Autore |
Niu Weina
|
Edizione | [1st ed.] |
Pubbl/distr/stampa |
Singapore : , : Springer, , [2024]
|
Descrizione fisica |
1 online resource (xiv, 190 pages) : illustrations
|
Altri autori (Persone) |
ZhangXiaosong <1968->
YanRan
GongJiacheng
|
Soggetto topico |
Malware (Computer software)
|
ISBN |
981-9714-59-1
|
Formato |
Materiale a stampa |
Livello bibliografico |
Monografia |
Lingua di pubblicazione |
eng
|
Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I The Overview of Android Malware Detection -- 1 Introduction of Android Malware Detection -- 1.1 Android Malware Family -- 1.1.1 Trojan Horse -- 1.1.2 Viruses -- 1.1.3 The Back Door -- 1.1.4 Zombies -- 1.1.5 Espionage -- 1.1.6 Intimidation -- 1.1.7 Extortion -- 1.1.8 Advertising -- 1.1.9 Tracking -- 1.2 History of Android Malware Detection -- 1.3 Android Malware Detection Overview -- 1.4 Challenges and Apps of Android Malware Detection -- 1.5 Domestic and International Android Malware Detection -- 1.5.1 Android Malware Detection Method Based on Static Analysis -- 1.5.2 Android Malware Detection Method Based on Dynamic Analysis -- 1.5.3 Android Malware Detection Method Based on Hybrid Analysis -- 1.6 Chapter Summary -- References -- Part II The General Android Malware Detection Method -- 2 Feature Code Based Android Malware Detection Method -- 2.1 Detection Based on Traditional Feature Codes -- 2.1.1 Introduction -- 2.1.2 DroidAnalyzer: A Case Study in Android Malware Analysis -- 2.1.2.1 Suspicious Android APIs and Keywords 3 -- 2.1.2.2 Main Algorithm of DroidAnalyzer -- 2.2 Detection Based on Semantic Feature Codes -- 2.2.1 Introduction -- 2.2.2 DroidNative: A Case Study in Android Malware Analysis -- 2.2.2.1 Static Analysis in DroidNative -- 2.2.2.2 System Design and Implementation -- 2.3 Chapter Summary -- References -- 3 Behavior-Based Detection Method for Android Malware -- 3.1 Privacy Disclosure -- 3.2 Permission Escalation -- 3.2.1 Permission Escalation Method -- 3.2.2 Authorization Based on Configuration Files -- 3.2.3 Code Analysis -- 3.2.4 Taint Analysis -- 3.3 Machine Learning Technology and Malicious Behavior of Android Software -- 3.4 Chapter Summary -- References -- 4 AI-Based Android Malware Detection Methods.
4.1 Detection Based on Permissions, APIs, and Components -- 4.1.1 Permissions in Android System -- 4.1.1.1 Permissions in Android System -- 4.1.1.2 Overview of Permission-Based Detection Methods -- 4.1.2 Detection Based on API -- 4.1.3 Component-Based Detection -- 4.1.3.1 Components of an Application -- 4.1.3.2 Overview of Component-Based Detection Methods -- 4.1.4 Specific Case: Drebin -- 4.1.4.1 Static Analysis of Applications -- 4.1.4.2 Embedding in Vector Space -- 4.1.4.3 Learning-Based Detection -- 4.1.4.4 Explanation -- 4.2 Detection Anchored in Dynamic Runtime Features -- 4.2.1 Dynamic Analysis and Runtime Features -- 4.2.2 Overview of Detection Methods Based on Dynamic Runtime Features -- 4.2.3 Specific Case: EnDroid -- 4.2.3.1 Training Phase -- 4.2.3.2 Detection Phase -- 4.3 Detection Through Semantic Code Analysis -- 4.3.1 Dalvik Bytecode -- 4.3.2 Overview of Code Semantic-Based Detection Methods -- 4.3.3 Specific Case: MviiDroid -- 4.3.3.1 Static Analysis Phase -- 4.3.3.2 Feature Generation Phase -- 4.3.3.3 Model Training Phase -- 4.4 Detection via Image Analysis -- 4.4.1 Overview of Image-Based Detection Methods -- 4.4.2 Specific Case: R2-D2 -- 4.5 Detection Through Graph Analysis -- 4.5.1 Overview of Homogeneous Graph-Based Detection Methods -- 4.5.2 Overview of Heterogeneous Graph-Based Detection Methods -- 4.5.3 Case Study: HAWK -- 4.5.3.1 Feature Engineering -- 4.5.3.2 Constructing Heterogeneous Information Network (HIN) -- 4.5.3.3 Constructing Application Graph from HIN -- 4.6 Chapter Summary -- References -- Part III The Adversarial Method for Android Malware Detection -- 5 Static Adversarial Method -- 5.1 Static Obfuscation -- 5.1.1 Code Obfuscation -- 5.1.2 Resource Obfuscation -- 5.1.3 Manifest File Obfuscation -- 5.1.4 Control Flow Obfuscation -- 5.2 Common APK Static Obfuscation Tools -- 5.2.1 Obfuscapk -- 5.2.2 ProGuard.
5.2.3 DexGuard -- 5.2.4 Allatori -- 5.2.5 DashO -- 5.2.6 Bangcle -- 5.2.7 Arxan -- 5.2.8 Comparative Analysis -- 5.3 Research on Static Obfuscation -- 5.3.1 Detection Methods Based on New Features -- 5.3.1.1 Static Detection Based on Perceptual Hashing -- 5.3.1.2 Static Detection Based on Semantic Feature Set -- 5.3.1.3 Static Detection Based on Static Data Streams -- 5.3.1.4 Static Detection Based on Grayscale Images -- 5.3.1.5 Static Detection Based on Permission Pairs -- 5.3.1.6 Static Detection Based on Static Sensitive Subgraphs -- 5.3.1.7 Static Detection Based on Malicious URLs -- 5.3.2 Detection Method Based on Binding Method -- 5.3.2.1 Static Detection Combined with Dynamic -- 5.3.2.2 Static Detection Combined with Machine Learning -- 5.3.2.3 Static Detection Combined with Deep Learning -- 5.4 Chapter Summary -- References -- 6 Dynamic Adversarial Method in Android Malware -- 6.1 Automatic Dynamic Analysis Evasion -- 6.1.1 Detection Dependent -- 6.1.1.1 Fingerprint -- 6.1.1.2 Reverse Turing Test -- 6.1.1.3 Target -- 6.1.2 Detection Independent -- 6.1.2.1 Stalling -- 6.1.2.2 Trigger-Based -- 6.1.2.3 Fileless Attack -- 6.2 Manual Dynamic Analysis Evasion -- 6.2.1 Direct Detection -- 6.2.1.1 Read PEB -- 6.2.1.2 Breakpoint Query -- 6.2.1.3 System Artifacts -- 6.2.1.4 Parent Process Detection -- 6.2.2 Deductive Detection -- 6.2.2.1 Trap -- 6.2.2.2 Time-Based Detection -- 6.2.3 Debugger Evasion -- 6.2.3.1 Control Flow Manipulation -- 6.2.3.2 Lockout Evasion -- 6.2.3.3 Debugger Identification -- 6.2.3.4 Fileless Malware -- 6.3 Related Research About Dynamic Analysis Evasion -- 6.3.1 Research About Improving Sandbox -- 6.3.1.1 The Droid is in the Details: Environment-Aware Evasion of Android Sandboxes -- 6.3.1.2 Morpheus: Automatically Generating Heuristics to Detect Android Emulators -- 6.3.2 Research About Detecting Dynamic Evasion.
6.3.2.1 CamoDroid: An Android App Analysis Environment Resilient Against Sandbox Evasion -- 6.3.2.2 Lumus: Dynamically Uncovering Evasive Android apps -- 6.4 Chapter Summary -- References -- 7 AI-Based Adversarial Method in Android -- 7.1 Introduction to Adversarial Examples -- 7.2 Classification of Adversarial Example Generation Methods -- 7.2.1 Gradient-Based Attacks -- 7.2.2 Optimization-Based Attacks -- 7.2.3 GAN-Based Attacks -- 7.2.4 Domain-Specific Attacks (Audio, Images, Text, etc.) -- 7.3 Black-Box Attacks -- 7.3.1 Introduction to Black-Box Attacks -- 7.3.2 Common Black-Box Attack Methods -- 7.3.3 Transfer Learning-Based Black-Box Attacks -- 7.3.4 Meta-Model Based Black-Box Attacks -- 7.3.5 Query-Based Attacks -- 7.3.6 Optimization-Based Attacks -- 7.4 White-Box Attacks -- 7.4.1 Optimization-Based Attacks -- 7.4.1.1 C& -- W Attack -- 7.4.1.2 PGD Attack -- 7.4.2 Gradient-Based Attacks -- 7.4.2.1 FGSM Attack -- 7.4.2.2 BIM Attack -- 7.4.3 App of Adversarial Attacks in Malware Detection -- 7.5 Chapter Summary -- References -- Part IV The Future Trends of Android Malware Detection -- 8 Future Trends in Android Malware Detection -- 8.1 Machine Learning And Deep Learning Techniques -- 8.1.1 Overview of Machine Learning and Deep Learning for Android Malware Detection -- 8.1.2 Challenges Faced -- 8.2 Integrated Solutions -- 8.2.1 Challenges Faced -- 8.3 Blockchain Technology -- 8.3.1 Introduction to Blockchain Technology -- 8.3.2 Examples of Blockchain Technology in the Field of Android Malware Detection -- 8.4 Hardware Technology -- 8.4.1 Advantages of Hardware Technology -- 8.4.2 Challenges to Hardware Technology -- 8.4.3 Examples of Hardware Technologies Applied in the Field of Android Malware Detection -- 8.5 BPF Technology -- 8.5.1 Development of BPF Technology -- 8.5.2 eBPF Technology Overview.
8.5.3 Examples of BPF Techniques in the Field of Android Malware Detection -- 8.6 Chapter Summary -- References.
|
Record Nr. | UNINA-9910864193603321 |