Computational methods for heat and mass transfer / Pradip Majumdar |
Autore | Majumdar, Pradip, 1954- |
Pubbl/distr/stampa | New York : Taylor & Francis, 2005 |
Descrizione fisica | xx, 717 p. : ill. ; 24 cm |
Disciplina | 532.001 |
Collana | Series in computational and physical processes in mechanics and thermal sciences |
Soggetto topico |
Fluid mechanics - Mathematical models
Heat - Transmission - Mathematical models Mass transfer - Mathematical models |
ISBN | 1560329947 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003473299707536 |
Majumdar, Pradip, 1954- | ||
New York : Taylor & Francis, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Computational thermo-fluid dynamics [[electronic resource] ] : in materials science and engineering / / Petr A. Nikrityuk |
Autore | Nikrityuk Petr A |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH Verlag, c2011 |
Descrizione fisica | 1 online resource (371 p.) |
Disciplina |
333.79
620.11 |
Soggetto topico |
Materials - Thermal properties - Mathematical models
Thermodynamics - Mathematical models Fluid dynamics - Mathematical models Heat - Transmission - Mathematical models Mass transfer - Mathematical models |
ISBN |
3-527-63608-0
1-280-66276-X 9786613639691 3-527-63607-2 3-527-63609-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Computational Thermo-Fluid Dynamics; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Heat and Fluid Flows in Materials Science and Engineering; 1.2 Overview of the Present Work; 2 Mathematical Description of Physical Phenomena in Thermofluid Dynamics; 2.1 Conservation Equations for Continuum Media; 2.1.1 Conservation of Mass; 2.1.2 Conservation of Momentum; 2.1.3 Energy Conservation Equation; 2.1.4 Conservation of Chemical Species; 2.1.5 Boussinesq Approximation; 2.1.6 Unified Form of Conservation Equations; 2.1.7 Nondimensional Form of Conservation Equations; 2.1.8 Short Summary
2.2 Boundary and Initial Conditions2.2.1 Heat Transfer; 2.2.2 Solutal Transfer; 2.2.3 Fluid Dynamics; 2.3 Conservation Equations in Electromagnetics; 2.3.1 Maxwell Equations; 2.3.2 Induction and Poisson Equations; 2.3.3 An Example of a Low Magnetic Reynolds Number Approximation: Rotating Magnetic Field; 3 Discretization Approaches and Numerical Methods; 3.1 The Finite Difference Method; 3.1.1 Introduction; 3.1.2 Approximation Schemes; 3.1.3 Example of Conservative Property of FDM; 3.1.4 Discretization Schemes of Unsteady Equations; 3.1.5 Example of Unsteady Diffusion Equation 3.2 The Finite Volume Method3.2.1 Basic Concept; 3.2.2 Interpolation Schemes; 3.2.3 Linearized Form of Discretized Conservation Equation; 3.2.4 Treatment of Source Terms; 3.2.5 Boundary Conditions; 3.2.6 Comparative Study of Schemes for One-Dimensional Convection/Diffusion Problem; 3.3 Solution of Linear Equation Systems; 3.3.1 Direct Methods; 3.3.2 Iterative Methods; 3.3.3 Residuals and Convergence; 3.3.4 Multigrid Method; 3.3.5 Illustration of Iterative Methods; 4 Calculations of Flows with Heat and Mass Transfer; 4.1 Solution of Incompressible Navier-Stokes Equations 4.2 Pressure and Velocity Coupling: SIMPLE Family4.2.1 SIMPLE; 4.2.2 SIMPLER; 4.2.3 SIMPLE with Collocated Variables Arrangement; 4.3 Illustrations of Schemes for Flow with Heat Transfer; 4.4 Complex Geometry Problems on Fixed Cartesian Grids; 4.4.1 Immersed Boundary Methods; 4.4.2 Cartesian Grid Methods; 4.4.3 Immersed Surface Reconstruction; 4.4.4 Illustration of Continuous-Forcing IBM; 5 Convection-Diffusion Phase-Change Problems; 5.1 Some Aspects of Solidification Thermodynamics; 5.1.1 One-Component Melts; 5.1.2 Binary Alloys; 5.1.3 Interface and Equilibrium 5.2 Modeling of Macroscale Phase-Change Phenomena5.2.1 Heat Transfer in Phase-Change Systems: Fixed and Moving Grids; 5.2.2 Mathematical Models of a Binary Alloy Solidification; 5.2.3 Closure Relations for the Volume Fraction of Liquid; 5.3 Turbulent Solidification; 5.3.1 Review of Unsteady RANS Modeling of a Solidification; 5.3.2 Conditions for the DNS of Convection-Driven Solidification; 5.4 Microscale Phase-Change Phenomena; 5.4.1 Basic Modeling Concepts; 5.4.2 Modified Cellular Automaton Model; 5.4.3 Virtual Interface Tracking Model; 5.5 Modeling of Crystal Growth 5.5.1 Modeling Approaches |
Record Nr. | UNINA-9910141338503321 |
Nikrityuk Petr A | ||
Weinheim, Germany, : Wiley-VCH Verlag, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational thermo-fluid dynamics : in materials science and engineering / / Petr A. Nikrityuk |
Autore | Nikrityuk Petr A |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Weinheim, Germany, : Wiley-VCH Verlag, c2011 |
Descrizione fisica | 1 online resource (371 p.) |
Disciplina |
333.79
620.11 |
Soggetto topico |
Materials - Thermal properties - Mathematical models
Thermodynamics - Mathematical models Fluid dynamics - Mathematical models Heat - Transmission - Mathematical models Mass transfer - Mathematical models |
ISBN |
3-527-63608-0
1-280-66276-X 9786613639691 3-527-63607-2 3-527-63609-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Computational Thermo-Fluid Dynamics; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Heat and Fluid Flows in Materials Science and Engineering; 1.2 Overview of the Present Work; 2 Mathematical Description of Physical Phenomena in Thermofluid Dynamics; 2.1 Conservation Equations for Continuum Media; 2.1.1 Conservation of Mass; 2.1.2 Conservation of Momentum; 2.1.3 Energy Conservation Equation; 2.1.4 Conservation of Chemical Species; 2.1.5 Boussinesq Approximation; 2.1.6 Unified Form of Conservation Equations; 2.1.7 Nondimensional Form of Conservation Equations; 2.1.8 Short Summary
2.2 Boundary and Initial Conditions2.2.1 Heat Transfer; 2.2.2 Solutal Transfer; 2.2.3 Fluid Dynamics; 2.3 Conservation Equations in Electromagnetics; 2.3.1 Maxwell Equations; 2.3.2 Induction and Poisson Equations; 2.3.3 An Example of a Low Magnetic Reynolds Number Approximation: Rotating Magnetic Field; 3 Discretization Approaches and Numerical Methods; 3.1 The Finite Difference Method; 3.1.1 Introduction; 3.1.2 Approximation Schemes; 3.1.3 Example of Conservative Property of FDM; 3.1.4 Discretization Schemes of Unsteady Equations; 3.1.5 Example of Unsteady Diffusion Equation 3.2 The Finite Volume Method3.2.1 Basic Concept; 3.2.2 Interpolation Schemes; 3.2.3 Linearized Form of Discretized Conservation Equation; 3.2.4 Treatment of Source Terms; 3.2.5 Boundary Conditions; 3.2.6 Comparative Study of Schemes for One-Dimensional Convection/Diffusion Problem; 3.3 Solution of Linear Equation Systems; 3.3.1 Direct Methods; 3.3.2 Iterative Methods; 3.3.3 Residuals and Convergence; 3.3.4 Multigrid Method; 3.3.5 Illustration of Iterative Methods; 4 Calculations of Flows with Heat and Mass Transfer; 4.1 Solution of Incompressible Navier-Stokes Equations 4.2 Pressure and Velocity Coupling: SIMPLE Family4.2.1 SIMPLE; 4.2.2 SIMPLER; 4.2.3 SIMPLE with Collocated Variables Arrangement; 4.3 Illustrations of Schemes for Flow with Heat Transfer; 4.4 Complex Geometry Problems on Fixed Cartesian Grids; 4.4.1 Immersed Boundary Methods; 4.4.2 Cartesian Grid Methods; 4.4.3 Immersed Surface Reconstruction; 4.4.4 Illustration of Continuous-Forcing IBM; 5 Convection-Diffusion Phase-Change Problems; 5.1 Some Aspects of Solidification Thermodynamics; 5.1.1 One-Component Melts; 5.1.2 Binary Alloys; 5.1.3 Interface and Equilibrium 5.2 Modeling of Macroscale Phase-Change Phenomena5.2.1 Heat Transfer in Phase-Change Systems: Fixed and Moving Grids; 5.2.2 Mathematical Models of a Binary Alloy Solidification; 5.2.3 Closure Relations for the Volume Fraction of Liquid; 5.3 Turbulent Solidification; 5.3.1 Review of Unsteady RANS Modeling of a Solidification; 5.3.2 Conditions for the DNS of Convection-Driven Solidification; 5.4 Microscale Phase-Change Phenomena; 5.4.1 Basic Modeling Concepts; 5.4.2 Modified Cellular Automaton Model; 5.4.3 Virtual Interface Tracking Model; 5.5 Modeling of Crystal Growth 5.5.1 Modeling Approaches |
Record Nr. | UNINA-9910810441703321 |
Nikrityuk Petr A | ||
Weinheim, Germany, : Wiley-VCH Verlag, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modelling of convective heat and mass transfer in nanofluids with and without boiling and condensation / / Andriy A. Avramenko and Igor V. Shevchuk |
Autore | Avramenko Andriy A. |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (275 pages) |
Disciplina | 660.28423 |
Collana | Mathematical Engineering |
Soggetto topico | Mass transfer - Mathematical models |
ISBN | 3-030-95081-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910544850903321 |
Avramenko Andriy A. | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Property and energy conversion technology of solid composite sorbents / / Liwei Wang [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (297 pages) |
Disciplina | 621.4022 |
Collana | Engineering Materials |
Soggetto topico |
Heat - Transmission
Mass transfer - Mathematical models |
ISBN | 981-336-088-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910484301003321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|