Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH, c2011 |
Descrizione fisica | 1 online resource (452 p.) |
Disciplina | 620.11015118 |
Altri autori (Persone) |
Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo) Muñoz-RojasPablo A |
Soggetto topico |
Materials - Mathematical models
Finite element method |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-30241-1
9786613302410 3-527-63232-8 3-527-63231-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation 2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen 2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models 3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales 4.1.4 Computational Homogenization and Its Application to Damage and Fracture |
Record Nr. | UNINA-9910133643703321 |
Weinheim, Germany, : Wiley-VCH, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computational materials modeling [[electronic resource] ] : from classical to multi-scale techniques / / edited by Miguel Vaz Júnior, Eduardo A. de Souza Neto, and Pablo A. Muñoz-Rojas |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH, c2011 |
Descrizione fisica | 1 online resource (452 p.) |
Disciplina | 620.11015118 |
Altri autori (Persone) |
Vaz JúniorMiguel
NetoE. A. de Souza (Eduardo) Muñoz-RojasPablo A |
Soggetto topico |
Materials - Mathematical models
Finite element method |
ISBN |
1-283-30241-1
9786613302410 3-527-63232-8 3-527-63231-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation 2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen 2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models 3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales 4.1.4 Computational Homogenization and Its Application to Damage and Fracture |
Record Nr. | UNINA-9910830441203321 |
Weinheim, Germany, : Wiley-VCH, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computational materials modeling : from classical to multi-scale techniques / / edited by Miguel Vaz Junior, Eduardo A. de Souza Neto, and Pablo A. Munoz-Rojas |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH, c2011 |
Descrizione fisica | 1 online resource (452 p.) |
Disciplina | 620.11015118 |
Altri autori (Persone) |
Vaz JuniorMiguel
NetoE. A. de Souza (Eduardo) Munoz-RojasPablo A |
Soggetto topico |
Materials - Mathematical models
Finite element method |
ISBN |
1-283-30241-1
9786613302410 3-527-63232-8 3-527-63231-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques; Contents; Preface; List of Contributors; 1 Materials Modeling - Challenges and Perspectives; 1.1 Introduction; 1.2 Modeling Challenges and Perspectives; 1.2.1 Mechanical Degradation and Failure of Ductile Materials; 1.2.1.1 Remarks; 1.2.2 Modeling of Cellular Structures; 1.2.2.1 Remarks; 1.2.3 Multiscale Constitutive Modeling; 1.3 Concluding Remarks; Acknowledgments; References; 2 Local and Nonlocal Modeling of Ductile Damage; 2.1 Introduction; 2.2 Continuum Damage Mechanics; 2.2.1 Basic Concepts of CDM
2.2.2 Ductile Plastic Damage2.3 Lemaitre's Ductile Damage Model; 2.3.1 Original Model; 2.3.1.1 The Elastic State Potential; 2.3.1.2 The Plastic State Potential; 2.3.1.3 The Dissipation Potential; 2.3.1.4 Evolution of Internal Variables; 2.3.2 Principle of Maximum Inelastic Dissipation; 2.3.3 Assumptions Behind Lemaitre's Model; 2.4 Modified Local Damage Models; 2.4.1 Lemaitre's Simplified Damage Model; 2.4.1.1 Constitutive Model; 2.4.1.2 Numerical Implementation; 2.4.2 Damage Model with Crack Closure Effect; 2.4.2.1 Constitutive Model; 2.4.2.2 Numerical Implementation 2.5 Nonlocal Formulations2.5.1 Aspects of Nonlocal Averaging; 2.5.1.1 The Averaging Operator; 2.5.1.2 Weight Functions; 2.5.2 Classical Nonlocal Models of Integral Type; 2.5.2.1 Nonlocal Formulations for Lemaitre's Simplified Model; 2.5.3 Numerical Implementation of Nonlocal Integral Models; 2.5.3.1 Numerical Evaluation of the Averaging Integral; 2.5.3.2 Global Version of the Elastic Predictor/Return Mapping Algorithm; 2.6 Numerical Analysis; 2.6.1 Axisymmetric Analysis of a Notched Specimen; 2.6.2 Flat Grooved Plate in Plane Strain; 2.6.3 Upsetting of a Tapered Specimen 2.6.3.1 Damage Prediction Using the Lemaitre's Simplified Model2.6.3.2 Damage Prediction Using the Lemaitre's Model with Crack Closure Effect; 2.7 Concluding Remarks; Acknowledgments; References; 3 Recent Advances in the Prediction of the Thermal Properties of Metallic Hollow Sphere Structures; 3.1 Introduction; 3.2 Methodology; 3.2.1 Lattice Monte Carlo Method; 3.2.2 Finite Element Method; 3.2.2.1 Basics of Heat Transfer; 3.2.2.2 Weighted Residual Method; 3.2.2.3 Discretization and Principal Finite Element Equation; 3.2.3 Numerical Calculation Models 3.3 Finite Element Analysis on Regular Structures3.4 Finite Element Analysis on Cubic-Symmetric Models; 3.5 LMC Analysis of Models of Cross Sections; 3.5.1 Modeling; 3.5.2 Results; 3.6 Computed Tomography Reconstructions; 3.6.1 Computed Tomography; 3.6.2 Numerical Analysis; 3.6.2.1 Microstructure; 3.6.2.2 Mesostructure; 3.6.3 Results; 3.7 Conclusions; References; 4 Computational Homogenization for Localization and Damage; 4.1 Introduction; 4.1.1 Mechanics Across the Scales; 4.1.2 Some Historical Notes on Homogenization; 4.1.3 Separation of Scales 4.1.4 Computational Homogenization and Its Application to Damage and Fracture |
Record Nr. | UNINA-9910877031903321 |
Weinheim, Germany, : Wiley-VCH, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced materials modelling for structures / / Holm Altenbach, Serge Kruch, editors |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg, : Springer, 2013 |
Descrizione fisica | 1 online resource (xxii, 361 pages) : illustrations (some color) |
Disciplina | 621.811 |
Altri autori (Persone) |
AltenbachHolm <1956->
KruchSerge |
Collana | Advanced structured materials |
Soggetto topico |
Materials - Mathematical models
Mechanical engineering Surfaces (Physics) |
ISBN |
1-299-33579-9
3-642-35167-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Micromechanical Modelling of Void Healing -- Surface Viscoelasticity and Effective Properties of Materials and Structures -- High-temperature inelastic behavior of the austenitic steel AISI type 316 -- Finite Element Modelling of the Thermo‐Mechanical Behaviour of a 9Cr Martensitic Steel -- Enhanced Global Digital Image Correlation for accurate measurement of microbeam bending -- An Investigation of the Mechanical Properties of Open Cell Aluminium Foam Struts: Microtensile Testing and Modelling -- Multiscale Optimization of Joints of Dissimilar Materials in Nature and Lessons for Engineering Applications -- Some consequences of stress range dependent constitutive models in creep -- Micro-mechanical numerical studies on the stress state dependence of ductile damage -- Characterization of load sensitive fatigue crack initiation in Ti-alloys using crystal plasticity based FE simulations -- Creep Crack Growth Modelling in 316H Stainless Steel -- On the non saturation of cyclic plasticity law: a power law for kinematic hardening -- Micromechanical studies of deformation, stress and crack nucleation in polycrystal materials -- Modeling of coupled dissipative phenomena in engineering materials -- Damage Deactivation of Engineering Materials and Structures -- Effect of orientation and overaging on the creep and creep crack growth properties of 2xxx aluminium alloy forgings -- Dislocation-Induced Internal Stresses -- A strain rate sensitive formulation to account for the effect of γ’ rafting on the high temperature mechanical properties of Ni-based single crystal superalloys. |
Record Nr. | UNINA-9910437817403321 |
Berlin ; ; Heidelberg, : Springer, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Archives of computational materials science and surface engineering |
Pubbl/distr/stampa | Gliwice, : Association of Computational Materials Science and Surface Engineering |
Descrizione fisica | 1 online resource |
Soggetto topico |
Surfaces (Technology)
Materials - Computer simulation Materials - Mathematical models |
Soggetto genere / forma | Periodicals. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Computational materials science and surface engineering
ACMSSE |
Record Nr. | UNINA-9910895780703321 |
Gliwice, : Association of Computational Materials Science and Surface Engineering | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational materials science : an introduction / / June Gunn Lee |
Autore | Lee June Gunn |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2017] |
Descrizione fisica | 1 online resource (376 pages) : illustrations |
Disciplina | 620.1/10113 |
Soggetto topico |
Materials - Mathematical models
Materials - Data processing Molecular dynamics - Mathematics |
ISBN |
1-4987-4975-5
1-000-00523-2 1-315-36842-0 1-4987-4976-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | chapter 1. Introduction -- chapter 2. Molecular dynamics -- chapter 3. MD exercises with XMD and LAMMPS -- chapter 4. First-principles methods -- chapter 5. Density functional theory -- chapter 6. Treating solids -- chapter 7. DFT exercises with quantum espresso -- chapter 8. DFT exercises with VASP -- chapter 9. DFT exercises with MedeA-VASP. |
Record Nr. | UNINA-9910153184203321 |
Lee June Gunn | ||
Boca Raton : , : CRC Press, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational materials science : from basic principles to material properties / W. Hergert, A. Ernst, M. Däne (eds.) |
Pubbl/distr/stampa | Berlin ; New York : Springer-Verlag, c2004 |
Descrizione fisica | xvi, 320 p. : ill. (some col.) ; 24 cm |
Disciplina | 620.110113 |
Altri autori (Persone) |
Hergert, Wolframauthor
Ernst, Arthurauthor Däne, Markus |
Collana | Lecture notes in physics, 0075-8450 ; 642 |
Soggetto topico |
Materials - Computer simulation
Materials - Mathematical models |
ISBN | 3540210512 |
Classificazione |
LC TA404.23
53.7 53.8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000650349707536 |
Berlin ; New York : Springer-Verlag, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (608 p.) |
Disciplina | 621.01/51 |
Altri autori (Persone) | BergerHans P |
Collana | Computer science, technology and applications |
Soggetto topico |
Materials - Mathematical models
Materials - Computer simulation Mechanical engineering - Mathematics Mechanics, Analytic |
Soggetto genere / forma | Electronic books. |
ISBN | 1-61122-889-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests"" ""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle"" ""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm"" ""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction"" ""Statement of the Problem"" |
Record Nr. | UNINA-9910452446603321 |
Hauppauge, N.Y., : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational mechanics research trends [[electronic resource] /] / Hans P. Berger, editor |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (608 p.) |
Disciplina | 621.01/51 |
Altri autori (Persone) | BergerHans P |
Collana | Computer science, technology and applications |
Soggetto topico |
Materials - Mathematical models
Materials - Computer simulation Mechanical engineering - Mathematics Mechanics, Analytic |
ISBN | 1-61122-889-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests"" ""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle"" ""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm"" ""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction"" ""Statement of the Problem"" |
Record Nr. | UNINA-9910779507703321 |
Hauppauge, N.Y., : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational mechanics research trends / / Hans P. Berger, editor |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, c2010 |
Descrizione fisica | 1 online resource (608 p.) |
Disciplina | 621.01/51 |
Altri autori (Persone) | BergerHans P |
Collana | Computer science, technology and applications |
Soggetto topico |
Materials - Mathematical models
Materials - Computer simulation Mechanical engineering - Mathematics Mechanics, Analytic |
ISBN | 1-61122-889-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration""
""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests"" ""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle"" ""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm"" ""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction"" ""Statement of the Problem"" |
Record Nr. | UNINA-9910820921903321 |
Hauppauge, N.Y., : Nova Science Publishers, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|