Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNISA-996508570903316 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNINA-9910647396803321 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied analysis, computation and mathematical modelling in engineering : select proceedings of AACMME 2021 / / Santanu Saha Ray [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (372 pages) |
Disciplina | 511.8 |
Collana | Lecture Notes in Electrical Engineering |
Soggetto topico |
Engineering - Mathematical models
Engineering mathematics Matemàtica per a enginyers Models matemàtics |
Soggetto genere / forma |
Congressos
Llibres electrònics |
ISBN | 981-19-1824-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996479366203316 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applied analysis, computation and mathematical modelling in engineering : select proceedings of AACMME 2021 / / Santanu Saha Ray [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (372 pages) |
Disciplina | 511.8 |
Collana | Lecture Notes in Electrical Engineering |
Soggetto topico |
Engineering - Mathematical models
Engineering mathematics Matemàtica per a enginyers Models matemàtics |
Soggetto genere / forma |
Congressos
Llibres electrònics |
ISBN | 981-19-1824-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910735391103321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Approximation and computation in science and engineering / / Nicholas J. Daras and Themistocles M. Rassias, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (934 pages) |
Disciplina | 511.4 |
Collana | Springer optimization and its applications |
Soggetto topico |
Approximation theory
Engineering mathematics Science - Mathematics Teoria de l'aproximació Matemàtica per a enginyers |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-84122-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996479372803316 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Approximation and computation in science and engineering / / Nicholas J. Daras and Themistocles M. Rassias, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (934 pages) |
Disciplina | 511.4 |
Collana | Springer optimization and its applications |
Soggetto topico |
Approximation theory
Engineering mathematics Science - Mathematics Teoria de l'aproximació Matemàtica per a enginyers |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-84122-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910568297503321 |
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Methods in Engineering / / by S. P. Venkateshan, Prasanna Swaminathan |
Autore | Venkateshan S. P. |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (824 pages) |
Disciplina | 620.001518 |
Soggetto topico |
Engineering mathematics
Mechanics, Applied Engineering—Data processing Solids Mechanical engineering Engineering Mathematics Engineering Mechanics Mathematical and Computational Engineering Applications Solid Mechanics Mechanical Engineering Matemàtica per a enginyers Processament de dades |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato |
Engineering
Technology & Engineering |
ISBN | 3-031-08226-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Solution of linear equations -- Computation of eigenvalues -- Solution of algebraic equations -- Interpolation. |
Record Nr. | UNINA-9910728945403321 |
Venkateshan S. P.
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Differential calculus for engineers / / Gavriil Paltineanu, Ileana Bucur, Mariana Zamfir |
Autore | Păltineanu Gavril |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (191 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Differential calculus
Matemàtica per a enginyers Càlcul diferencial |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-19-2553-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 Sequences of Real Numbers -- 1.1 Real Numbers -- 1.2 Real Number Sequences -- 1.3 Extended Real Number Line -- 2 Real Number Series -- 2.1 Convergent and Divergent Series -- 2.2 Series with Positive Terms -- 2.3 Series with Arbitrary Terms -- 2.4 Approximating the Sum of a Leibniz's Series -- 2.5 Absolutely and Conditionally Convergent Series -- 2.6 Operations on Convergent Series -- 2.7 Sequences and Series of Complex Numbers -- 3 Sequences of Functions (Functional Sequences) -- 3.1 Simple and Uniformly Convergence -- 3.2 The Properties of the Uniformly Convergent Functional Sequences -- 4 Series of Functions (Functional Series) -- 4.1 Simple and Uniform Convergence -- 4.2 Properties of the Uniformly Convergent Series of Functions -- 4.3 Power Series -- 4.4 Taylor's Formula -- 4.5 Taylor's and Maclaurin's Series -- 4.6 Elementary Functions. Euler's Formulas. Hyperbolic Trigonometric Functions -- 5 Functions of Several Variables -- 5.1 Vector Space mathbbRn. Basic Notions and Notations -- 5.2 Convergent Sequences of Vectors in mathbbRn -- 5.3 Topology Elements on mathbbRn -- 5.4 Limits of Functions of Several Variables -- 5.5 Continuous Functions of Several Variables -- 5.6 Properties of Continuous Functions Defined on Compact or Connected Sets -- 5.7 Linear Continuous Maps from mathbbRn to mathbbRm -- 6 Differential Calculus of Functions of Several Variables -- 6.1 Partial Derivatives. Differentiability of a Function of Several Variables -- 6.2 Differentiability of Vector Functions. Jacobian Matrix -- 6.3 Differentiability of Composite Functions -- 6.4 The First Order Differenential and Its Invariance Form -- 6.5 The Directional Derivative. The Differential Operators: Gradient, Divergence, Curl and Laplacian -- 6.6 Partial Derivatives and Differentials of Higher Orders.
6.7 Second-Order Partial Derivatives of Functions Composed of Two Variables -- 6.8 Change of Variables -- 6.9 Taylor's Formula for Functions of Several Variables -- 6.10 Local Extrema of a Function of Several Variables -- 6.11 Local Inversion Theorem -- 6.12 Regular Transformations -- 6.13 Implicit Functions -- 6.14 Local Conditional Extremum -- 6.15 Dependent and Independent Functions -- References -- Index. |
Record Nr. | UNISA-996483154303316 |
Păltineanu Gavril
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Differential calculus for engineers / / Gavriil Paltineanu, Ileana Bucur, Mariana Zamfir |
Autore | Păltineanu Gavril |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (191 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Differential calculus
Matemàtica per a enginyers Càlcul diferencial |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-19-2553-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 Sequences of Real Numbers -- 1.1 Real Numbers -- 1.2 Real Number Sequences -- 1.3 Extended Real Number Line -- 2 Real Number Series -- 2.1 Convergent and Divergent Series -- 2.2 Series with Positive Terms -- 2.3 Series with Arbitrary Terms -- 2.4 Approximating the Sum of a Leibniz's Series -- 2.5 Absolutely and Conditionally Convergent Series -- 2.6 Operations on Convergent Series -- 2.7 Sequences and Series of Complex Numbers -- 3 Sequences of Functions (Functional Sequences) -- 3.1 Simple and Uniformly Convergence -- 3.2 The Properties of the Uniformly Convergent Functional Sequences -- 4 Series of Functions (Functional Series) -- 4.1 Simple and Uniform Convergence -- 4.2 Properties of the Uniformly Convergent Series of Functions -- 4.3 Power Series -- 4.4 Taylor's Formula -- 4.5 Taylor's and Maclaurin's Series -- 4.6 Elementary Functions. Euler's Formulas. Hyperbolic Trigonometric Functions -- 5 Functions of Several Variables -- 5.1 Vector Space mathbbRn. Basic Notions and Notations -- 5.2 Convergent Sequences of Vectors in mathbbRn -- 5.3 Topology Elements on mathbbRn -- 5.4 Limits of Functions of Several Variables -- 5.5 Continuous Functions of Several Variables -- 5.6 Properties of Continuous Functions Defined on Compact or Connected Sets -- 5.7 Linear Continuous Maps from mathbbRn to mathbbRm -- 6 Differential Calculus of Functions of Several Variables -- 6.1 Partial Derivatives. Differentiability of a Function of Several Variables -- 6.2 Differentiability of Vector Functions. Jacobian Matrix -- 6.3 Differentiability of Composite Functions -- 6.4 The First Order Differenential and Its Invariance Form -- 6.5 The Directional Derivative. The Differential Operators: Gradient, Divergence, Curl and Laplacian -- 6.6 Partial Derivatives and Differentials of Higher Orders.
6.7 Second-Order Partial Derivatives of Functions Composed of Two Variables -- 6.8 Change of Variables -- 6.9 Taylor's Formula for Functions of Several Variables -- 6.10 Local Extrema of a Function of Several Variables -- 6.11 Local Inversion Theorem -- 6.12 Regular Transformations -- 6.13 Implicit Functions -- 6.14 Local Conditional Extremum -- 6.15 Dependent and Independent Functions -- References -- Index. |
Record Nr. | UNINA-9910585783203321 |
Păltineanu Gavril
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Engineering mathematics by example / / Robert Sobot |
Autore | Sobot Robert |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (474 pages) |
Disciplina | 624.076 |
Soggetto topico |
Engineering mathematics
Matemàtica per a enginyers |
Soggetto genere / forma |
Problemes i exercicis
Llibres electrònics |
ISBN |
9783030795450
9783030795443 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466564903316 |
Sobot Robert
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|