Complex dynamics : twenty-five years after the appearance of the Mandelbrot set : proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Complex Dynamics : Twenty-five Years after the Appearance of the Mandelbrot Set, June 13-17, 2004, Snowbird, Utah / / Robert L. Devaney, Linda Keen, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
Descrizione fisica | 1 online resource (218 p.) |
Disciplina | 514/.742 |
Collana | Contemporary mathematics |
Soggetto topico |
Mandelbrot sets
Dynamics System theory Mappings (Mathematics) Domains of holomorphy Polynomials Numbers, Complex |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-7986-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Polynomial vector fields, dessins d'enfants, and circle packings""""Siegel disks whose boundaries have only two complementary domains""; ""Non-uniform porosity for a subset of some Julia sets""; ""The existence of conformal measures for some transcendental meromorphic functions""; ""Open problems"" |
Record Nr. | UNINA-9910480120103321 |
Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex dynamics : twenty-five years after the appearance of the Mandelbrot set : proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Complex Dynamics : Twenty-five Years after the Appearance of the Mandelbrot Set, June 13-17, 2004, Snowbird, Utah / / Robert L. Devaney, Linda Keen, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
Descrizione fisica | 1 online resource (218 p.) |
Disciplina | 514/.742 |
Collana | Contemporary mathematics |
Soggetto topico |
Mandelbrot sets
Dynamics System theory Mappings (Mathematics) Domains of holomorphy Polynomials Numbers, Complex |
ISBN | 0-8218-7986-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Polynomial vector fields, dessins d'enfants, and circle packings""""Siegel disks whose boundaries have only two complementary domains""; ""Non-uniform porosity for a subset of some Julia sets""; ""The existence of conformal measures for some transcendental meromorphic functions""; ""Open problems"" |
Record Nr. | UNINA-9910788662103321 |
Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex dynamics : twenty-five years after the appearance of the Mandelbrot set : proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Complex Dynamics : Twenty-five Years after the Appearance of the Mandelbrot Set, June 13-17, 2004, Snowbird, Utah / / Robert L. Devaney, Linda Keen, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
Descrizione fisica | 1 online resource (218 p.) |
Disciplina | 514/.742 |
Collana | Contemporary mathematics |
Soggetto topico |
Mandelbrot sets
Dynamics System theory Mappings (Mathematics) Domains of holomorphy Polynomials Numbers, Complex |
ISBN | 0-8218-7986-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Polynomial vector fields, dessins d'enfants, and circle packings""""Siegel disks whose boundaries have only two complementary domains""; ""Non-uniform porosity for a subset of some Julia sets""; ""The existence of conformal measures for some transcendental meromorphic functions""; ""Open problems"" |
Record Nr. | UNINA-9910815366003321 |
Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hypercomplex iterations [[electronic resource] ] : distance estimation and higher dimensional fractals / / Yumei Dang, Louis H. Kauffman, Daniel Sandin |
Autore | Dang Yumei |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (163 p.) |
Disciplina | 514.742 |
Altri autori (Persone) |
KauffmanLouis H. <1945->
SandinDaniel J |
Collana | K & E series on knots and everything |
Soggetto topico |
Iterative methods (Mathematics)
Quaternions Mandelbrot sets Fractals |
Soggetto genere / forma | Electronic books. |
ISBN | 981-277-860-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Acknowledgements ; Preface ; Part 1 Introduction ; Chapter 1 Hypercomplex Iterations in a Nutshell ; Chapter 2 Deterministic Fractals and Distance Estimation ; 2.1. Fractals and Visualization ; 2.2. Deterministic Fractals Julia Sets and Mandelbrot Sets
2.3. Distance Estimation Part 2 Classical Analysis: Complex and Quaternionic ; Chapter 3 Distance Estimation in Complex Space ; 3.1. Complex Dynamical Systems ; 3.2. The Quadratic Family Julia Sets and the Mandelbrot Set ; 3.3. The Distance Estimation Formula 3.4. Schwarz's Lemma and an Upper Bound of the Distance Estimate 3.5. The Koebe 1/4 Theorem and a Lower Bound for the Distance Estimate ; 3.6. An Approximation of the Distance Estimation Formula ; Chapter 4 Quaternion Analysis ; 4.1. The Quaternions ; 4.2. Rotations of 3-Space 4.3. Quaternion Polynomials 4.4. Quaternion Julia Sets and Mandelbrot Sets ; 4.5. Differential Forms ; 4.6. Regular Functions ; 4.7. Cauchy's Theorem and the Integral Formula ; 4.8. Linear and Quadratic Regular Functions 4.9. Difficulties of the Quaternion Analytic Proof of Distance Estimation Chapter 5 Quaternions and the Dirac String Trick ; Part 3 Hypercomplex Iterations ; Chapter 6 Quaternion Mandelbrot Sets ; 6.1. Quaternion Mandelbrot Sets 6.2. The Distance Estimate for Quaternion Mandelbrot Sets |
Record Nr. | UNINA-9910451677103321 |
Dang Yumei | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hypercomplex iterations [[electronic resource] ] : distance estimation and higher dimensional fractals / / Yumei Dang, Louis H. Kauffman, Daniel Sandin |
Autore | Dang Yumei |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (163 p.) |
Disciplina | 514.742 |
Altri autori (Persone) |
KauffmanLouis H. <1945->
SandinDaniel J |
Collana | K & E series on knots and everything |
Soggetto topico |
Iterative methods (Mathematics)
Quaternions Mandelbrot sets Fractals |
ISBN | 981-277-860-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Acknowledgements ; Preface ; Part 1 Introduction ; Chapter 1 Hypercomplex Iterations in a Nutshell ; Chapter 2 Deterministic Fractals and Distance Estimation ; 2.1. Fractals and Visualization ; 2.2. Deterministic Fractals Julia Sets and Mandelbrot Sets
2.3. Distance Estimation Part 2 Classical Analysis: Complex and Quaternionic ; Chapter 3 Distance Estimation in Complex Space ; 3.1. Complex Dynamical Systems ; 3.2. The Quadratic Family Julia Sets and the Mandelbrot Set ; 3.3. The Distance Estimation Formula 3.4. Schwarz's Lemma and an Upper Bound of the Distance Estimate 3.5. The Koebe 1/4 Theorem and a Lower Bound for the Distance Estimate ; 3.6. An Approximation of the Distance Estimation Formula ; Chapter 4 Quaternion Analysis ; 4.1. The Quaternions ; 4.2. Rotations of 3-Space 4.3. Quaternion Polynomials 4.4. Quaternion Julia Sets and Mandelbrot Sets ; 4.5. Differential Forms ; 4.6. Regular Functions ; 4.7. Cauchy's Theorem and the Integral Formula ; 4.8. Linear and Quadratic Regular Functions 4.9. Difficulties of the Quaternion Analytic Proof of Distance Estimation Chapter 5 Quaternions and the Dirac String Trick ; Part 3 Hypercomplex Iterations ; Chapter 6 Quaternion Mandelbrot Sets ; 6.1. Quaternion Mandelbrot Sets 6.2. The Distance Estimate for Quaternion Mandelbrot Sets |
Record Nr. | UNINA-9910778372903321 |
Dang Yumei | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hypercomplex iterations : distance estimation and higher dimensional fractals / / Yumei Dang, Louis H. Kauffman, Daniel Sandin |
Autore | Dang Yumei |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (163 p.) |
Disciplina | 514.742 |
Altri autori (Persone) |
KauffmanLouis H. <1945->
SandinDaniel J |
Collana | K & E series on knots and everything |
Soggetto topico |
Iterative methods (Mathematics)
Quaternions Mandelbrot sets Fractals |
ISBN | 981-277-860-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Acknowledgements ; Preface ; Part 1 Introduction ; Chapter 1 Hypercomplex Iterations in a Nutshell ; Chapter 2 Deterministic Fractals and Distance Estimation ; 2.1. Fractals and Visualization ; 2.2. Deterministic Fractals Julia Sets and Mandelbrot Sets
2.3. Distance Estimation Part 2 Classical Analysis: Complex and Quaternionic ; Chapter 3 Distance Estimation in Complex Space ; 3.1. Complex Dynamical Systems ; 3.2. The Quadratic Family Julia Sets and the Mandelbrot Set ; 3.3. The Distance Estimation Formula 3.4. Schwarz's Lemma and an Upper Bound of the Distance Estimate 3.5. The Koebe 1/4 Theorem and a Lower Bound for the Distance Estimate ; 3.6. An Approximation of the Distance Estimation Formula ; Chapter 4 Quaternion Analysis ; 4.1. The Quaternions ; 4.2. Rotations of 3-Space 4.3. Quaternion Polynomials 4.4. Quaternion Julia Sets and Mandelbrot Sets ; 4.5. Differential Forms ; 4.6. Regular Functions ; 4.7. Cauchy's Theorem and the Integral Formula ; 4.8. Linear and Quadratic Regular Functions 4.9. Difficulties of the Quaternion Analytic Proof of Distance Estimation Chapter 5 Quaternions and the Dirac String Trick ; Part 3 Hypercomplex Iterations ; Chapter 6 Quaternion Mandelbrot Sets ; 6.1. Quaternion Mandelbrot Sets 6.2. The Distance Estimate for Quaternion Mandelbrot Sets |
Altri titoli varianti | Distance estimation and higher dimensional fractals |
Record Nr. | UNINA-9910818582103321 |
Dang Yumei | ||
Singapore ; ; River Edge, NJ, : World Scientific, c2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The universal mandelbrot set [[electronic resource] ] : beginning of the story / / V. Dolotin, A. Morozov |
Autore | Dolotin V (Valeriĭ Valerʹevich) |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientiific Pub., c2006 |
Descrizione fisica | 1 online resource (176 p.) |
Disciplina | 514/.742 |
Altri autori (Persone) | MorozovA. D <1944-> (Alʹbert Dmitrievich) |
Soggetto topico | Mandelbrot sets |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-92469-5
9786611924690 981-277-335-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Preface ; 1. Introduction ; 2. Notions and notation ; 2.1 Objects associated with the space X ; 2.2 Objects associated with the space M ; 2.3 Combinatorial objects ; 2.4 Relations between the notions ; 3. Summary ; 3.1 Orbits and grand orbits ; 3.2 Mandelbrot sets
3.2.1 Forest structure 3.2.2 Relation to resultants and discriminants ; 3.2.3 Relation to stability domains ; 3.2.4 Critical points and locations of elementary domains ; 3.2.5 Perturbation theory and approximate self-similarity of Mandelbrot set ; 3.2.6 Trails in the forest 3.3 Sheaf of Julia sets over moduli space 4. Fragments of theory ; 4.1 Orbits and reduction theory of iterated maps ; 4.2 Bifurcations and discriminants: from real to complex ; 4.3 Discriminants and resultants for iterated maps ; 4.4 Period-doubling and beyond 4.5 Stability and Mandelbrot set 4.6 Towards the theory of Julia sets ; 4.6.1 Grand orbits and algebraic Julia sets ; 4.6.2 From algebraic to ordinary Julia set ; 4.6.3 Bifurcations of Julia set ; 4.7 On discriminant analysis for grand orbits 4.7.2 Irreducible constituents of discriminants and resultants 4.7.6 Summary ; 4.7.7 On interpretation of wntk ; 4.8 Combinatorics of discriminants and resultants ; 4.9 Shapes of Julia and Mandelbrot sets ; 4.9.1 Generalities 4.9.2 Exact statements about 1-parametric families of polynomials of power-d |
Record Nr. | UNINA-9910458462303321 |
Dolotin V (Valeriĭ Valerʹevich) | ||
Hackensack, NJ, : World Scientiific Pub., c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The universal mandelbrot set [[electronic resource] ] : beginning of the story / / V. Dolotin, A. Morozov |
Autore | Dolotin V (Valeriĭ Valerʹevich) |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientiific Pub., c2006 |
Descrizione fisica | 1 online resource (176 p.) |
Disciplina | 514/.742 |
Altri autori (Persone) | MorozovA. D <1944-> (Alʹbert Dmitrievich) |
Soggetto topico | Mandelbrot sets |
ISBN |
1-281-92469-5
9786611924690 981-277-335-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Preface ; 1. Introduction ; 2. Notions and notation ; 2.1 Objects associated with the space X ; 2.2 Objects associated with the space M ; 2.3 Combinatorial objects ; 2.4 Relations between the notions ; 3. Summary ; 3.1 Orbits and grand orbits ; 3.2 Mandelbrot sets
3.2.1 Forest structure 3.2.2 Relation to resultants and discriminants ; 3.2.3 Relation to stability domains ; 3.2.4 Critical points and locations of elementary domains ; 3.2.5 Perturbation theory and approximate self-similarity of Mandelbrot set ; 3.2.6 Trails in the forest 3.3 Sheaf of Julia sets over moduli space 4. Fragments of theory ; 4.1 Orbits and reduction theory of iterated maps ; 4.2 Bifurcations and discriminants: from real to complex ; 4.3 Discriminants and resultants for iterated maps ; 4.4 Period-doubling and beyond 4.5 Stability and Mandelbrot set 4.6 Towards the theory of Julia sets ; 4.6.1 Grand orbits and algebraic Julia sets ; 4.6.2 From algebraic to ordinary Julia set ; 4.6.3 Bifurcations of Julia set ; 4.7 On discriminant analysis for grand orbits 4.7.2 Irreducible constituents of discriminants and resultants 4.7.6 Summary ; 4.7.7 On interpretation of wntk ; 4.8 Combinatorics of discriminants and resultants ; 4.9 Shapes of Julia and Mandelbrot sets ; 4.9.1 Generalities 4.9.2 Exact statements about 1-parametric families of polynomials of power-d |
Record Nr. | UNINA-9910784761103321 |
Dolotin V (Valeriĭ Valerʹevich) | ||
Hackensack, NJ, : World Scientiific Pub., c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The universal mandelbrot set : beginning of the story / / V. Dolotin, A. Morozov |
Autore | Dolotin V (Valerii Valerevich) |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientiific Pub., c2006 |
Descrizione fisica | 1 online resource (176 p.) |
Disciplina | 514/.742 |
Altri autori (Persone) | MorozovA. D <1944-> (Albert Dmitrievich) |
Soggetto topico | Mandelbrot sets |
ISBN |
1-281-92469-5
9786611924690 981-277-335-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents ; Preface ; 1. Introduction ; 2. Notions and notation ; 2.1 Objects associated with the space X ; 2.2 Objects associated with the space M ; 2.3 Combinatorial objects ; 2.4 Relations between the notions ; 3. Summary ; 3.1 Orbits and grand orbits ; 3.2 Mandelbrot sets
3.2.1 Forest structure 3.2.2 Relation to resultants and discriminants ; 3.2.3 Relation to stability domains ; 3.2.4 Critical points and locations of elementary domains ; 3.2.5 Perturbation theory and approximate self-similarity of Mandelbrot set ; 3.2.6 Trails in the forest 3.3 Sheaf of Julia sets over moduli space 4. Fragments of theory ; 4.1 Orbits and reduction theory of iterated maps ; 4.2 Bifurcations and discriminants: from real to complex ; 4.3 Discriminants and resultants for iterated maps ; 4.4 Period-doubling and beyond 4.5 Stability and Mandelbrot set 4.6 Towards the theory of Julia sets ; 4.6.1 Grand orbits and algebraic Julia sets ; 4.6.2 From algebraic to ordinary Julia set ; 4.6.3 Bifurcations of Julia set ; 4.7 On discriminant analysis for grand orbits 4.7.2 Irreducible constituents of discriminants and resultants 4.7.6 Summary ; 4.7.7 On interpretation of wntk ; 4.8 Combinatorics of discriminants and resultants ; 4.9 Shapes of Julia and Mandelbrot sets ; 4.9.1 Generalities 4.9.2 Exact statements about 1-parametric families of polynomials of power-d |
Record Nr. | UNINA-9910810237003321 |
Dolotin V (Valerii Valerevich) | ||
Hackensack, NJ, : World Scientiific Pub., c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|