top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai
Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (388 pages)
Disciplina 780
Soggetto topico Mathematicians
Anàlisi matemàtica
Teoria de grups
Matemàtics
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-031-05331-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- On the Joint Spectral Radius -- 1 Introduction -- 2 Extremal Norms and Barabanov Norms -- 3 Explicit Bounds for Theorem 2 -- 4 Explicit Bounds for Bochi's Inequalities -- 5 Ultrametric Complete Valued Fields -- References -- The Failure of the Fractal Uncertainty Principle for the Walsh-Fourier Transform -- 1 The Fractal Uncertainty Principle for the Fourier Transform -- 2 The Walsh Transform -- 3 The Main Result -- 4 Proofs -- References -- The Continuous Formulation of Shallow Neural Networks as Wasserstein-Type Gradient Flows -- 1 Introduction -- 2 Shallow Neural Network and Gradient Flows -- 2.1 The μ Formulation -- 2.2 Comparison Between the Continuous and Discrete Model -- Consistency -- 2.3 The (ρ, H) Formulation -- 3 PDE Formulations -- 3.1 Gradient Flow in the μ Formulation -- 3.2 A First PDE Approach in the (ρ, H) Formulation -- Separating Variables -- Transporting Along the Flow of ρt -- 3.3 A Gradient Flow in the (ρ, H) Formulation via Propagation of Chaos -- 4 Regularized Problems -- 4.1 Heat Regularization -- 4.2 The Porous Medium Regularization -- 4.3 An Observation Without Regularization -- 5 Open Questions -- 5.1 Regularity and Convergence -- 5.2 Multilayer Neural Networks -- References -- On the Origins, Nature, and Impact of Bourgain's Discretized Sum-Product Theorem -- 1 Overture -- 2 Origins: Kakeya-Besicovitch Problem+ -- 2.1 Some Fundamental Properties of Plane Sets of Fractional Dimension -- 2.2 Besicovitch Type Maximal Operators and Applications to Fourier Analysis -- 2.3 Balog-Szemerédi-Gowers Lemma -- 2.4 On the Dimension of Kakeya Sets and Related Maximal Inequalities -- 3 Sum-Product Phenomena and the Labyrinth of the Continuum -- 3.1 Freiman's Theorem and Ruzsa's Calculus -- 3.2 Sum-Product Phenomena and Incidence Geometry -- Crossing Number Inequality -- Szemerédi-Trotter Theorem.
Proof of Sum-Product Inequality -- 3.3 On the Erdös-Volkmann and Katz-Tao Discretized Ring Conjectures -- Erdös-Volkmann Problem -- Katz-Tao Discretized Ring Conjecture -- Labyrinth of the Continuum -- 3.4 A Sum-Product Estimate in Finite Fields and Applications -- 4 Discrete and Continuous Variations on the Expanding Theme -- 4.1 Bemerkung über den Inhalt von Punktmengen -- 4.2 Sur le problème de la mesure -- 4.3 Ramanujan-Selberg Conjecture -- 4.4 Expanders -- 4.5 Superstrong Approximation -- 4.6 On the Spectral Gap for Finitely Generated Subgroups of SU(d) -- 5 Coda -- References -- Cartan Covers and Doubling Bernstein-Type Inequalities on Analytic Subsets of C2 -- 1 Introduction -- 2 Cartan's Estimate -- 3 Bernstein Exponent and Number of Zeros -- 4 Weierstrass' Preparation Theorem and Bernstein Exponents -- 5 Resultants -- 6 Refinement of the Assumption (1) -- 7 Proofs of Theorems A, B, and C -- References -- A Weighted Prékopa-Leindler Inequality and Sumsets withQuasicubes -- 1 Introduction -- 2 A Weighted Discrete Prékopa-Leindler Inequality -- 3 Proof of the Main Theorem -- References -- Equidistribution of Affine Random Walks on Some Nilmanifolds -- 1 Introduction -- 1.1 Quantitative Equidistribution -- 1.2 Statement of the Main Result -- 1.3 The Case of a Torus -- 1.4 Consequences of the Main Theorem -- 1.5 Idea of the Proof -- 2 Examples -- 2.1 Heisenberg Nilmanifold -- 2.2 Heisenberg Nilmanifold over Number Fields -- 2.3 A Non-semisimple Group of Toral Automorphisms -- 2.4 A Non-example -- 3 The Setup -- 3.1 Hölder Functions -- 4 The Main Argument -- 4.1 Principal Torus Bundle -- 4.2 Fourier Transform -- 4.3 Essential Growth Rate -- 4.4 The Cauchy-Schwarz Argument -- 4.5 Proof of the Key Proposition -- 5 Proof of the Main Theorems -- Appendix A: A Large Deviation Estimate -- Appendix B: The Case of a Torus.
B.1 Multiplicative Convolutions in Simple Algebras -- B.2 Fourier Decay for Linear Random Walks -- B.3 Proof of Theorems B.1 and B.2 -- References -- Logarithmic Quantum Dynamical Bounds for Arithmetically Defined Ergodic Schrödinger Operators with Smooth Potentials -- 1 Introduction -- 2 Preliminaries -- 2.1 Schrödinger Operators and Transfer Matrices -- 2.2 Transport Exponents -- 2.3 Semialgebraic Sets -- 2.4 Large Deviation Theorems -- 3 Transport Exponents -- 4 Semialgebraic Sets -- 5 Technical Lemmas -- 6 The Case ν= 1 -- 7 The Case ν> -- 1 -- 8 The Analytic Case -- 9 The Skew-Shift Case, ν> -- 1 -- References -- The Slicing Problem by Bourgain -- 1 Introduction -- 2 The Isotropic Position -- 3 Distribution of Volume in Convex Bodies -- 4 Bound for the Isotropic Constant -- References -- On the Work of Jean Bourgain in Nonlinear Dispersive Equations -- 1 Introduction -- 2 Nonlinear Dispersive Equations: The Well-Posedness Theory Before Bourgain -- 3 Bourgain's Transformative Work on the Well-Posedness Theory of Dispersive Equations -- 4 A Quick Sampling of Some of the Other Groundbreaking Contributions of Bourgain to Nonlinear Dispersive Equations -- 4.1 Gibbs Measure Associated to Periodic (NLS) -- 4.2 Bourgain's ``High-Low Decomposition'' -- 4.3 Bourgain's Work on the Defocusing Energy Critical (NLS) -- 5 Conclusion -- References -- On Trace Sets of Restricted Continued Fraction Semigroups -- 1 Introduction -- 1.1 McMullen's Arithmetic Chaos Conjecture -- 1.2 Thin Semigroups -- 1.3 The Local-Global and Positive Density Conjectures -- 1.4 Statements of the Main Theorems -- 1.5 Notation -- 2 Preliminary Remarks -- 3 Proof of Theorem 1.5 -- 4 Proof of Theorem 1.6 -- 5 Proof of Lemma 1.9 -- References -- Polynomial Equations in Subgroups and Applications -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 New Results.
2 Solutions to Polynomial Equations in Subgroups of Finite Fields -- 2.1 Stepanov's Method -- 2.2 Some Divisibilities and Non-divisibilities -- 2.3 Derivatives on Some Curves -- 2.4 Multiplicity Points on Some Curves -- 3 Small Divisors of Integers -- 3.1 Smooth Numbers -- 3.2 Number of Small Divisors of Integers -- 4 Proof of Theorem 1.2 -- 4.1 Preliminary Estimates -- 4.2 Optimization of Parameters -- 5 Proof of Theorem 1.6 -- 5.1 Outline of the Proof -- 5.2 Formal Argument -- 6 Comments -- References -- Exponential Sums, Twisted Multiplicativity, and Moments -- 1 Introduction -- 1.1 Exponential Sums with Polynomials -- 1.2 Sums of Twisted Multiplicative Functions -- 1.3 Non-correlation of Exponential Sums for Different Polynomials -- 1.4 Previous Work -- 2 Sums of Twisted Multiplicative Functions -- 3 Exponential Sums of Polynomials: Preliminary Results -- 4 Proof of Theorem 1.1 -- 5 The Fourth Moment: Proof of Theorem 1.3 -- 6 Generic Polynomials -- 7 Multiple Correlations -- 8 Remarks on Katz's Theorem -- References -- The Ternary Goldbach Problem with a Missing Digit and Other Primes of Special Types -- 1 Introduction -- 2 Outline of the Proof -- 3 Structure of the Paper -- 4 Sieve Decomposition and Proof of Theorem 1.1 -- 5 Fourier Estimates and Large Sieve Inequalities -- 6 Local Versions of Maynard's Results -- 7 Sieve Asymptotics for Local Version of Maynard -- 8 b-Variable Circle Method -- 9 b-Variable Major Arcs -- 10 Generic Minor Arcs -- 11 Exceptional Minor Arcs -- 12 The Ternary Goldbach Problem with a Prime with a Missing Digit, a Piatetski-Shapiro Prime, and a Prime of Another Special Type -- References -- A Note on Harmonious Sets -- 1 A Wrong Lemma Is Revisited -- 2 Bogolyobov's Approach -- 3 New Examples of Harmonious Sets -- 4 The Union of Two Harmonious Sets -- References.
On the Multiplicative Group Generated by Two Primes in Z/QZ -- 1 Introduction -- 1.1 Notation -- 2 Proof of Theorem 4 -- References.
Record Nr. UNINA-9910629291503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai
Analysis at large : dedicated to the life and work of Jean Bourgain / / edited by Artur Avila, Michael Th. Rassias, Yakov Sinai
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (388 pages)
Disciplina 780
Soggetto topico Mathematicians
Anàlisi matemàtica
Teoria de grups
Matemàtics
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-031-05331-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- On the Joint Spectral Radius -- 1 Introduction -- 2 Extremal Norms and Barabanov Norms -- 3 Explicit Bounds for Theorem 2 -- 4 Explicit Bounds for Bochi's Inequalities -- 5 Ultrametric Complete Valued Fields -- References -- The Failure of the Fractal Uncertainty Principle for the Walsh-Fourier Transform -- 1 The Fractal Uncertainty Principle for the Fourier Transform -- 2 The Walsh Transform -- 3 The Main Result -- 4 Proofs -- References -- The Continuous Formulation of Shallow Neural Networks as Wasserstein-Type Gradient Flows -- 1 Introduction -- 2 Shallow Neural Network and Gradient Flows -- 2.1 The μ Formulation -- 2.2 Comparison Between the Continuous and Discrete Model -- Consistency -- 2.3 The (ρ, H) Formulation -- 3 PDE Formulations -- 3.1 Gradient Flow in the μ Formulation -- 3.2 A First PDE Approach in the (ρ, H) Formulation -- Separating Variables -- Transporting Along the Flow of ρt -- 3.3 A Gradient Flow in the (ρ, H) Formulation via Propagation of Chaos -- 4 Regularized Problems -- 4.1 Heat Regularization -- 4.2 The Porous Medium Regularization -- 4.3 An Observation Without Regularization -- 5 Open Questions -- 5.1 Regularity and Convergence -- 5.2 Multilayer Neural Networks -- References -- On the Origins, Nature, and Impact of Bourgain's Discretized Sum-Product Theorem -- 1 Overture -- 2 Origins: Kakeya-Besicovitch Problem+ -- 2.1 Some Fundamental Properties of Plane Sets of Fractional Dimension -- 2.2 Besicovitch Type Maximal Operators and Applications to Fourier Analysis -- 2.3 Balog-Szemerédi-Gowers Lemma -- 2.4 On the Dimension of Kakeya Sets and Related Maximal Inequalities -- 3 Sum-Product Phenomena and the Labyrinth of the Continuum -- 3.1 Freiman's Theorem and Ruzsa's Calculus -- 3.2 Sum-Product Phenomena and Incidence Geometry -- Crossing Number Inequality -- Szemerédi-Trotter Theorem.
Proof of Sum-Product Inequality -- 3.3 On the Erdös-Volkmann and Katz-Tao Discretized Ring Conjectures -- Erdös-Volkmann Problem -- Katz-Tao Discretized Ring Conjecture -- Labyrinth of the Continuum -- 3.4 A Sum-Product Estimate in Finite Fields and Applications -- 4 Discrete and Continuous Variations on the Expanding Theme -- 4.1 Bemerkung über den Inhalt von Punktmengen -- 4.2 Sur le problème de la mesure -- 4.3 Ramanujan-Selberg Conjecture -- 4.4 Expanders -- 4.5 Superstrong Approximation -- 4.6 On the Spectral Gap for Finitely Generated Subgroups of SU(d) -- 5 Coda -- References -- Cartan Covers and Doubling Bernstein-Type Inequalities on Analytic Subsets of C2 -- 1 Introduction -- 2 Cartan's Estimate -- 3 Bernstein Exponent and Number of Zeros -- 4 Weierstrass' Preparation Theorem and Bernstein Exponents -- 5 Resultants -- 6 Refinement of the Assumption (1) -- 7 Proofs of Theorems A, B, and C -- References -- A Weighted Prékopa-Leindler Inequality and Sumsets withQuasicubes -- 1 Introduction -- 2 A Weighted Discrete Prékopa-Leindler Inequality -- 3 Proof of the Main Theorem -- References -- Equidistribution of Affine Random Walks on Some Nilmanifolds -- 1 Introduction -- 1.1 Quantitative Equidistribution -- 1.2 Statement of the Main Result -- 1.3 The Case of a Torus -- 1.4 Consequences of the Main Theorem -- 1.5 Idea of the Proof -- 2 Examples -- 2.1 Heisenberg Nilmanifold -- 2.2 Heisenberg Nilmanifold over Number Fields -- 2.3 A Non-semisimple Group of Toral Automorphisms -- 2.4 A Non-example -- 3 The Setup -- 3.1 Hölder Functions -- 4 The Main Argument -- 4.1 Principal Torus Bundle -- 4.2 Fourier Transform -- 4.3 Essential Growth Rate -- 4.4 The Cauchy-Schwarz Argument -- 4.5 Proof of the Key Proposition -- 5 Proof of the Main Theorems -- Appendix A: A Large Deviation Estimate -- Appendix B: The Case of a Torus.
B.1 Multiplicative Convolutions in Simple Algebras -- B.2 Fourier Decay for Linear Random Walks -- B.3 Proof of Theorems B.1 and B.2 -- References -- Logarithmic Quantum Dynamical Bounds for Arithmetically Defined Ergodic Schrödinger Operators with Smooth Potentials -- 1 Introduction -- 2 Preliminaries -- 2.1 Schrödinger Operators and Transfer Matrices -- 2.2 Transport Exponents -- 2.3 Semialgebraic Sets -- 2.4 Large Deviation Theorems -- 3 Transport Exponents -- 4 Semialgebraic Sets -- 5 Technical Lemmas -- 6 The Case ν= 1 -- 7 The Case ν> -- 1 -- 8 The Analytic Case -- 9 The Skew-Shift Case, ν> -- 1 -- References -- The Slicing Problem by Bourgain -- 1 Introduction -- 2 The Isotropic Position -- 3 Distribution of Volume in Convex Bodies -- 4 Bound for the Isotropic Constant -- References -- On the Work of Jean Bourgain in Nonlinear Dispersive Equations -- 1 Introduction -- 2 Nonlinear Dispersive Equations: The Well-Posedness Theory Before Bourgain -- 3 Bourgain's Transformative Work on the Well-Posedness Theory of Dispersive Equations -- 4 A Quick Sampling of Some of the Other Groundbreaking Contributions of Bourgain to Nonlinear Dispersive Equations -- 4.1 Gibbs Measure Associated to Periodic (NLS) -- 4.2 Bourgain's ``High-Low Decomposition'' -- 4.3 Bourgain's Work on the Defocusing Energy Critical (NLS) -- 5 Conclusion -- References -- On Trace Sets of Restricted Continued Fraction Semigroups -- 1 Introduction -- 1.1 McMullen's Arithmetic Chaos Conjecture -- 1.2 Thin Semigroups -- 1.3 The Local-Global and Positive Density Conjectures -- 1.4 Statements of the Main Theorems -- 1.5 Notation -- 2 Preliminary Remarks -- 3 Proof of Theorem 1.5 -- 4 Proof of Theorem 1.6 -- 5 Proof of Lemma 1.9 -- References -- Polynomial Equations in Subgroups and Applications -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 New Results.
2 Solutions to Polynomial Equations in Subgroups of Finite Fields -- 2.1 Stepanov's Method -- 2.2 Some Divisibilities and Non-divisibilities -- 2.3 Derivatives on Some Curves -- 2.4 Multiplicity Points on Some Curves -- 3 Small Divisors of Integers -- 3.1 Smooth Numbers -- 3.2 Number of Small Divisors of Integers -- 4 Proof of Theorem 1.2 -- 4.1 Preliminary Estimates -- 4.2 Optimization of Parameters -- 5 Proof of Theorem 1.6 -- 5.1 Outline of the Proof -- 5.2 Formal Argument -- 6 Comments -- References -- Exponential Sums, Twisted Multiplicativity, and Moments -- 1 Introduction -- 1.1 Exponential Sums with Polynomials -- 1.2 Sums of Twisted Multiplicative Functions -- 1.3 Non-correlation of Exponential Sums for Different Polynomials -- 1.4 Previous Work -- 2 Sums of Twisted Multiplicative Functions -- 3 Exponential Sums of Polynomials: Preliminary Results -- 4 Proof of Theorem 1.1 -- 5 The Fourth Moment: Proof of Theorem 1.3 -- 6 Generic Polynomials -- 7 Multiple Correlations -- 8 Remarks on Katz's Theorem -- References -- The Ternary Goldbach Problem with a Missing Digit and Other Primes of Special Types -- 1 Introduction -- 2 Outline of the Proof -- 3 Structure of the Paper -- 4 Sieve Decomposition and Proof of Theorem 1.1 -- 5 Fourier Estimates and Large Sieve Inequalities -- 6 Local Versions of Maynard's Results -- 7 Sieve Asymptotics for Local Version of Maynard -- 8 b-Variable Circle Method -- 9 b-Variable Major Arcs -- 10 Generic Minor Arcs -- 11 Exceptional Minor Arcs -- 12 The Ternary Goldbach Problem with a Prime with a Missing Digit, a Piatetski-Shapiro Prime, and a Prime of Another Special Type -- References -- A Note on Harmonious Sets -- 1 A Wrong Lemma Is Revisited -- 2 Bogolyobov's Approach -- 3 New Examples of Harmonious Sets -- 4 The Union of Two Harmonious Sets -- References.
On the Multiplicative Group Generated by Two Primes in Z/QZ -- 1 Introduction -- 1.1 Notation -- 2 Proof of Theorem 4 -- References.
Record Nr. UNISA-996499872503316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
And I Saw Sequences of Petals and Leaves : My Life as the One They Call Fibonacci / / by Daniele C. Struppa
And I Saw Sequences of Petals and Leaves : My Life as the One They Call Fibonacci / / by Daniele C. Struppa
Autore Struppa Daniele C.
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (VII, 134 p. 34 illus., 14 illus. in color.)
Disciplina 813.6
Soggetto topico Mathematics
History
History of Mathematical Sciences
Història de la matemàtica
Matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-031-52692-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- The Early Days in Pisa -- The Navigation to Bugia -- Bugia and the Encounter with Arab Mathematics -- The Liber Abaci -- At the Court of Stupor Mundi -- The Later Years.
Record Nr. UNINA-9910847597703321
Struppa Daniele C.  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Felix Hausdorff : Mathematician, Philosopher, Man of Letters / / by Egbert Brieskorn, Walter Purkert
Felix Hausdorff : Mathematician, Philosopher, Man of Letters / / by Egbert Brieskorn, Walter Purkert
Autore Brieskorn Egbert
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (512 pages)
Disciplina 510.92
Altri autori (Persone) PurkertWalter
RoweDavid
Collana Vita Mathematica
Soggetto topico Mathematics
History
Science - History
Sociology - Biographical methods
History of Mathematical Sciences
History of Science
Biographical Research
Matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 9783031521355
3031521358
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Notice for the Reader -- I. Family Background and Early Intellectual Interests -- Hausdorff’s Childhood and Youth -- Hausdorff’s Student Years and Short-lived Astronomical Career -- Hausdorff’s Early Mathematical Works -- II. A Double Life: the Mathematician Felix Hausdorff and the Philosopher/Man of Letters Paul Mongré -- Paul Mongré as a Philosopher -- Paul Mongré: Author, Essayist and Critic -- Mathematics takes First Priority -- III. Hausdorff’s Crowning Mathematical Works -- Hausdorff at the Pinnacle of his Career -- Full Professor in Bonn, 1921–1933 -- Hausdorff’s Life during the Nazi Dictatorship -- Bibliography -- Name Index.
Record Nr. UNINA-9910847082703321
Brieskorn Egbert  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis
Autore Tobies Renate
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (697 pages)
Disciplina 510.92
Collana Vita Mathematica
Soggetto topico Matemàtics
Mathematicians - Germany
Reformers - Germany
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-030-75785-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- PREFACE -- CONTENTS -- 1 INTRODUCTION -- 1.1 THE STATE OF RESEARCH -- 1.2 GUIDING QUESTIONS -- 1.3 EDITORIAL REMARKS -- Acknowledgements -- 2 FORMATIVE GROUPS -- 2.1 THE KLEIN-KAYSER FAMILY -- 2.1.1 A Royalist and Frugal Westphalian Upbringing -- 2.1.2 Talent in School and Wide Interests as Gifts from His Mother's Side -- 2.1.3 Felix Klein and His Siblings -- 2.2 SCHOOL YEARS IN DÜSSELDORF -- 2.2.1 Earning His Abitur from a Gymnasium at the Age of Sixteen -- 2.2.2 Examination Questions in Mathematics -- 2.2.3 Interests in Natural Science During His School Years -- 2.3 STUDIES AND DOCTORATE IN BONN -- 2.3.1 Coursework and Seminar Awards -- 2.3.2 Assistantship and a Reward for Winning a Physics Contest -- 2.3.3 Assisting Julius Plücker's Research in Geometry -- 2.3.4 Doctoral Procedure -- 2.4 JOINING ALFRED CLEBSCH'S THOUGHT COMMUNITY -- 2.4.1 The Clebsch School -- 2.4.2 The Journal Mathematische Annalen -- 2.4.3 Articles on Line Geometry, 1869 -- 2.5 BROADENING HIS HORIZONS IN BERLIN -- 2.5.1 The Professors in Berlin and Felix Klein -- 2.5.2 Acquaintances from the Mathematical Union: Kiepert, Lie, Stolz -- 2.5.3 Cayley's Metric and Klein's Non-Euclidean Interpretation -- 2.6 IN PARIS WITH SOPHUS LIE -- 2.6.1 Felix Klein and French Mathematicians -- 2.6.2 Collaborative Work with Sophus Lie -- 2.6.2.1 Notes on W-Configurations -- 2.6.2.2 Principal Tangent Curves of the Kummer Surface -- 2.6.3 A Report on Mathematics in Paris -- 2.7 THE FRANCO-PRUSSIAN WAR AND KLEIN'S HABILITATION -- 2.7.1 Wartime Service as a Paramedic and Its Effects -- 2.7.2 Habilitation -- 2.8 TIME AS A PRIVATDOZENT IN GÖTTINGEN -- 2.8.1 Klein's Teaching Activity and Its Context -- 2.8.2 An Overview of Klein's Research Results as a Privatdozent -- 2.8.3 Discussion Groups -- 2.8.3.1 A Three-Man Club with Clebsch and Riecke.
2.8.3.2 The Mathematical and Natural-Scientific Student Union -- 2.8.3.3 A Scientific Circle: Eskimo -- 2.8.3.4 The "Social Activity" of Bringing Mathematicians Together -- 3 A PROFESSORSHIP AT THE UNIVERSITY OF ERLANGEN -- 3.1 RESEARCH TRENDS AND DOCTORAL STUDENTS -- 3.1.1 The Vision of the Erlangen Program -- 3.1.2 Klein's Students in Erlangen -- 3.1.3 New Research Trends -- 3.1.3.1 On a New Type of Riemann Surface -- 3.1.3.2 The Theory of Equations -- 3.2 INAUGURAL LECTURE: A PLAN FOR MATHEMATICAL EDUCATION -- 3.3 FIRST TRIP TO GREAT BRITAIN, 1873 -- 3.4 TRIPS TO ITALY -- 3.5 DEVELOPING THE MATHEMATICAL INSTITUTION -- 3.6 FAMILY MATTERS -- 3.6.1 His Friends Marry and Klein Follows Suit -- 3.6.2 Klein's Father-in-Law, the Historian Karl Hegel -- 3.6.3 Anna Hegel, Felix Klein, and Their Family -- 4 A PROFESSORSHIP AT THE POLYTECHNIKUM IN MUNICH -- 4.1 A NEW INSTITUTE AND NEW TEACHING ACTIVITY -- 4.1.1 Creating a Mathematical Institute -- 4.1.2 Reorganizing the Curriculum -- 4.2 DEVELOPING HIS MATHEMATICAL INDIVIDUALITY -- 4.2.1 The Icosahedron Equation -- 4.2.2 Number Theory -- 4.2.3 Elliptic Modular Functions -- 4.2.4 Klein's Circle of Students in Munich -- 4.2.4.1 Phase I: 1875-1876 -- 4.2.4.2 Phase II: 1876-1880 -- 4.3 DISCUSSION GROUPS IN MUNICH -- 4.3.1 A Mathematical Discussion Group with Engineers and Natural Scientists -- 4.3.2 The Mathematical Student Union and the Mathematical Society -- 4.3.3 The Meeting of Natural Scientists in Munich, 1877 -- 4.4 "READY AGAIN FOR A UNIVERSITY IN A SMALL CITY" -- 5 A PROFESSORSHIP FOR GEOMETRY IN LEIPZIG -- 5.1 KLEIN'S START IN LEIPZIG AND HIS INAUGURAL ADDRESS -- 5.2 CREATING A NEW MATHEMATICAL INSTITUTION -- 5.3 TEACHING PROGRAM -- 5.3.1 Lectures: Organization, Reorientation, and Deviation from the Plan -- 5.3.2 The Mathematical Colloquium / Exercises / Seminar -- 5.4 THE KLEINIAN "FLOCK".
5.4.1 Post-Doctoral Mathematicians -- 5.4.2 Klein's Foreign Students in Leipzig -- 5.4.2.1 The First Frenchman and the First Briton -- 5.4.2.2 The First Americans -- 5.4.2.3 The Italians -- 5.4.2.4 Mathematicians from Switzerland and Austria-Hungary -- 5.4.2.5 Russian and Other Eastern European Contacts -- 5.5 FIELDS OF RESEARCH -- 5.5.1 Mathematical Physics / Physical Mathematics -- 5.5.1.1 Lamé's Function, Potential Theory, and Carl Neumann -- 5.5.1.2 On Riemann's Theory of Algebraic Functions and Their Integrals -- 5.5.2 Looking Toward Berlin -- 5.5.2.1 Gathering Sources -- 5.5.2.2 The Dirichlet Principle -- 5.5.2.3 Klein's Seminar on the Theory of Abelian Functions (1882) -- 5.5.2.4 Openness vs. Partiality -- 5.5.3 Looking Toward France -- 5.5.3.1 French Contributors to Mathematische Annalen -- 5.5.3.2 Klein's Correspondence with Poincaré -- 5.5.4 Three Fundamental Theorems -- 5.5.4.1 The Loop-Cut Theorem (Rückkehrschnitttheorem) -- 5.5.4.2 Theorem of the Limit-Circle (Grenzkreistheorem) -- 5.5.4.3 The (General) Fundamental Theorem -- 5.5.4.4 Remarks on the Proofs -- 5.5.5 The Polemic about and with Lazarus Fuchs -- 5.5.6 The Icosahedron Book -- 5.5.7 A Book on the Theory of Elliptic Modular Functions -- 5.5.7.1 Supplementing the Theory -- 5.5.7.2 Who Should Be the Editor? - Georg Pick -- 5.5.8 Hyperelliptic and Abelian Functions -- 5.6 FELIX KLEIN AND ALFRED ACKERMANN-TEUBNER -- 5.7 FELIX KLEIN IN LEIPZIG'S INTELLECTUAL COMMUNITIES -- 5.7.1 A Mathematicians' Circle -- 5.7.2 The Societas Jablonoviana -- 5.7.3 The Royal Saxon Society of Sciences in Leipzig -- 5.8 TURNING HIS BACK ON LEIPZIG -- 5.8.1 Weighing Offers from Oxford and Johns Hopkins -- 5.8.2 The Physicist Eduard Riecke Arranges Klein's Move to Göttingen -- 5.8.3 The Appointment of Sophus Lie as Klein's Successor - and the Reactions.
6 THE START OF KLEIN'S PROFESSORSHIP IN GÖTTINGEN, 1886-1892 -- 6.1 FAMILY CONSIDERATIONS -- 6.2 DEALING WITH COLLEAGUES, TEACHING, AND CURRICULUM PLANNING -- 6.2.1 The Relationship Between Klein and Schwarz -- 6.2.2 The Göttingen Privatdozenten Hölder and Schoenflies -- 6.2.3 Klein's Teaching in Context -- 6.3 INDEPENDENT AND COLLABORATIVE RESEARCH -- 6.3.1 The Theory of Finite Groups of Linear Substitutions: The Theory of Solving Equations of Higher Degree -- 6.3.2 Hyperelliptic and Abelian Functions -- 6.3.3 The Theory of Elliptic Modular Functions (Monograph) -- 6.3.4 The Theory of Automorphic Functions (Monograph) -- 6.3.5 The Theory of Lamé Functions and Potential Theory -- 6.3.6 Refreshing His Work on Geometry -- 6.3.7 Visions: Internationality, Crystallography, Hilbert's Invariant Theory -- 6.3.7.1 An Eye on Developments Abroad -- 6.3.7.2 Arthur Schoenflies and Crystallography -- 6.3.7.3 Felix Klein and Hilbert's Invariant Theory -- 6.4 BRINGING PEOPLE AND INSTITUTIONS TOGETHER -- 6.4.1 The Professorium in Göttingen -- 6.4.2 A Proposal to Relocate the Technische Hochschule in Hanover to Göttingen -- 6.4.3 The Idea of Reorganizing the Göttingen Society of Sciences -- 6.4.4 Felix Klein and the Founding of the German Mathematical Society -- 6.5 THE PIVOTAL YEAR OF 1892 -- 6.5.1 Refilling Vacant Professorships in Prussia -- 6.5.1.1 Berlin, Breslau, and Klein's System for Classifying Styles of Thought -- 6.5.1.2 Hiring a Successor for H.A. Schwarz in Göttingen -- 6.5.2 A Job Offer from the University of Munich and the Consequences -- 7 SETTING THE COURSE, 1892/93-1895 -- 7.1 KLEIN'S ASSISTANTS AND HIS PRINCIPLES FOR CHOOSING THEM -- 7.2 THE GÖTTINGEN MATHEMATICAL SOCIETY -- 7.3 TURNING TO SECONDARY SCHOOL TEACHERS -- 7.4 A TRIP TO THE UNITED STATES -- 7.4.1 The World's Fair in Chicago and the Mathematical Congress.
7.4.2 Twelve Lectures by Klein: The Evanston Colloquium -- 7.4.3 Traveling from University to University -- 7.4.4 Repercussions -- 7.5 THE BEGINNINGS OF WOMEN STUDYING MATHEMATICS -- 7.6 ACTUARIAL MATHEMATICS AS A COURSE OF STUDY -- 7.7 CONTACTING ENGINEERS AND INDUSTRIALISTS -- 7.8 THE ENCYKLOPÄDIE PROJECT -- 7.9 KLEIN SUCCEEDS IN HIRING DAVID HILBERT -- 8 THE FRUITS OF KLEIN'S EFFORTS, 1895-1913 -- 8.1 A CENTER FOR MATHEMATICS, NATURAL SCIENCES, AND TECHNOLOGY -- 8.1.1 The Göttingen Association -- 8.1.2 Applied Mathematics in the New Examination Regulations and the Consequences -- 8.1.3 Aeronautical Research -- 8.2 MAINTAINING HIS SCIENTIFIC REPUTATION -- 8.2.1 Automorphic Functions (Monograph) -- 8.2.2 Geometric Number Theory -- 8.2.3 A Monograph on the Theory of the Spinning Top -- 8.2.4 Inspiring Ideas in the Fields of Mathematical Physics and Technology -- 8.2.4.1 Hydrodynamics / Hydraulics -- 8.2.4.2 Statics -- 8.2.4.3 The Theory of Friction -- 8.2.4.4 The Special Theory of Relativity -- 8.3 PROGRAM: THE HISTORY, PHILOSOPHY, PSYCHOLOGY, ANDINSTRUCTION OF MATHEMATICS -- 8.3.1 The History of Mathematics -- 8.3.2 Philosophical Aspects -- 8.3.3 Psychological-Epistemological Classifications -- 8.3.4 The "Kleinian" Educational Reform -- 8.3.4.1 Suggestions for Reform -- 8.3.4.2 A Polemic about the Teaching of Analysis at the University -- 8.4 INTERNATIONAL SCIENTIFIC COOPERATION -- 8.5 EARLY RETIREMENT AND HONORS -- 8.5.1 Recovering and Working in the Hahnenklee Sanatorium -- 8.5.2 Max Liebermann's Portrait of Felix Klein -- 8.5.3 The Successors to Klein's Professorship -- 9 THE FIRST WORLD WAR AND THE POSTWAR PERIOD -- 9.1 POLITICAL ACTIVITY DURING THE FIRST WORLD WAR -- 9.1.1 The Vows of Allegiance of German Professors to Militarism -- 9.1.2 A Plea for Studying Abroad.
9.2 HISTORY OF MATHEMATICS, THE "CRY FOR HELP OF MODERNPHYSICS," AND EDITION PROJECTS.
Record Nr. UNISA-996466414903316
Tobies Renate  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis
Felix Klein : visions for mathematics, applications, and education / / Renate Tobies ; revised by the author and translated by Valentine A. Pakis
Autore Tobies Renate
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (697 pages)
Disciplina 510.92
Collana Vita Mathematica
Soggetto topico Matemàtics
Mathematicians - Germany
Reformers - Germany
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-030-75785-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- PREFACE -- CONTENTS -- 1 INTRODUCTION -- 1.1 THE STATE OF RESEARCH -- 1.2 GUIDING QUESTIONS -- 1.3 EDITORIAL REMARKS -- Acknowledgements -- 2 FORMATIVE GROUPS -- 2.1 THE KLEIN-KAYSER FAMILY -- 2.1.1 A Royalist and Frugal Westphalian Upbringing -- 2.1.2 Talent in School and Wide Interests as Gifts from His Mother's Side -- 2.1.3 Felix Klein and His Siblings -- 2.2 SCHOOL YEARS IN DÜSSELDORF -- 2.2.1 Earning His Abitur from a Gymnasium at the Age of Sixteen -- 2.2.2 Examination Questions in Mathematics -- 2.2.3 Interests in Natural Science During His School Years -- 2.3 STUDIES AND DOCTORATE IN BONN -- 2.3.1 Coursework and Seminar Awards -- 2.3.2 Assistantship and a Reward for Winning a Physics Contest -- 2.3.3 Assisting Julius Plücker's Research in Geometry -- 2.3.4 Doctoral Procedure -- 2.4 JOINING ALFRED CLEBSCH'S THOUGHT COMMUNITY -- 2.4.1 The Clebsch School -- 2.4.2 The Journal Mathematische Annalen -- 2.4.3 Articles on Line Geometry, 1869 -- 2.5 BROADENING HIS HORIZONS IN BERLIN -- 2.5.1 The Professors in Berlin and Felix Klein -- 2.5.2 Acquaintances from the Mathematical Union: Kiepert, Lie, Stolz -- 2.5.3 Cayley's Metric and Klein's Non-Euclidean Interpretation -- 2.6 IN PARIS WITH SOPHUS LIE -- 2.6.1 Felix Klein and French Mathematicians -- 2.6.2 Collaborative Work with Sophus Lie -- 2.6.2.1 Notes on W-Configurations -- 2.6.2.2 Principal Tangent Curves of the Kummer Surface -- 2.6.3 A Report on Mathematics in Paris -- 2.7 THE FRANCO-PRUSSIAN WAR AND KLEIN'S HABILITATION -- 2.7.1 Wartime Service as a Paramedic and Its Effects -- 2.7.2 Habilitation -- 2.8 TIME AS A PRIVATDOZENT IN GÖTTINGEN -- 2.8.1 Klein's Teaching Activity and Its Context -- 2.8.2 An Overview of Klein's Research Results as a Privatdozent -- 2.8.3 Discussion Groups -- 2.8.3.1 A Three-Man Club with Clebsch and Riecke.
2.8.3.2 The Mathematical and Natural-Scientific Student Union -- 2.8.3.3 A Scientific Circle: Eskimo -- 2.8.3.4 The "Social Activity" of Bringing Mathematicians Together -- 3 A PROFESSORSHIP AT THE UNIVERSITY OF ERLANGEN -- 3.1 RESEARCH TRENDS AND DOCTORAL STUDENTS -- 3.1.1 The Vision of the Erlangen Program -- 3.1.2 Klein's Students in Erlangen -- 3.1.3 New Research Trends -- 3.1.3.1 On a New Type of Riemann Surface -- 3.1.3.2 The Theory of Equations -- 3.2 INAUGURAL LECTURE: A PLAN FOR MATHEMATICAL EDUCATION -- 3.3 FIRST TRIP TO GREAT BRITAIN, 1873 -- 3.4 TRIPS TO ITALY -- 3.5 DEVELOPING THE MATHEMATICAL INSTITUTION -- 3.6 FAMILY MATTERS -- 3.6.1 His Friends Marry and Klein Follows Suit -- 3.6.2 Klein's Father-in-Law, the Historian Karl Hegel -- 3.6.3 Anna Hegel, Felix Klein, and Their Family -- 4 A PROFESSORSHIP AT THE POLYTECHNIKUM IN MUNICH -- 4.1 A NEW INSTITUTE AND NEW TEACHING ACTIVITY -- 4.1.1 Creating a Mathematical Institute -- 4.1.2 Reorganizing the Curriculum -- 4.2 DEVELOPING HIS MATHEMATICAL INDIVIDUALITY -- 4.2.1 The Icosahedron Equation -- 4.2.2 Number Theory -- 4.2.3 Elliptic Modular Functions -- 4.2.4 Klein's Circle of Students in Munich -- 4.2.4.1 Phase I: 1875-1876 -- 4.2.4.2 Phase II: 1876-1880 -- 4.3 DISCUSSION GROUPS IN MUNICH -- 4.3.1 A Mathematical Discussion Group with Engineers and Natural Scientists -- 4.3.2 The Mathematical Student Union and the Mathematical Society -- 4.3.3 The Meeting of Natural Scientists in Munich, 1877 -- 4.4 "READY AGAIN FOR A UNIVERSITY IN A SMALL CITY" -- 5 A PROFESSORSHIP FOR GEOMETRY IN LEIPZIG -- 5.1 KLEIN'S START IN LEIPZIG AND HIS INAUGURAL ADDRESS -- 5.2 CREATING A NEW MATHEMATICAL INSTITUTION -- 5.3 TEACHING PROGRAM -- 5.3.1 Lectures: Organization, Reorientation, and Deviation from the Plan -- 5.3.2 The Mathematical Colloquium / Exercises / Seminar -- 5.4 THE KLEINIAN "FLOCK".
5.4.1 Post-Doctoral Mathematicians -- 5.4.2 Klein's Foreign Students in Leipzig -- 5.4.2.1 The First Frenchman and the First Briton -- 5.4.2.2 The First Americans -- 5.4.2.3 The Italians -- 5.4.2.4 Mathematicians from Switzerland and Austria-Hungary -- 5.4.2.5 Russian and Other Eastern European Contacts -- 5.5 FIELDS OF RESEARCH -- 5.5.1 Mathematical Physics / Physical Mathematics -- 5.5.1.1 Lamé's Function, Potential Theory, and Carl Neumann -- 5.5.1.2 On Riemann's Theory of Algebraic Functions and Their Integrals -- 5.5.2 Looking Toward Berlin -- 5.5.2.1 Gathering Sources -- 5.5.2.2 The Dirichlet Principle -- 5.5.2.3 Klein's Seminar on the Theory of Abelian Functions (1882) -- 5.5.2.4 Openness vs. Partiality -- 5.5.3 Looking Toward France -- 5.5.3.1 French Contributors to Mathematische Annalen -- 5.5.3.2 Klein's Correspondence with Poincaré -- 5.5.4 Three Fundamental Theorems -- 5.5.4.1 The Loop-Cut Theorem (Rückkehrschnitttheorem) -- 5.5.4.2 Theorem of the Limit-Circle (Grenzkreistheorem) -- 5.5.4.3 The (General) Fundamental Theorem -- 5.5.4.4 Remarks on the Proofs -- 5.5.5 The Polemic about and with Lazarus Fuchs -- 5.5.6 The Icosahedron Book -- 5.5.7 A Book on the Theory of Elliptic Modular Functions -- 5.5.7.1 Supplementing the Theory -- 5.5.7.2 Who Should Be the Editor? - Georg Pick -- 5.5.8 Hyperelliptic and Abelian Functions -- 5.6 FELIX KLEIN AND ALFRED ACKERMANN-TEUBNER -- 5.7 FELIX KLEIN IN LEIPZIG'S INTELLECTUAL COMMUNITIES -- 5.7.1 A Mathematicians' Circle -- 5.7.2 The Societas Jablonoviana -- 5.7.3 The Royal Saxon Society of Sciences in Leipzig -- 5.8 TURNING HIS BACK ON LEIPZIG -- 5.8.1 Weighing Offers from Oxford and Johns Hopkins -- 5.8.2 The Physicist Eduard Riecke Arranges Klein's Move to Göttingen -- 5.8.3 The Appointment of Sophus Lie as Klein's Successor - and the Reactions.
6 THE START OF KLEIN'S PROFESSORSHIP IN GÖTTINGEN, 1886-1892 -- 6.1 FAMILY CONSIDERATIONS -- 6.2 DEALING WITH COLLEAGUES, TEACHING, AND CURRICULUM PLANNING -- 6.2.1 The Relationship Between Klein and Schwarz -- 6.2.2 The Göttingen Privatdozenten Hölder and Schoenflies -- 6.2.3 Klein's Teaching in Context -- 6.3 INDEPENDENT AND COLLABORATIVE RESEARCH -- 6.3.1 The Theory of Finite Groups of Linear Substitutions: The Theory of Solving Equations of Higher Degree -- 6.3.2 Hyperelliptic and Abelian Functions -- 6.3.3 The Theory of Elliptic Modular Functions (Monograph) -- 6.3.4 The Theory of Automorphic Functions (Monograph) -- 6.3.5 The Theory of Lamé Functions and Potential Theory -- 6.3.6 Refreshing His Work on Geometry -- 6.3.7 Visions: Internationality, Crystallography, Hilbert's Invariant Theory -- 6.3.7.1 An Eye on Developments Abroad -- 6.3.7.2 Arthur Schoenflies and Crystallography -- 6.3.7.3 Felix Klein and Hilbert's Invariant Theory -- 6.4 BRINGING PEOPLE AND INSTITUTIONS TOGETHER -- 6.4.1 The Professorium in Göttingen -- 6.4.2 A Proposal to Relocate the Technische Hochschule in Hanover to Göttingen -- 6.4.3 The Idea of Reorganizing the Göttingen Society of Sciences -- 6.4.4 Felix Klein and the Founding of the German Mathematical Society -- 6.5 THE PIVOTAL YEAR OF 1892 -- 6.5.1 Refilling Vacant Professorships in Prussia -- 6.5.1.1 Berlin, Breslau, and Klein's System for Classifying Styles of Thought -- 6.5.1.2 Hiring a Successor for H.A. Schwarz in Göttingen -- 6.5.2 A Job Offer from the University of Munich and the Consequences -- 7 SETTING THE COURSE, 1892/93-1895 -- 7.1 KLEIN'S ASSISTANTS AND HIS PRINCIPLES FOR CHOOSING THEM -- 7.2 THE GÖTTINGEN MATHEMATICAL SOCIETY -- 7.3 TURNING TO SECONDARY SCHOOL TEACHERS -- 7.4 A TRIP TO THE UNITED STATES -- 7.4.1 The World's Fair in Chicago and the Mathematical Congress.
7.4.2 Twelve Lectures by Klein: The Evanston Colloquium -- 7.4.3 Traveling from University to University -- 7.4.4 Repercussions -- 7.5 THE BEGINNINGS OF WOMEN STUDYING MATHEMATICS -- 7.6 ACTUARIAL MATHEMATICS AS A COURSE OF STUDY -- 7.7 CONTACTING ENGINEERS AND INDUSTRIALISTS -- 7.8 THE ENCYKLOPÄDIE PROJECT -- 7.9 KLEIN SUCCEEDS IN HIRING DAVID HILBERT -- 8 THE FRUITS OF KLEIN'S EFFORTS, 1895-1913 -- 8.1 A CENTER FOR MATHEMATICS, NATURAL SCIENCES, AND TECHNOLOGY -- 8.1.1 The Göttingen Association -- 8.1.2 Applied Mathematics in the New Examination Regulations and the Consequences -- 8.1.3 Aeronautical Research -- 8.2 MAINTAINING HIS SCIENTIFIC REPUTATION -- 8.2.1 Automorphic Functions (Monograph) -- 8.2.2 Geometric Number Theory -- 8.2.3 A Monograph on the Theory of the Spinning Top -- 8.2.4 Inspiring Ideas in the Fields of Mathematical Physics and Technology -- 8.2.4.1 Hydrodynamics / Hydraulics -- 8.2.4.2 Statics -- 8.2.4.3 The Theory of Friction -- 8.2.4.4 The Special Theory of Relativity -- 8.3 PROGRAM: THE HISTORY, PHILOSOPHY, PSYCHOLOGY, ANDINSTRUCTION OF MATHEMATICS -- 8.3.1 The History of Mathematics -- 8.3.2 Philosophical Aspects -- 8.3.3 Psychological-Epistemological Classifications -- 8.3.4 The "Kleinian" Educational Reform -- 8.3.4.1 Suggestions for Reform -- 8.3.4.2 A Polemic about the Teaching of Analysis at the University -- 8.4 INTERNATIONAL SCIENTIFIC COOPERATION -- 8.5 EARLY RETIREMENT AND HONORS -- 8.5.1 Recovering and Working in the Hahnenklee Sanatorium -- 8.5.2 Max Liebermann's Portrait of Felix Klein -- 8.5.3 The Successors to Klein's Professorship -- 9 THE FIRST WORLD WAR AND THE POSTWAR PERIOD -- 9.1 POLITICAL ACTIVITY DURING THE FIRST WORLD WAR -- 9.1.1 The Vows of Allegiance of German Professors to Militarism -- 9.1.2 A Plea for Studying Abroad.
9.2 HISTORY OF MATHEMATICS, THE "CRY FOR HELP OF MODERNPHYSICS," AND EDITION PROJECTS.
Record Nr. UNINA-9910488722403321
Tobies Renate  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Hasse-Noether correspondence 1925-1935 : English translation with extensive commentary / / Peter Roquette, Franz Lemmermeyer ; translated by Robert Perlis
The Hasse-Noether correspondence 1925-1935 : English translation with extensive commentary / / Peter Roquette, Franz Lemmermeyer ; translated by Robert Perlis
Autore Roquette Peter <1962->
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (328 pages)
Disciplina 512.74
Collana Lecture notes in mathematics
Soggetto topico Class field theory
Mathematicians
Història de la matemàtica
Teoria de cossos de classe
Matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12880-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction -- 2 Class Field Theory -- 2.1 Takagi's Results -- 2.2 Artin's Reciprocity Law -- 2.3 Hasse's Local Class Field Theory -- 2.4 Noether's Algebras: Local Case -- 2.5 Local to Global -- 2.6 Herbrand and Chevalley -- 3 The Letters -- 3.1 Postcard of January 19, 1925 -- 3.2 Letter of November 03, 1926 -- 3.3 Postcard of November 10, 1926 -- 3.4 Letter of November 17, 1926 -- 3.5 Letter of December 11, 1926 -- 3.6 Letter of January 03, 1927 -- 3.7 Postcard of October 04, 1927 -- 3.8 Hasse's Letter of October 06, 1927 -- 3.9 Postcard of October 19, 1927 -- 3.10 Postcard of October 26, 1927 -- 3.11 Postcard of November 01, 1927 -- 3.12 Postcard of December 26, 1927 -- 3.13 Postcard of January 06, 1928 -- 3.14 Postcard of May 02, 1928 -- 3.15 Letter of May 14, 1928 -- 3.16 Postcard of August 12, 1929 -- 3.17 Letter of October 02, 1929 -- 3.18 Letter of October 07, 1929 -- 3.19 Postcard of November 13, 1929 -- 3.20 Postcard of June 25, 1930 -- 3.21 Letter of October 10, 1930 -- 3.22 Postcard of November 02, 1930 -- 3.23 Letter of December 19, 1930 -- 3.24 Letter of December 24, 1930 -- 3.25 Letter of February 08, 1931 -- 3.26 Postcard of March 23, 1931 -- 3.27 Postcard of April 12, 1931 -- 3.28 Letter of June 02, 1931 -- 3.29 Postcard of August 22, 1931 -- 3.30 Postcard of August 24, 1931 -- 3.31 Letter of October 04, 1931 -- 3.32 Postcard of October 23, 1931 -- 3.33 Postcard of October 27, 1931 -- 3.34 Letter of November 08, 1931 -- 3.35 Attachment to Letter of November 08, 1931 -- 3.36 Postcard of November 10, 1931 -- 3.37 Letter of November 12, 1931 -- 3.38 Letter of November 14, 1931 -- 3.39 Letter of November 22, 1931 -- 3.40 Postcard of December 02, 1931 -- 3.41 Letter of January 1932 -- 3.42 Postcard of January 27, 1932 -- 3.43 Letter of February 08, 1932 -- 3.44 Postcard of February 11, 1932.
3.45 Letter of March 15, 1932 -- 3.46 Letter of March 26, 1932 -- 3.47 Letter of April 05, 1932 -- 3.48 Letter of April 14, 1932 -- 3.49 Letter of April 27, 1932 -- 3.50 Postcard of May 02, 1932 -- 3.51 Letter of June 03, 1932 -- 3.52 Letter of June 1932 -- 3.53 Letter of June 07, 1932 -- 3.54 Postcard of June 14, 1932 -- 3.55 Postcard of June 16, 1932 -- 3.56 Postcard of July 21, 1932 -- 3.57 Postcard of August 03, 1932 -- 3.58 Letter of August 09, 1932 -- 3.59 Letter of October 29, 1932 -- 3.60 Postcard of November 25, 1932 -- 3.61 Postcard of November 30, 1932 -- 3.62 Postcard of December 09, 1932 -- 3.63 Postcard of December 11, 1932 -- 3.64 Letter of December 26, 1932 -- 3.65 Postcard of February 2, 1933 -- 3.66 Letter of March 3, 1933 -- 3.67 Letter of March 22, 1933 -- 3.68 Letter of May 10, 1933 -- 3.69 Letter of June 21, 1933 -- 3.70 Postcard of June 27, 1933 -- 3.71 Letter of July 21, 1933 -- 3.72 Letter of September 07, 1933 -- 3.73 Postcard of September 13, 1933 -- 3.74 Letter of March 6, 1934 -- 3.75 Letter of April 26, 1934 -- 3.76 Letter of June 21, 1934 -- 3.77 Letter of July 15, 1934 -- 3.78 Letter of October 31, 1934 -- 3.79 Letter from Hasse of November 19, 1934 -- 3.80 Postcard of November 23, 1934 -- 3.81 Postcard of November 28, 1934 -- 3.82 Letter from Hasse of December 17, 1934 -- 3.83 Letter of April 7, 1935 -- Bibliography -- Index.
Record Nr. UNINA-9910647398103321
Roquette Peter <1962->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Hasse-Noether correspondence 1925-1935 : English translation with extensive commentary / / Peter Roquette, Franz Lemmermeyer ; translated by Robert Perlis
The Hasse-Noether correspondence 1925-1935 : English translation with extensive commentary / / Peter Roquette, Franz Lemmermeyer ; translated by Robert Perlis
Autore Roquette Peter <1962->
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (328 pages)
Disciplina 512.74
Collana Lecture notes in mathematics
Soggetto topico Class field theory
Mathematicians
Història de la matemàtica
Teoria de cossos de classe
Matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12880-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction -- 2 Class Field Theory -- 2.1 Takagi's Results -- 2.2 Artin's Reciprocity Law -- 2.3 Hasse's Local Class Field Theory -- 2.4 Noether's Algebras: Local Case -- 2.5 Local to Global -- 2.6 Herbrand and Chevalley -- 3 The Letters -- 3.1 Postcard of January 19, 1925 -- 3.2 Letter of November 03, 1926 -- 3.3 Postcard of November 10, 1926 -- 3.4 Letter of November 17, 1926 -- 3.5 Letter of December 11, 1926 -- 3.6 Letter of January 03, 1927 -- 3.7 Postcard of October 04, 1927 -- 3.8 Hasse's Letter of October 06, 1927 -- 3.9 Postcard of October 19, 1927 -- 3.10 Postcard of October 26, 1927 -- 3.11 Postcard of November 01, 1927 -- 3.12 Postcard of December 26, 1927 -- 3.13 Postcard of January 06, 1928 -- 3.14 Postcard of May 02, 1928 -- 3.15 Letter of May 14, 1928 -- 3.16 Postcard of August 12, 1929 -- 3.17 Letter of October 02, 1929 -- 3.18 Letter of October 07, 1929 -- 3.19 Postcard of November 13, 1929 -- 3.20 Postcard of June 25, 1930 -- 3.21 Letter of October 10, 1930 -- 3.22 Postcard of November 02, 1930 -- 3.23 Letter of December 19, 1930 -- 3.24 Letter of December 24, 1930 -- 3.25 Letter of February 08, 1931 -- 3.26 Postcard of March 23, 1931 -- 3.27 Postcard of April 12, 1931 -- 3.28 Letter of June 02, 1931 -- 3.29 Postcard of August 22, 1931 -- 3.30 Postcard of August 24, 1931 -- 3.31 Letter of October 04, 1931 -- 3.32 Postcard of October 23, 1931 -- 3.33 Postcard of October 27, 1931 -- 3.34 Letter of November 08, 1931 -- 3.35 Attachment to Letter of November 08, 1931 -- 3.36 Postcard of November 10, 1931 -- 3.37 Letter of November 12, 1931 -- 3.38 Letter of November 14, 1931 -- 3.39 Letter of November 22, 1931 -- 3.40 Postcard of December 02, 1931 -- 3.41 Letter of January 1932 -- 3.42 Postcard of January 27, 1932 -- 3.43 Letter of February 08, 1932 -- 3.44 Postcard of February 11, 1932.
3.45 Letter of March 15, 1932 -- 3.46 Letter of March 26, 1932 -- 3.47 Letter of April 05, 1932 -- 3.48 Letter of April 14, 1932 -- 3.49 Letter of April 27, 1932 -- 3.50 Postcard of May 02, 1932 -- 3.51 Letter of June 03, 1932 -- 3.52 Letter of June 1932 -- 3.53 Letter of June 07, 1932 -- 3.54 Postcard of June 14, 1932 -- 3.55 Postcard of June 16, 1932 -- 3.56 Postcard of July 21, 1932 -- 3.57 Postcard of August 03, 1932 -- 3.58 Letter of August 09, 1932 -- 3.59 Letter of October 29, 1932 -- 3.60 Postcard of November 25, 1932 -- 3.61 Postcard of November 30, 1932 -- 3.62 Postcard of December 09, 1932 -- 3.63 Postcard of December 11, 1932 -- 3.64 Letter of December 26, 1932 -- 3.65 Postcard of February 2, 1933 -- 3.66 Letter of March 3, 1933 -- 3.67 Letter of March 22, 1933 -- 3.68 Letter of May 10, 1933 -- 3.69 Letter of June 21, 1933 -- 3.70 Postcard of June 27, 1933 -- 3.71 Letter of July 21, 1933 -- 3.72 Letter of September 07, 1933 -- 3.73 Postcard of September 13, 1933 -- 3.74 Letter of March 6, 1934 -- 3.75 Letter of April 26, 1934 -- 3.76 Letter of June 21, 1934 -- 3.77 Letter of July 15, 1934 -- 3.78 Letter of October 31, 1934 -- 3.79 Letter from Hasse of November 19, 1934 -- 3.80 Postcard of November 23, 1934 -- 3.81 Postcard of November 28, 1934 -- 3.82 Letter from Hasse of December 17, 1934 -- 3.83 Letter of April 7, 1935 -- Bibliography -- Index.
Record Nr. UNISA-996508571003316
Roquette Peter <1962->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov
Autore Burns Robert G.
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (401 pages)
Disciplina 510.922
Soggetto topico Mathematicians
Matemàtics
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-030-96651-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996479368103316
Burns Robert G.  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov
How far it is to tomorrow ... : reflections of an eminent Russian applied mathematician 1917-2000 / / Robert G. Burns, Nikita N. Moiseev, and Iouldouz S. Raguimov
Autore Burns Robert G.
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (401 pages)
Disciplina 510.922
Soggetto topico Mathematicians
Matemàtics
Soggetto genere / forma Biografies
Llibres electrònics
ISBN 3-030-96651-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910574854303321
Burns Robert G.  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui