techniques -- 4.7.2 Nano Fabrication-Based Techniques -- 4.7.3 Additive Manufacturing-Based Techniques -- 4.8 Conclusion and Perspectives -- References -- 5: Composite Biomaterials in Tissue Engineering: Retrospective and Prospects -- 5.1 Introduction -- 5.2 Bio-Composite Components: Classes and Desirable Properties -- 5.3 Strategies of Bio-Composite Development -- 5.3.1 Conventional Blending and Mixing Technique -- 5.3.2 Advanced Bio-Fabrication Methods -- 5.3.2.1 Co-electrospinning -- 5.3.2.2 Bioprinting -- 5.3.2.3 Reinforcement Methods -- 5.3.3 Nano-Particle Reinforced Bio-Composites -- 5.3.4 Surface Modifications -- 5.3.5 Surface Effects and Characterization -- 5.4 Retrospectives of Composite Biomaterials in Tissue Engineering -- 5.4.1 Composite Biomaterials for Hard Tissue Regeneration -- 5.4.1.1 Bone Tissue Regeneration -- 5.4.1.2 Dentistry -- 5.4.2 Composite Biomaterials in Soft Tissue Engineering -- 5.4.2.1 Vascular Grafting -- 5.4.2.2 Cardiac Tissue Engineering -- 5.4.2.3 Contact Lens and Cornea. 5.4.2.4 Neural Tissue Engineering -- 5.5 Bottlenecks of Composite Biomaterial Applications -- 5.6 Prospects of Composite Biomaterials -- 5.7 Conclusion -- References -- Part II: Trends in Biomaterials -- 6: Trends in Bio-Derived Biomaterials in Tissue Engineering -- 6.1 Introduction -- 6.2 Concept of Bio-Derived Biomaterials and their Applications in Tissue Engineering -- 6.3 Decellularized Extracellular Matrix (DECM) as Biomaterials -- 6.3.1 ECM and Decellularization -- 6.3.2 Methods of Decellularization -- 6.3.3 Regenerative Properties of DECM -- 6.3.4 Decellularized Material Systems: Applications in Tissue Engineering -- 6.4 Naturally Derived Biomaterials -- 6.4.1 Proteins Based Bio-Derived Biomaterials -- 6.4.1.1 Collagen -- 6.4.1.2 Gelatin -- 6.4.1.3 Fibrin -- 6.4.1.4 Silk -- 6.4.1.5 Keratin -- 6.4.2 Polysaccharides Based Bio-Derived Biomaterials -- 6.4.2.1 Glycosaminoglycans -- 6.4.2.2 Alginates -- 6.4.2.3 Agarose -- 6.4.2.4 Carrageenan -- 6.4.2.5 Chitosan -- 6.4.3 Other Bio-Derived Biomaterials -- 6.5 Microbial Derived Biopolymers -- 6.5.1 Types of Bacterial Polymers -- 6.5.2 Biosynthesis and Purification of Bacterial-Derived Polymers -- 6.5.2.1 Polyamides -- 6.5.2.2 Polyesters -- 6.5.2.3 Polysaccharides -- 6.5.3 Microbial Derived Biopolymers for Tissue Engineering -- 6.5.3.1 Poly-γ-Glutamic Acid (γ-PGA) -- 6.5.3.2 Polyhydroxyalkanoates (PHAs) -- 6.5.3.3 Polysaccharides -- 6.6 Conclusion and Future Directions -- References -- 7: Trends in Functional Biomaterials in Tissue Engineering and Regenerative Medicine -- 7.1 Functionalized Biomaterials -- 7.2 Surface Functionalization Methods -- 7.2.1 Surface Roughening and Patterning -- 7.2.2 Surface Films and Coatings -- 7.2.2.1 Physical Methods -- 7.2.2.1.1 Physical Adsorption of Active Biomolecules -- 7.2.2.1.2 Langmuir-Blodgett Method -- 7.2.2.1.3 Physical Vapor Deposition -- Evaporation. Deposition by Sputtering -- Plasma immersion ion implantation and deposition (PIIIandD) -- 7.2.2.1.4 Electrophoretic Deposition -- 7.2.2.1.5 Spraying Techniques -- 7.2.2.2 Chemical Methods -- 7.2.2.2.1 Adsorption Via Covalent Bonding -- 7.2.2.2.2 Alkali Acid Hydrolysis -- 7.2.2.2.3 Chemical Vapor Deposition -- Plasma-Enhanced Chemical Vapor Deposition -- Plasma Polymerization -- Atomic Layer Deposition -- 7.2.2.2.4 Sol-Gel Technique -- 7.2.2.2.5 Layer-by-Layer (LbL) Deposition -- 7.2.2.3 Radiation Methods -- 7.2.3 Surface Modification by Addition of Signaling Biomolecules -- 7.3 Functionalized Scaffolds Towards Organ Development -- 7.3.1 Cardiac Tissue -- 7.3.2 Liver -- 7.3.3 Lung -- 7.3.4 Bone -- 7.3.5 Dental Implants -- 7.4 Conclusion and Future Perspectives -- References -- 8: Trends in Bioactive Biomaterials in Tissue Engineering and Regenerative Medicine -- 8.1 Tissue Engineering -- 8.2 Bioactive Scaffolds -- 8.3 Incorporation of Bioactive Components -- 8.3.1 Bioactivity by Incorporation of Adhesion Sites -- 8.3.2 Nanopatterning -- 8.3.3 Bioactivity by Incorporation of Growth Factors -- 8.3.4 Bioactivity by Physiochemical Interactions -- 8.3.5 Bioactivity by Material Transformation -- 8.4 Bioactive Inorganic Biomaterials for Tissue Engineering -- 8.5 Injectable Biomaterials -- 8.6 Bioactive Scaffolds: Tissue Engineering Applications -- 8.6.1 Neural Tissue Engineering -- 8.6.2 Vascular Tissue Engineering -- 8.6.3 Cardiac Tissue Engineering -- 8.7 Biomaterial Based Stem Cell Therapy in Regenerative Medicine -- 8.8 Scaffolds for Biomolecule Delivery -- 8.8.1 Properties -- 8.9 Biomolecule Delivery Systems -- 8.9.1 Hydrogel-Based Systems -- 8.9.2 Nanoparticle Based Systems -- 8.9.3 Liposomes -- 8.9.4 Micelles -- 8.9.5 Microparticles -- 8.9.6 Dendrimers and Elastomers -- 8.9.7 Microchips -- 8.10 Scaffold Based Biomolecule Delivery. 8.10.1 Delivery of Therapeutic Drugs -- 8.10.2 Delivery of Therapeutic Cells -- 8.10.3 Scaffold Based Peptide Delivery -- 8.10.4 Scaffolds for Gene Delivery -- 8.11 Biomolecule Loaded Scaffolds in Tissue Engineering: Applications -- 8.11.1 Bone Tissue Engineering -- 8.11.2 Skin Tissue Engineering -- 8.11.3 Cartilage Tissue Engineering -- 8.12 Future Perspectives -- References -- 9: Trends in Stimuli Responsive Biomaterials in Tissue Engineering -- 9.1 Introduction -- 9.2 Stimuli Responsive Biomaterials in Tissue Engineering -- 9.2.1 Electroactive Biomaterials -- 9.2.1.1 Conducting Polymers -- 9.2.1.1.1 Conducting Polymers in Tissue Engineering -- 9.2.1.2 Piezoelectric Material -- 9.2.1.2.1 Piezoelectric Materials in Tissue Engineering -- 9.2.1.3 Electrets -- 9.2.1.3.1 Electrets in Tissue Engineering -- 9.2.1.4 Photovoltaics -- 9.2.1.4.1 Photovoltaic Materials in Tissue Engineering -- 9.2.1.5 Carbon Based Nanomaterials -- 9.2.1.5.1 Carbon Based Nanomaterials in Tissue Engineering -- 9.2.2 Magnetoresponsive Biomaterials -- 9.2.3 Thermoresponsive Biomaterials -- 9.2.4 Photoresponsive Biomaterials -- 9.2.5 Chemical Stimuli Responsive Biomaterials -- 9.2.6 Biological Stimuli Responsive Biomaterials -- 9.3 Conclusions and Future Outlook -- References -- Part III: Applications of Biomaterials -- 10: Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications -- 10.1 Introduction -- 10.2 Biomaterials for Bone Tissue Engineering -- 10.2.1 Polymers and Hydrogels -- 10.2.2 Hybrid Scaffolds in Bone Tissue Engineering -- 10.3 Applications of Tissue Engineering in Dentistry -- 10.3.1 Tooth Regeneration -- 10.3.2 Bone Regeneration in Dental Application -- 10.3.3 Enamel Regeneration -- 10.3.4 Dentin and Dental Pulp Regeneration -- 10.4 Biomaterials Used in Dentistry -- 10.5 Dental Stem Cells in Hard and Soft Tissue Engineering in Dentistry. 10.6 Advanced Tissue Engineering Strategies. |
Record Nr. | UNINA-9910483456503321 |
Gateway East, Singapore : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models / / edited by J. Miguel Oliveira, Rui L. Reis |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (VII, 175 p. 42 illus., 40 illus. in color.) |
Disciplina | 610.28 |
Collana | Advances in Experimental Medicine and Biology |
Soggetto topico |
Medicine
Regenerative medicine Tissue engineering Biomedical engineering Biomedical materials Biomedicine, general Regenerative Medicine/Tissue Engineering Biomedical Engineering and Bioengineering Biomaterials Enginyeria biomèdica Materials biomèdics Medicina regenerativa Teixit connectiu |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-36588-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Microfluidic devices and three dimensional-printing strategies for in vitro models of bone -- Microfluidics for Processing of biomaterials -- Organ-on-a-chip -- Body-on-a-chip: Current challenges -- Biomaterials and microfluidics for liver models -- Microfluidics for CNS research -- Biomaterials and microfluidics for angiogenesis research -- Biomaterials and microfluidics for drug discovery and development -- Microfluidics for diagnostics -- Nanoparticles and Microfluidic devices in cancer research. |
Record Nr. | UNINA-9910409699603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomedical microdevices |
Pubbl/distr/stampa | Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- |
Descrizione fisica | 1 online resource |
Disciplina | 610.28 |
Soggetto topico |
Biomedical materials
Biomedical engineering Microfabrication Biomatériaux Génie biomédical Enginyeria biomèdica Materials biomèdics |
Soggetto genere / forma |
Periodicals.
Revistes electròniques |
ISSN | 1572-8781 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910142801903321 |
Dordrecht ; ; Boston, : Kluwer Academic Publishers, 1998- | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomimetic biomaterials for tissue regeneration and drug delivery / / edited by Mamoni Dash |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (164 pages) : illustrations |
Disciplina | 950.05 |
Soggetto topico |
Drug delivery systems
Regeneration Drug Delivery Systems Biomimètica Materials biomèdics Medicina regenerativa Enginyeria de teixits Administració de medicaments Biònica |
Soggetto genere / forma | Llibres electrònics |
ISBN |
981-16-4566-3
981-16-4565-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910743214303321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Cell-inspired materials and engineering / / Ediotrs: Dan Ohtan Wang and Daniel Packwood |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (254 pages) |
Disciplina | 610.28 |
Collana | Fundamental Biomedical Technologies |
Soggetto topico |
Biomedical materials
Tissue engineering Regenerative medicine Enginyeria de teixits Materials biomèdics Medicina regenerativa |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-55924-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910483852303321 |
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Disordered pharmaceutical materials / / edited by Marc Descamps |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2016] |
Descrizione fisica | 1 online resource (646 p.) |
Soggetto topico |
Materials biomèdics
Biotecnologia farmacèutica Pharmaceutical biotechnology Biomedical materials |
ISBN |
3-527-65269-8
3-527-65272-8 3-527-65271-X 9783527652693 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright; Table of Contents; List of Contributors; Chapter 1: Some Facets of Molecular Disorder in Crystalline and Amorphous Pharmaceuticals; 1.1 The Crystal/Amorph Alternative; 1.2 Characteristics of the Disorder in Glass Formers; Acknowledgments; References; Chapter 2: Influence of Disorder on Dissolution; 2.1 Introduction; 2.2 Approaches to Enhance Solubility; 2.3 Measuring the Solubility Advantage of Amorphous Compounds; 2.4 Solid Dispersions; 2.5 Polymer Properties; 2.6 Drug-Polymer Interactions; 2.7 Polymer Concentration; 2.8 Other Formulation Components
2.9 Formulation Variables2.10 Reliable Measurement of Supersaturation; 2.11 Conclusion; References; Chapter 3: Crystal Imperfections in Molecular Crystals: Physical and Chemical Consequences; 3.1 Introduction; 3.2 General Aspects of Defects in Crystals; 3.3 Role of Imperfections in Reactivity and Stability - Chemistry in the Perfect and Imperfect Lattice; 3.4 Role in Physical Processes; 3.5 Concluding Remarks; References; Chapter 4: Observation and Characterization of Crystal Defects in Pharmaceutical Solids; 4.1 Introduction; 4.2 Techniques for Characterizing Defects within Crystals 4.3 Techniques for Characterizing Defects Emergent at Crystal Surfaces4.4 Techniques for Quantifying Defect Densities within Crystals; 4.5 The Complementarity of Techniques for Characterizing Defects; 4.6 Summary and Outlook; Acknowledgment; References; Chapter 5: "Enantiomeric Disorder" Pharmaceutically Oriented; 5.1 Introduction; 5.2 Introduction and Lexicon of Specific Terms Used among Chiral Molecules and Chiral Molecular Associations; 5.3 Restrictions in Symmetry Operations Inside Crystal Lattices with an Enantiomeric Excess Different from Zero 5.4 Impact of Chirality on Phase Diagrams and the Gibbs-Scott Phase Rule5.5 Competitions between Solid Solutions (Impact of Polymorphism on Solid Solutions) Application: Preferential Enrichment; 5.6 Disorder at Level 3 Multiepitaxy between Enantiomers; 5.7 Conclusion and Perspectives; Acknowledgments; References; Chapter 6: Conformational Disorder and Atropisomerism in Pharmaceutical Compounds; 6.1 Premise: Conformational Energy Barriers in Flexible Molecules; 6.2 Conformational Topology and Crystallization of Chain Molecules 6.3 Conformational Polymorphism and Crystallization of Flexible Molecules6.4 Conformational Flexibility of Ring Molecules: Carbohydrates; 6.5 Hindered Conformational Isomerism: Atropisomerism; 6.6 Conclusion; Acknowledgments; References; Chapter 7: Tautomerism in Drug Delivery; 7.1 Broadband Dielectric Spectroscopy as a Powerful Tool for Investigating the Tautomerization Process in Condensed Materials; 7.2 Tautomerization Kinetics of Supercooled Pharmaceuticals; Acknowledgment; References; Chapter 8: Disorders in Pharmaceutical Polymers; 8.1 Polymers Architectures - Structural Disorders 8.2 Structural States and Phases Transitions |
Record Nr. | UNINA-9910136779403321 |
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Disordered pharmaceutical materials / / edited by Marc Descamps |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2016] |
Descrizione fisica | 1 online resource (646 p.) |
Soggetto topico |
Materials biomèdics
Biotecnologia farmacèutica Pharmaceutical biotechnology Biomedical materials |
ISBN |
3-527-65269-8
3-527-65272-8 3-527-65271-X 9783527652693 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright; Table of Contents; List of Contributors; Chapter 1: Some Facets of Molecular Disorder in Crystalline and Amorphous Pharmaceuticals; 1.1 The Crystal/Amorph Alternative; 1.2 Characteristics of the Disorder in Glass Formers; Acknowledgments; References; Chapter 2: Influence of Disorder on Dissolution; 2.1 Introduction; 2.2 Approaches to Enhance Solubility; 2.3 Measuring the Solubility Advantage of Amorphous Compounds; 2.4 Solid Dispersions; 2.5 Polymer Properties; 2.6 Drug-Polymer Interactions; 2.7 Polymer Concentration; 2.8 Other Formulation Components
2.9 Formulation Variables2.10 Reliable Measurement of Supersaturation; 2.11 Conclusion; References; Chapter 3: Crystal Imperfections in Molecular Crystals: Physical and Chemical Consequences; 3.1 Introduction; 3.2 General Aspects of Defects in Crystals; 3.3 Role of Imperfections in Reactivity and Stability - Chemistry in the Perfect and Imperfect Lattice; 3.4 Role in Physical Processes; 3.5 Concluding Remarks; References; Chapter 4: Observation and Characterization of Crystal Defects in Pharmaceutical Solids; 4.1 Introduction; 4.2 Techniques for Characterizing Defects within Crystals 4.3 Techniques for Characterizing Defects Emergent at Crystal Surfaces4.4 Techniques for Quantifying Defect Densities within Crystals; 4.5 The Complementarity of Techniques for Characterizing Defects; 4.6 Summary and Outlook; Acknowledgment; References; Chapter 5: "Enantiomeric Disorder" Pharmaceutically Oriented; 5.1 Introduction; 5.2 Introduction and Lexicon of Specific Terms Used among Chiral Molecules and Chiral Molecular Associations; 5.3 Restrictions in Symmetry Operations Inside Crystal Lattices with an Enantiomeric Excess Different from Zero 5.4 Impact of Chirality on Phase Diagrams and the Gibbs-Scott Phase Rule5.5 Competitions between Solid Solutions (Impact of Polymorphism on Solid Solutions) Application: Preferential Enrichment; 5.6 Disorder at Level 3 Multiepitaxy between Enantiomers; 5.7 Conclusion and Perspectives; Acknowledgments; References; Chapter 6: Conformational Disorder and Atropisomerism in Pharmaceutical Compounds; 6.1 Premise: Conformational Energy Barriers in Flexible Molecules; 6.2 Conformational Topology and Crystallization of Chain Molecules 6.3 Conformational Polymorphism and Crystallization of Flexible Molecules6.4 Conformational Flexibility of Ring Molecules: Carbohydrates; 6.5 Hindered Conformational Isomerism: Atropisomerism; 6.6 Conclusion; Acknowledgments; References; Chapter 7: Tautomerism in Drug Delivery; 7.1 Broadband Dielectric Spectroscopy as a Powerful Tool for Investigating the Tautomerization Process in Condensed Materials; 7.2 Tautomerization Kinetics of Supercooled Pharmaceuticals; Acknowledgment; References; Chapter 8: Disorders in Pharmaceutical Polymers; 8.1 Polymers Architectures - Structural Disorders 8.2 Structural States and Phases Transitions |
Record Nr. | UNINA-9910830561803321 |
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Company KGaA, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|