top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910133643703321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910830441203321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling : from classical to multi-scale techniques / / edited by Miguel Vaz Junior, Eduardo A. de Souza Neto, and Pablo A. Munoz-Rojas
Advanced computational materials modeling : from classical to multi-scale techniques / / edited by Miguel Vaz Junior, Eduardo A. de Souza Neto, and Pablo A. Munoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JuniorMiguel
NetoE. A. de Souza (Eduardo)
Munoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910877031903321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced materials modelling for structures / / Holm Altenbach, Serge Kruch, editors
Advanced materials modelling for structures / / Holm Altenbach, Serge Kruch, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin ; ; Heidelberg, : Springer, 2013
Descrizione fisica 1 online resource (xxii, 361 pages) : illustrations (some color)
Disciplina 621.811
Altri autori (Persone) AltenbachHolm <1956->
KruchSerge
Collana Advanced structured materials
Soggetto topico Materials - Mathematical models
Mechanical engineering
Surfaces (Physics)
ISBN 1-299-33579-9
3-642-35167-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Micromechanical Modelling of Void Healing -- Surface Viscoelasticity and Effective Properties of Materials and Structures -- High-temperature inelastic behavior of the austenitic steel AISI type 316 -- Finite Element Modelling of the Thermo‐Mechanical Behaviour of a 9Cr Martensitic Steel -- Enhanced Global Digital Image Correlation for accurate measurement of microbeam bending -- An Investigation of the Mechanical Properties of Open Cell Aluminium Foam Struts: Microtensile Testing and Modelling -- Multiscale Optimization of Joints of Dissimilar Materials in Nature and Lessons for Engineering Applications -- Some consequences of stress range dependent constitutive models in creep -- Micro-mechanical numerical studies on the stress state dependence of ductile damage -- Characterization of load sensitive fatigue crack initiation in Ti-alloys using crystal plasticity based FE simulations -- Creep Crack Growth Modelling in 316H Stainless Steel -- On the non saturation of cyclic plasticity law: a power law for kinematic hardening -- Micromechanical studies of deformation, stress and crack nucleation in polycrystal materials -- Modeling of coupled dissipative phenomena in engineering materials -- Damage Deactivation of Engineering Materials and Structures -- Effect of  orientation and overaging on the creep and creep crack growth properties of 2xxx aluminium alloy forgings -- Dislocation-Induced Internal Stresses -- A strain rate sensitive formulation to account for the effect of γ’ rafting on the high temperature mechanical properties of Ni-based single crystal superalloys.
Record Nr. UNINA-9910437817403321
Berlin ; ; Heidelberg, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Archives of computational materials science and surface engineering
Archives of computational materials science and surface engineering
Pubbl/distr/stampa Gliwice, : Association of Computational Materials Science and Surface Engineering
Descrizione fisica 1 online resource
Soggetto topico Surfaces (Technology)
Materials - Computer simulation
Materials - Mathematical models
Soggetto genere / forma Periodicals.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Computational materials science and surface engineering
ACMSSE
Record Nr. UNINA-9910895780703321
Gliwice, : Association of Computational Materials Science and Surface Engineering
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational materials science : an introduction / / June Gunn Lee
Computational materials science : an introduction / / June Gunn Lee
Autore Lee June Gunn
Edizione [Second edition.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2017]
Descrizione fisica 1 online resource (376 pages) : illustrations
Disciplina 620.1/10113
Soggetto topico Materials - Mathematical models
Materials - Data processing
Molecular dynamics - Mathematics
ISBN 1-4987-4975-5
1-000-00523-2
1-315-36842-0
1-4987-4976-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto chapter 1. Introduction -- chapter 2. Molecular dynamics -- chapter 3. MD exercises with XMD and LAMMPS -- chapter 4. First-principles methods -- chapter 5. Density functional theory -- chapter 6. Treating solids -- chapter 7. DFT exercises with quantum espresso -- chapter 8. DFT exercises with VASP -- chapter 9. DFT exercises with MedeA-VASP.
Record Nr. UNINA-9910153184203321
Lee June Gunn  
Boca Raton : , : CRC Press, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational materials science : from basic principles to material properties / W. Hergert, A. Ernst, M. Däne (eds.)
Computational materials science : from basic principles to material properties / W. Hergert, A. Ernst, M. Däne (eds.)
Pubbl/distr/stampa Berlin ; New York : Springer-Verlag, c2004
Descrizione fisica xvi, 320 p. : ill. (some col.) ; 24 cm
Disciplina 620.110113
Altri autori (Persone) Hergert, Wolframauthor
Ernst, Arthurauthor
Däne, Markus
Collana Lecture notes in physics, 0075-8450 ; 642
Soggetto topico Materials - Computer simulation
Materials - Mathematical models
ISBN 3540210512
Classificazione LC TA404.23
53.7
53.8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000650349707536
Berlin ; New York : Springer-Verlag, c2004
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
Soggetto genere / forma Electronic books.
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910452446603321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910779507703321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mechanics research trends / / Hans P. Berger, editor
Computational mechanics research trends / / Hans P. Berger, editor
Edizione [1st ed.]
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910820921903321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui