top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910133643703321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910830441203321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas
Edizione [4th ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, c2011
Descrizione fisica 1 online resource (452 p.)
Disciplina 620.11015118
Altri autori (Persone) Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo)
Muñoz-RojasPablo A
Soggetto topico Materials - Mathematical models
Finite element method
ISBN 1-283-30241-1
9786613302410
3-527-63232-8
3-527-63231-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation
2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen
2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models
3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales
4.1.4 Computational Homogenization and Its Application to Damage and Fracture
Record Nr. UNINA-9910840864303321
Weinheim, Germany, : Wiley-VCH, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational materials science : an introduction / / June Gunn Lee
Computational materials science : an introduction / / June Gunn Lee
Autore Lee June Gunn
Edizione [Second edition.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2017]
Descrizione fisica 1 online resource (376 pages) : illustrations
Disciplina 620.1/10113
Soggetto topico Materials - Mathematical models
Materials - Data processing
Molecular dynamics - Mathematics
ISBN 1-4987-4975-5
1-000-00523-2
1-315-36842-0
1-4987-4976-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto chapter 1. Introduction -- chapter 2. Molecular dynamics -- chapter 3. MD exercises with XMD and LAMMPS -- chapter 4. First-principles methods -- chapter 5. Density functional theory -- chapter 6. Treating solids -- chapter 7. DFT exercises with quantum espresso -- chapter 8. DFT exercises with VASP -- chapter 9. DFT exercises with MedeA-VASP.
Record Nr. UNINA-9910153184203321
Lee June Gunn  
Boca Raton : , : CRC Press, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational materials science : from basic principles to material properties / W. Hergert, A. Ernst, M. Däne (eds.)
Computational materials science : from basic principles to material properties / W. Hergert, A. Ernst, M. Däne (eds.)
Pubbl/distr/stampa Berlin ; New York : Springer-Verlag, c2004
Descrizione fisica xvi, 320 p. : ill. (some col.) ; 24 cm
Disciplina 620.110113
Altri autori (Persone) Hergert, Wolframauthor
Ernst, Arthurauthor
Däne, Markus
Collana Lecture notes in physics, 0075-8450 ; 642
Soggetto topico Materials - Computer simulation
Materials - Mathematical models
ISBN 3540210512
Classificazione LC TA404.23
53.7
53.8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000650349707536
Berlin ; New York : Springer-Verlag, c2004
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
Soggetto genere / forma Electronic books.
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910452446603321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910779507703321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor
Edizione [1st ed.]
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (608 p.)
Disciplina 621.01/51
Altri autori (Persone) BergerHans P
Collana Computer science, technology and applications
Soggetto topico Materials - Mathematical models
Materials - Computer simulation
Mechanical engineering - Mathematics
Mechanics, Analytic
ISBN 1-61122-889-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests""
""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle""
""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm""
""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction""
""Statement of the Problem""
Record Nr. UNINA-9910820921903321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Direct methods for limit states in structures and materials / / Konstantinos Spiliopoulos, Dieter Weichert, editors
Direct methods for limit states in structures and materials / / Konstantinos Spiliopoulos, Dieter Weichert, editors
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Dordrecht [Netherlands] : , : Springer, , 2014
Descrizione fisica 1 online resource (x, 278 pages) : illustrations (some color)
Disciplina 620.1
Collana Gale eBooks
Soggetto topico Plastic analysis (Engineering) - Mathematical models
Materials - Mathematical models
ISBN 94-007-6827-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Preface -- Finite element Limit Analysis and porous Mises-Schleicher material;  Franck Pastor, Joseph Pastor and Djimedo Kondo -- Limit Analysis: A Layered Approach for Composite Laminates; Aurora Angela Pisano, Paolo Fuschi, Dario De Domenico -- Shakedown analysis of kinematically hardening structures in n-dimensional loading spaces; J.-W. Simon -- Computation of bounds for anchor problems in limit analysis and decomposition techniques;  J. J. Munoz, N.  Rabiei , A. Lyamin, and A. Huerta -- Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method; Thanh Ngọc Trần and M. Staat -- Progress in plastic design of composites;  Min Chen, Abdelkader Hachemi -- The Residual Stress Decomposition Method (RSDM): A novel direct method to predict cyclic elastoplastic states; Konstantinos V. Spiliopoulos and Konstantinos D. Panagiotou -- Use of layout optimization to solve large-scale limit analysis and design problems;  Matthew Gilbert, Colin Smith, Samuel Hawksbee and Andrew Tyas -- Macroscopic modeling of porous non associated frictional materials; Long Cheng, Gery de Saxce and Djimedo Kondo -- Direct evaluation of the post-buckling behavior of slender structures through a numerical asymptotic formulation; Giovanni Garcea, Antonio Bilotta, Antonio Madeo and Raffaele Casciaro -- A Quasi-Periodic Approximation based Model Reduction for Limit Analysis of Micropile Groups; Zied Kammoun, Joseph Pastor and Hichem Smaoui -- The Anderson-Bishop Problem – Thermal Ratchetting of a Polycrystalline Metals;  A.R.S. Ponter and A.C.F. Cocks -- Recent development and application of the Linear Matching Method for design limits in plasticity and creep: an overview; Haofeng Chen and Weihang Chen.
Record Nr. UNINA-9910299731603321
Dordrecht [Netherlands] : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Discrete element model and simulation of continuous materials behavior set . Volume 1 Discrete element method to model 3D continuous materials / / Mohamed Jebahi [and three others]
Autore Jebahi Mohamed
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Descrizione fisica 1 online resource (198 p.)
Disciplina 620.11015118
Collana Numerical Methods in Engineering Series
Soggetto topico Materials - Mathematical models
Discrete element method
ISBN 1-119-10275-8
1-119-10304-5
1-119-10291-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; Introduction; I.1. Toward discrete element modeling of continuous materials; I.2. Scope and objective; I.3. Organization; 1: State of the Art: Discrete Element Modeling; 1.1. Introduction; 1.2. Classification of discrete methods; 1.2.1. Quantum mechanical methods; 1.2.2. Atomistic methods; 1.2.3. Mesoscopic discrete methods; 1.2.3.1. Lattice methods; 1.2.3.2. Smooth contact particle methods; 1.2.3.3. Non-smooth contact particle models; 1.2.3.4. Hybrid lattice-particle models
1.3. Discrete element method for continuous materials1.4. Discrete-continuum transition: macroscopic variables; 1.4.1. Stress tensor for discrete systems; 1.4.2. Strain tensor for discrete systems; 1.4.2.1. Equivalent continuum strains; 1.4.2.2. Best-fit strains; 1.4.2.3. Satake strain; 1.5. Conclusion; 2: Discrete Element Modeling of Mechanical Behavior of Continuous Materials; 2.1. Introduction; 2.2. Explicit dynamic algorithm; 2.3. Construction of the discrete domain; 2.3.1. The cooker compaction algorithm; 2.3.1.1. Stopping criterion of compaction process; 2.3.1.2. Filling process
2.3.1.3. Overlapping removing2.3.2. Geometrical characterization of the discrete domain; 2.3.2.1. Geometrical isotropy and granulometry; 2.3.2.2. Average coordination number; 2.3.2.3. Discrete domain fineness; 2.4. Mechanical behavior modeling; 2.4.1. Cohesive beam model; 2.4.1.1. Analytical model; 2.4.1.2. Strain energy computation; 2.4.2. Calibration of the cohesive beam static parameters; 2.4.2.1. Quasistatic tensile test description; 2.4.2.1.1. From discrete to continuous geometry; 2.4.2.1.2. Loading; 2.4.2.1.3. EM and νM computation; 2.4.2.2. Parametric study
2.4.2.2.1. Microscopic Poisson's ratio influence2.4.2.2.2. Microscopic Young's modulus influence; 2.4.2.2.3. Microscopic radius ratio influence; 2.4.2.3. Calibration method for static parameters; 2.4.2.4. Convergence study; 2.4.2.5. Validation; 2.4.3. Calibration of the cohesive beam dynamic parameters; 2.4.3.1. Calibration method for dynamic parameters; 2.4.3.2. Validation; 2.5. Conclusion; 3: Discrete Element Modeling of Thermal Behavior of Continuous Materials; 3.1. Introduction; 3.2. General description of the method; 3.2.1. Characterization of field variable variation in discrete domain
3.2.2. Application to heat conduction3.3. Thermal conduction in 3D ordered discrete domains; 3.4. Thermal conduction in 3D disordered discrete domains; 3.4.1. Determination of local parameters for each discrete element; 3.4.2. Calculation of discrete element transmission surface; 3.4.3. Calculation of local volume fraction; 3.4.4. Interactions between each discrete element and its neighbors; 3.5. Validation; 3.5.1. Cylindrical beam in contact with a hot plane; 3.5.2. Dynamically heated sheet; 3.6. Conclusion; 4: Discrete Element Modeling of Brittle Fracture; 4.1. Introduction
4.2. Fracture model based on the cohesive beam bonds
Record Nr. UNINA-9910132269503321
Jebahi Mohamed  
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui