top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications and properties of magnetic nanoparticles / / Paolo Arosio, editor
Applications and properties of magnetic nanoparticles / / Paolo Arosio, editor
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023]
Descrizione fisica 1 online resource (276 pages)
Disciplina 615.19
Soggetto topico Nanoparticles
Magnetic nanoparticles
ISBN 3-0365-6207-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editor -- Applications and Properties of Magnetic Nanoparticles -- Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory -- Highly Sensitive Fluorescent Detection of Acetylcholine Based on the Enhanced Peroxidase-Like Activity of Histidine Coated Magnetic Nanoparticles -- Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites -- The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications -- Evaluation of Physicochemical Properties of Amphiphilic 1,4-Dihydropyridines and Preparation of Magnetoliposomes -- Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields -- Deviation of Trypsin Activity Using Peptide Conformational Imprints -- Determination of Cobalt Spin-Diffusion Length in Co/Cu Multilayered Heterojunction Nanocylinders Based on Valet-Fert Model -- Magnetic Imaging of Encapsulated Superparamagnetic Nanoparticles by Data Fusion of Magnetic Force Microscopy and Atomic Force Microscopy Signals for Correction of Topographic Crosstalk -- Coating Effect on the 1H-NMR Relaxation Properties of Iron Oxide Magnetic Nanoparticles -- Application of Magnetosomes in Magnetic Hyperthermia -- Room Temperature Magnetic Memory Effect in Cluster-Glassy Fe-Doped NiO Nanoparticles -- Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles -- Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties -- Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI) -- Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method -- Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer.
Record Nr. UNINA-9910647232403321
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functionalized Magnetic Nanoparticles for Theranostic Applications
Functionalized Magnetic Nanoparticles for Theranostic Applications
Autore Pandey Mayank
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (587 pages)
Disciplina 610.28
Altri autori (Persone) DeshmukhKalim
HussainChaudhery Mustansar
Soggetto topico Magnetic nanoparticles
Nanomedicine
ISBN 9781394172917
1394172915
9781394172894
1394172893
9781394172900
1394172907
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Magnetic Nanoparticles: Classifications, Structure, Physicochemical Properties, and Implications for Biomedical Applications -- List of Abbreviations -- 1.1 Introduction -- 1.2 Synthesis Methods of Magnetic Nanoparticles (MNPs) -- 1.2.1 Synthesis in Liquid Phase -- 1.2.1.1 Co-Precipitation -- 1.2.1.2 Arc Discharge -- 1.2.2 Thermal Decomposition (Non-Aqueous Media Synthesis) -- 1.2.3 Microemulsion -- 1.2.4 Green Synthesis of NPs -- 1.3 Methods of Protection -- 1.3.1 Engineering Controls -- 1.3.2 Personal Protective Equipment -- 1.3.3 Administrative Controls -- 1.3.4 Protection Methods of Magnetic Nanoparticles Via Coating -- 1.3.4.1 Organic Coating -- 1.3.4.2 Inorganic Coatings -- 1.3.4.3 Surfactant and Polymer Coating -- 1.3.4.4 Precious-Metal Coating -- 1.3.4.5 Silica Coating -- 1.3.5 Protection/Stabilization of Magnetic Nanoparticles -- 1.3.5.1 Surface Passivation by Mild Oxidation -- 1.3.5.2 Chemical Vapor Deposition (CVD) -- 1.4 Functionalization and Properties of Magnetic Nanoparticles
Record Nr. UNINA-9911020247603321
Pandey Mayank  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic nanoparticles : synthesis, characterization, and applications / / Abdollah Hajalilou, Mahmoud Tavakoli and Elahe Parvini
Magnetic nanoparticles : synthesis, characterization, and applications / / Abdollah Hajalilou, Mahmoud Tavakoli and Elahe Parvini
Autore Hajalilou Abdollah
Pubbl/distr/stampa Wiesbaden, Germany : , : Wiley, , [2023]
Descrizione fisica 1 online resource (347 pages)
Disciplina 610.28
Soggetto topico Magnetic nanoparticles
ISBN 3-527-84076-1
3-527-84078-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Magnetic Materials -- 1.1 Theory and Fundamentals of Magnetization -- 1.2 Type of Magnetism -- 1.2.1 Diamagnetism -- 1.2.2 Paramagnetism -- 1.2.3 Ferromagnetism -- 1.2.4 Antiferromagnetism -- 1.2.5 Ferrimagnetism -- 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials -- 1.3.1 Intrinsic Properties -- 1.3.1.1 Saturation Magnetization (Ms) -- 1.3.1.2 Curie Temperature (TC) -- 1.3.1.3 Magnetic Anisotropy -- 1.3.2 Extrinsic Properties -- References -- Chapter 2 Type and Characteristics of Magnetic Materials -- 2.1 Introduction -- 2.2 Soft and Hard Magnetic Materials -- 2.2.1 Soft Magnetic Materials -- 2.2.2 Hard Magnetic Materials -- 2.3 Hysteresis Loop -- 2.3.1 The Process of Hysteresis Loop Formation -- 2.3.2 Domain Orientation in Directions Favorable to the Applied Field -- 2.4 Magnetic Characteristic Measurements -- 2.4.1 M-H Hysteresis Loop -- 2.4.2 B-H Hysteresis Loop -- 2.5 Magnetic Losses -- 2.5.1 Eddy Current Losses -- 2.5.2 Residual Losses -- 2.5.3 Hysteresis Losses -- References -- Chapter 3 Insight into the Synthesis of Nanostructured Magnetic Materials -- 3.1 Introduction -- 3.2 Synthesis Process of the Magnetic Nanoparticles -- 3.3 Importance of the Synthesis and/or Preparation Methods -- 3.4 Dependency of Particle Size and Shape on Synthesize Route -- 3.5 Questions Related to the Selected Synthesis Route -- 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size -- 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape -- 3.8 Introduction to Wet‐Chemical Synthesis Route -- 3.8.1 Microemulsion -- 3.8.2 Hydrothermal Method -- 3.8.3 Co‐precipitation -- 3.8.4 Sonochemical -- 3.8.5 Sol-Gel Method -- 3.8.6 Thermal Decomposition -- 3.8.7 Solvothermal -- 3.8.8 Microwave‐Assisted Route -- 3.8.9 Green‐Assisted Synthesis Route.
3.9 Introduction to Solid‐State Routes to Synthesize Magnetic Nanoparticles -- 3.9.1 A Standard Ceramic Route -- 3.9.2 Mechanical Alloying (MA) Process -- 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes -- 3.10.1 Magnetic Separation Technique (MST) -- 3.10.2 Curie Temperature Separation Technique -- 3.10.3 Oxidation of Wuestite -- References -- Chapter 4 Parallel Evolution of Microstructure‐Magnetic Properties Relationship in Nanostructured Ferrites -- 4.1 Introduction -- 4.2 Insights into a Sintering Phenomenon -- 4.2.1 Magnetism‐Microstructure Parallel Evolution in Yttrium Iron Garnet -- 4.2.2 Magnetism‐Microstructure Parallel Evolution in Hard Ferrites -- 4.2.3 Magnetism‐Microstructure Parallel Evolution in Soft Ferrites -- 4.3 Soaking or Sintering Time -- 4.4 Heating Rate -- 4.5 Trends of Sintering: Single‐Sample and Multi‐Sample Sintering -- 4.6 Conclusion and Perspective Outlook -- References -- Chapter 5 Surface Modification of Magnetic Nanoparticles -- 5.1 Introduction -- 5.2 Employed Technical Resources for Surface Modification -- 5.2.1 Plasma Treatment -- 5.2.2 Corona Discharge -- 5.2.3 Parylene Coating -- 5.2.4 Photolysis -- 5.2.5 Other Methods and Examples -- 5.3 Surface Modification of Magnetic Nanoparticles with Surfactant -- 5.4 Current Trends for Surface Modification of Nanomaterials -- 5.4.1 Chemical Functionalization -- 5.4.2 Physical Functionalization -- 5.5 Surface Modification Based on Organic Reactions -- 5.6 Surface Modification Based on Polymerization -- 5.7 Surface Modification with Inorganic Layers -- 5.8 Summary -- References -- Chapter 6 Insight into Superconducting Quantum Interference Devices (SQUID) -- 6.1 Introduction to SQUID -- 6.1.1 A Radio Frequency (RF) SQUID -- 6.1.2 A Direct Current (DC) SQUID -- 6.2 Superconducting Materials Used in SQUID.
6.3 What Is the Basic Principle in SQUID VSM Magnetometer? -- 6.4 Superconductivity -- 6.4.1 Electron-Lattice Interaction -- 6.4.2 Cooper Pairs -- 6.4.3 Energy Gap -- 6.4.4 Coherence -- 6.4.5 Flux Quantization -- 6.5 Josephson Tunneling (JT) Phenomenon -- 6.6 Utilizations and Applications of SQUID -- 6.7 Advantage and Disadvantage of SQUID Compared to Other Techniques in Characterization of Magnetic Nanomaterials -- References -- Chapter 7 The Principle of SQUID Magnetometry and Its Contribution in MNPs Evaluation -- 7.1 Introduction -- 7.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study -- 7.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other -- 7.4 Types of Information Obtained from the ZFC and FC Curves -- 7.4.1 Blocking Temperature -- 7.4.2 Néel Temperature -- 7.4.3 Types of Magnetism -- 7.4.4 Spin Glass (SG) and Superparamagnetic (SPM) -- 7.5 SQUID Magnetometry: Magnetic Measurements -- 7.5.1 Magnetization Versus Temperature, M(T) -- 7.5.1.1 Blocking Temperature (TB) as a Function of Particle Size Distribution -- 7.5.1.2 Dependency of Blocking Temperature (TB) on the Volume of Particles -- 7.5.1.3 The Field Dependence of the Blocking Temperature -- 7.5.1.4 The Blocking Temperature (TB) Versus Applied Pressure, and Density -- 7.5.1.5 Effect of Heat Treatment on Blocking Temperature -- 7.5.2 Magnetization as a Function of Applied Magnetic Field -- References -- Chapter 8 Type of Interactions in Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Magnetic Dipole-Dipole Interaction Between Magnetic Nanoparticles -- 8.3 Exchange Interaction -- 8.3.1 Direct Exchange Interaction -- 8.3.2 Indirect Exchange Interaction -- 8.4 Super‐Exchange Interaction -- 8.5 Dipolar Interactions -- 8.6 Spin-Orbit Interaction -- References.
Chapter 9 Insight into AC Susceptibility Measurements in Nanostructured Magnetic Materials -- 9.1 Introduction -- 9.2 AC Susceptibility Measurement -- 9.3 AC Susceptibility as a Probe of Magnetic Dynamics in a Wide Variety of Systems -- 9.3.1 AC Susceptibility as a Probe of Low‐Frequency Magnetic Dynamics -- 9.3.2 AC Susceptibility as a Probe of High‐Frequency Magnetic Dynamics -- 9.4 Information Obtained from Susceptibility Measurements -- 9.5 Insight into the Interaction Between Magnetic Nanoparticles and Used Models -- 9.5.1 Néel-Brown Model -- 9.5.2 Vogel-Fulcher Model -- 9.5.3 Conventional Critical Slowing Down Model -- 9.5.4 Power Law (P‐L) Model -- 9.6 Examples of Evaluation of AC Susceptibility in MNPs -- 9.7 Using AC Susceptibility Measurements to Probe Transitions in Colloidal Suspensions -- References -- Chapter 10 Induced Effects in Nanostructured Magnetic Materials -- 10.1 Introduction -- 10.2 The Spin‐Canted Effect -- 10.3 Spin‐Glass‐Like Behavior in Magnetic Nanoparticles -- 10.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles -- 10.5 Finite Size Effects on Magnetic Properties -- 10.6 Surface Effect in Nanosized Particles -- 10.7 Memory Effect -- References -- Chapter 11 Insight into Superparamagnetism in Magnetic Nanoparticles -- 11.1 Introduction -- 11.2 Description of Superparamagnetism Based on Size of Particles and Magnetic Measurements -- 11.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) -- 11.4 SPM Detection Based on ZFC and FC Magnetization Curves -- References -- Chapter 12 Mössbauer Spectroscopy -- 12.1 Introduction to Mössbauer Spectroscopy -- 12.2 Observed Effects in Mössbauer -- 12.2.1 Mössbauer Effect -- 12.2.2 Recoil Effect -- 12.2.3 Doppler Effect -- 12.3 Hyperfine Interactions -- 12.3.1 Electric Monopole Interaction.
12.3.1.1 S‐Electron Density (Indirectly p and d‐Electron Density) -- 12.3.1.2 Dependency of Isomer Shift on Spin State -- 12.3.1.3 Dependency of Isomer Shift on Strong Field Ligands -- 12.3.1.4 Dependency of Isomer Shift on Electronegativity of Ligands -- 12.3.2 Electric Quadrupole Interaction (Quadrupole Splitting) -- 12.3.3 Magnetic Dipole Interaction (Magnetic Splitting) -- 12.4 Mössbauer Spectroscopy Applied to Magnetism -- 12.4.1 Superparamagnetic Characterization -- 12.4.2 Mössbauer Spectroscopy Applied to Characterize the Effect of Synthesis Method on the MNPs Behavior -- 12.5 Phase Formation Evaluation Through Mössbauer Spectroscopy -- 12.6 Chemical Composition Evaluation Based on the Mössbauer Spectroscopy Spectra -- References -- Chapter 13 Application of Magnetic Nanoparticles -- 13.1 Introduction -- 13.2 Magnetic Nanoparticles: Application in Engineering -- 13.2.1 Mechanical and Materials Engineering: Magnetic Nanoparticles in Magnetorheological Fluids (MRF) -- 13.2.2 Environmental Engineering: Magnetic Nanoparticles in Wastewater Treatment -- 13.2.3 Surface Engineering -- 13.2.4 Tissue Engineering (TE) -- 13.3 Magnetic Nanoparticle Application in Energy -- 13.3.1 Supercapacitors and Batteries -- 13.3.2 Solar Cells -- 13.4 Magnetic Nanoparticles Application in Medical Science -- 13.4.1 Magnetic Resonance Imaging (MRI) -- 13.4.2 Drug Delivery -- 13.4.3 An Introduction to Hyperthermia (Therapy) in Cancer Treatment (Methods, Mechanisms, Constraints, and Role of Nanotechnology) -- 13.4.3.1 Magnetic Loss Processes Contributed to Magnetic Heating -- 13.4.3.2 Challenges of Magnetic Hyperthermia for Therapeutic Uses -- 13.5 Other General Applications of Magnetic Nanoparticles -- References -- Index -- EULA.
Record Nr. UNINA-9910643041503321
Hajalilou Abdollah  
Wiesbaden, Germany : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic nanoparticles : synthesis, characterization, and applications / / Abdollah Hajalilou, Mahmoud Tavakoli and Elahe Parvini
Magnetic nanoparticles : synthesis, characterization, and applications / / Abdollah Hajalilou, Mahmoud Tavakoli and Elahe Parvini
Autore Hajalilou Abdollah
Pubbl/distr/stampa Wiesbaden, Germany : , : Wiley, , [2023]
Descrizione fisica 1 online resource (347 pages)
Disciplina 610.28
Soggetto topico Magnetic nanoparticles
ISBN 3-527-84076-1
3-527-84078-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to Magnetic Materials -- 1.1 Theory and Fundamentals of Magnetization -- 1.2 Type of Magnetism -- 1.2.1 Diamagnetism -- 1.2.2 Paramagnetism -- 1.2.3 Ferromagnetism -- 1.2.4 Antiferromagnetism -- 1.2.5 Ferrimagnetism -- 1.3 Extrinsic and Intrinsic Characteristics of Magnetic Materials -- 1.3.1 Intrinsic Properties -- 1.3.1.1 Saturation Magnetization (Ms) -- 1.3.1.2 Curie Temperature (TC) -- 1.3.1.3 Magnetic Anisotropy -- 1.3.2 Extrinsic Properties -- References -- Chapter 2 Type and Characteristics of Magnetic Materials -- 2.1 Introduction -- 2.2 Soft and Hard Magnetic Materials -- 2.2.1 Soft Magnetic Materials -- 2.2.2 Hard Magnetic Materials -- 2.3 Hysteresis Loop -- 2.3.1 The Process of Hysteresis Loop Formation -- 2.3.2 Domain Orientation in Directions Favorable to the Applied Field -- 2.4 Magnetic Characteristic Measurements -- 2.4.1 M-H Hysteresis Loop -- 2.4.2 B-H Hysteresis Loop -- 2.5 Magnetic Losses -- 2.5.1 Eddy Current Losses -- 2.5.2 Residual Losses -- 2.5.3 Hysteresis Losses -- References -- Chapter 3 Insight into the Synthesis of Nanostructured Magnetic Materials -- 3.1 Introduction -- 3.2 Synthesis Process of the Magnetic Nanoparticles -- 3.3 Importance of the Synthesis and/or Preparation Methods -- 3.4 Dependency of Particle Size and Shape on Synthesize Route -- 3.5 Questions Related to the Selected Synthesis Route -- 3.6 Dependency of Magnetic Behaviors on Particle/Grain Size -- 3.7 Dependency of Magnetic Behaviors on Particle/Grain Shape -- 3.8 Introduction to Wet‐Chemical Synthesis Route -- 3.8.1 Microemulsion -- 3.8.2 Hydrothermal Method -- 3.8.3 Co‐precipitation -- 3.8.4 Sonochemical -- 3.8.5 Sol-Gel Method -- 3.8.6 Thermal Decomposition -- 3.8.7 Solvothermal -- 3.8.8 Microwave‐Assisted Route -- 3.8.9 Green‐Assisted Synthesis Route.
3.9 Introduction to Solid‐State Routes to Synthesize Magnetic Nanoparticles -- 3.9.1 A Standard Ceramic Route -- 3.9.2 Mechanical Alloying (MA) Process -- 3.10 Some Methods for Extraction of Iron Oxide Nanoparticles from Industrial Wastes -- 3.10.1 Magnetic Separation Technique (MST) -- 3.10.2 Curie Temperature Separation Technique -- 3.10.3 Oxidation of Wuestite -- References -- Chapter 4 Parallel Evolution of Microstructure‐Magnetic Properties Relationship in Nanostructured Ferrites -- 4.1 Introduction -- 4.2 Insights into a Sintering Phenomenon -- 4.2.1 Magnetism‐Microstructure Parallel Evolution in Yttrium Iron Garnet -- 4.2.2 Magnetism‐Microstructure Parallel Evolution in Hard Ferrites -- 4.2.3 Magnetism‐Microstructure Parallel Evolution in Soft Ferrites -- 4.3 Soaking or Sintering Time -- 4.4 Heating Rate -- 4.5 Trends of Sintering: Single‐Sample and Multi‐Sample Sintering -- 4.6 Conclusion and Perspective Outlook -- References -- Chapter 5 Surface Modification of Magnetic Nanoparticles -- 5.1 Introduction -- 5.2 Employed Technical Resources for Surface Modification -- 5.2.1 Plasma Treatment -- 5.2.2 Corona Discharge -- 5.2.3 Parylene Coating -- 5.2.4 Photolysis -- 5.2.5 Other Methods and Examples -- 5.3 Surface Modification of Magnetic Nanoparticles with Surfactant -- 5.4 Current Trends for Surface Modification of Nanomaterials -- 5.4.1 Chemical Functionalization -- 5.4.2 Physical Functionalization -- 5.5 Surface Modification Based on Organic Reactions -- 5.6 Surface Modification Based on Polymerization -- 5.7 Surface Modification with Inorganic Layers -- 5.8 Summary -- References -- Chapter 6 Insight into Superconducting Quantum Interference Devices (SQUID) -- 6.1 Introduction to SQUID -- 6.1.1 A Radio Frequency (RF) SQUID -- 6.1.2 A Direct Current (DC) SQUID -- 6.2 Superconducting Materials Used in SQUID.
6.3 What Is the Basic Principle in SQUID VSM Magnetometer? -- 6.4 Superconductivity -- 6.4.1 Electron-Lattice Interaction -- 6.4.2 Cooper Pairs -- 6.4.3 Energy Gap -- 6.4.4 Coherence -- 6.4.5 Flux Quantization -- 6.5 Josephson Tunneling (JT) Phenomenon -- 6.6 Utilizations and Applications of SQUID -- 6.7 Advantage and Disadvantage of SQUID Compared to Other Techniques in Characterization of Magnetic Nanomaterials -- References -- Chapter 7 The Principle of SQUID Magnetometry and Its Contribution in MNPs Evaluation -- 7.1 Introduction -- 7.2 The Correct Procedure to Perform the Zero Field Cooling (ZFC) and Field Cooling (FC) Magnetic Study -- 7.3 The Concept of Merging Zero Field Cooled (ZFC) and Field Cooled (FC) Curve Completely with Each Other -- 7.4 Types of Information Obtained from the ZFC and FC Curves -- 7.4.1 Blocking Temperature -- 7.4.2 Néel Temperature -- 7.4.3 Types of Magnetism -- 7.4.4 Spin Glass (SG) and Superparamagnetic (SPM) -- 7.5 SQUID Magnetometry: Magnetic Measurements -- 7.5.1 Magnetization Versus Temperature, M(T) -- 7.5.1.1 Blocking Temperature (TB) as a Function of Particle Size Distribution -- 7.5.1.2 Dependency of Blocking Temperature (TB) on the Volume of Particles -- 7.5.1.3 The Field Dependence of the Blocking Temperature -- 7.5.1.4 The Blocking Temperature (TB) Versus Applied Pressure, and Density -- 7.5.1.5 Effect of Heat Treatment on Blocking Temperature -- 7.5.2 Magnetization as a Function of Applied Magnetic Field -- References -- Chapter 8 Type of Interactions in Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Magnetic Dipole-Dipole Interaction Between Magnetic Nanoparticles -- 8.3 Exchange Interaction -- 8.3.1 Direct Exchange Interaction -- 8.3.2 Indirect Exchange Interaction -- 8.4 Super‐Exchange Interaction -- 8.5 Dipolar Interactions -- 8.6 Spin-Orbit Interaction -- References.
Chapter 9 Insight into AC Susceptibility Measurements in Nanostructured Magnetic Materials -- 9.1 Introduction -- 9.2 AC Susceptibility Measurement -- 9.3 AC Susceptibility as a Probe of Magnetic Dynamics in a Wide Variety of Systems -- 9.3.1 AC Susceptibility as a Probe of Low‐Frequency Magnetic Dynamics -- 9.3.2 AC Susceptibility as a Probe of High‐Frequency Magnetic Dynamics -- 9.4 Information Obtained from Susceptibility Measurements -- 9.5 Insight into the Interaction Between Magnetic Nanoparticles and Used Models -- 9.5.1 Néel-Brown Model -- 9.5.2 Vogel-Fulcher Model -- 9.5.3 Conventional Critical Slowing Down Model -- 9.5.4 Power Law (P‐L) Model -- 9.6 Examples of Evaluation of AC Susceptibility in MNPs -- 9.7 Using AC Susceptibility Measurements to Probe Transitions in Colloidal Suspensions -- References -- Chapter 10 Induced Effects in Nanostructured Magnetic Materials -- 10.1 Introduction -- 10.2 The Spin‐Canted Effect -- 10.3 Spin‐Glass‐Like Behavior in Magnetic Nanoparticles -- 10.4 Reentrant Spin Glass (RSG) Behavior in Magnetic Nanoparticles -- 10.5 Finite Size Effects on Magnetic Properties -- 10.6 Surface Effect in Nanosized Particles -- 10.7 Memory Effect -- References -- Chapter 11 Insight into Superparamagnetism in Magnetic Nanoparticles -- 11.1 Introduction -- 11.2 Description of Superparamagnetism Based on Size of Particles and Magnetic Measurements -- 11.3 SPM Description Based on Magnetization Hysteresis Loop (M-H or B-H) -- 11.4 SPM Detection Based on ZFC and FC Magnetization Curves -- References -- Chapter 12 Mössbauer Spectroscopy -- 12.1 Introduction to Mössbauer Spectroscopy -- 12.2 Observed Effects in Mössbauer -- 12.2.1 Mössbauer Effect -- 12.2.2 Recoil Effect -- 12.2.3 Doppler Effect -- 12.3 Hyperfine Interactions -- 12.3.1 Electric Monopole Interaction.
12.3.1.1 S‐Electron Density (Indirectly p and d‐Electron Density) -- 12.3.1.2 Dependency of Isomer Shift on Spin State -- 12.3.1.3 Dependency of Isomer Shift on Strong Field Ligands -- 12.3.1.4 Dependency of Isomer Shift on Electronegativity of Ligands -- 12.3.2 Electric Quadrupole Interaction (Quadrupole Splitting) -- 12.3.3 Magnetic Dipole Interaction (Magnetic Splitting) -- 12.4 Mössbauer Spectroscopy Applied to Magnetism -- 12.4.1 Superparamagnetic Characterization -- 12.4.2 Mössbauer Spectroscopy Applied to Characterize the Effect of Synthesis Method on the MNPs Behavior -- 12.5 Phase Formation Evaluation Through Mössbauer Spectroscopy -- 12.6 Chemical Composition Evaluation Based on the Mössbauer Spectroscopy Spectra -- References -- Chapter 13 Application of Magnetic Nanoparticles -- 13.1 Introduction -- 13.2 Magnetic Nanoparticles: Application in Engineering -- 13.2.1 Mechanical and Materials Engineering: Magnetic Nanoparticles in Magnetorheological Fluids (MRF) -- 13.2.2 Environmental Engineering: Magnetic Nanoparticles in Wastewater Treatment -- 13.2.3 Surface Engineering -- 13.2.4 Tissue Engineering (TE) -- 13.3 Magnetic Nanoparticle Application in Energy -- 13.3.1 Supercapacitors and Batteries -- 13.3.2 Solar Cells -- 13.4 Magnetic Nanoparticles Application in Medical Science -- 13.4.1 Magnetic Resonance Imaging (MRI) -- 13.4.2 Drug Delivery -- 13.4.3 An Introduction to Hyperthermia (Therapy) in Cancer Treatment (Methods, Mechanisms, Constraints, and Role of Nanotechnology) -- 13.4.3.1 Magnetic Loss Processes Contributed to Magnetic Heating -- 13.4.3.2 Challenges of Magnetic Hyperthermia for Therapeutic Uses -- 13.5 Other General Applications of Magnetic Nanoparticles -- References -- Index -- EULA.
Record Nr. UNINA-9910830101403321
Hajalilou Abdollah  
Wiesbaden, Germany : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic nanoparticles [[electronic resource] /] / edited by Sergey P. Gubin
Magnetic nanoparticles [[electronic resource] /] / edited by Sergey P. Gubin
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2009
Descrizione fisica 1 online resource (482 p.)
Disciplina 620.5
Altri autori (Persone) GubinS. P (Sergeĭ Pavlovich)
Soggetto topico Magnetic nanoparticles
Soggetto genere / forma Electronic books.
ISBN 1-282-46105-2
9786612461057
3-527-62756-1
1-61583-495-8
3-527-62757-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Magnetic Nanoparticles; Contents; Preface; List of Contributors; 1 Introduction; 1.1 Some Words about Nanoparticles; 1.2 Scope; 1.2.1 Magnetic Nanoparticles Inside Us and Everywhere Around Us; 1.3 The Most Extensively Studied Magnetic Nanoparticles and Their Preparation; 1.3.1 Metals; 1.3.2 Nanoparticles of Rare Earth Metals; 1.3.3 Oxidation of Metallic Nanoparticles; 1.3.4 Magnetic Alloys; 1.3.4.1 Fe-Co Alloys; 1.3.5 Magnetic Oxides; 1.3.6 Final Remarks; 2 Synthesis of Nanoparticulate Magnetic Materials; 2.1 What Makes Synthesis of Inorganic Nanoparticles Different from Bulk Materials?
2.2 Synthesis of Magnetic Metal Nanoparticles2.2.1 Reduction of Metal Salts in Solution; 2.2.1.1 Electron Transfer Reduction; 2.2.1.2 Reduction via Intermediate Complexes; 2.2.2 Thermal Decomposition Reactions; 2.2.2.1 Decomposition of Metal Carbonyls; 2.2.2.2 Decomposition of Metal Alkene and Arene Complexes; 2.2.3 Combination Methods Used for Synthesis of Alloy Nanoparticles; 2.3 Synthesis of Magnetic Metal Oxide Nanoparticles; 2.3.1 Reactions of Hydrolysis; 2.3.1.1 Hydrolysis in Aqueous Solutions; 2.3.1.2 Hydrolysis in Nonaqueous Solutions; 2.3.2 Oxidation Reactions
2.3.3 Thermal Decomposition of Metal Complexes with O-Donor Ligands2.4 Technology of the Preparation of Magnetic Nanoparticles; 2.4.1 Stabilizing Agents in Homogeneous Solution Techniques; 2.4.2 Heterogeneous Solution Techniques; 2.5 Conclusions; 3 Magnetic Metallopolymer Nanocomposites: Preparation and Properties; 3.1 Introduction; 3.2 The General Methods of Synthesis and Characterization of Magnetic Nanoparticles in a Polymer Matrix; 3.2.1 Magnetic Nanoparticles in Inorganic Matrices; 3.2.2 Magnetic Nanoparticles in Polymer Matrices
3.2.3 Preparation of Magnetic Polymer Nanocomposites in Magnetic Fields3.2.4 Peculiarities of Magnetic Behavior of Metallic Nanoparticles in Polymer Matrix; 3.3 Magnetic Metal Nanoparticles in Stabilizing the Polymer Matrix In Situ via Thermal Transformations of Metal-Containing Monomers; 3.3.1 The Kinetics of Thermolysis of Metal-Containing Monomers; 3.3.1.1 Dehydration; 3.3.1.2 Polymerization; 3.3.1.3 Kinetics of Decarboxylation; 3.3.2 The Topography and Structure of Magnetic Metallopolymer Nanocomposites; 3.3.3 The Magnetic Properties of the Metallopolymer Nanocomposites; 3.4 Conclusion
Acknowledgments4 Magnetic Nanocomposites Based on the Metal-Containing (Fe, Co, Ni) Nanoparticles Inside the Polyethylene Matrix; 4.1 Introduction; 4.2 Experimental Details; 4.2.1 Synthesis; 4.2.2 Composition and Structure of Magnetic Nanometallopolymers; 4.3 Magnetic Properties of Metal-Containing Nanoparticles; 4.3.1 Iron Containing Nanoparticles; 4.3.2 Iron Oxide Nanoparticles; 4.3.3 Cobalt Nanoparticles; 4.3.4 Co@Fe2O3 Particles; 4.4 FMR Investigations of Nanocomposites; 4.5 Conclusions; Acknowledgments
5 Organized Ensembles of Magnetic Nanoparticles: Preparation, Structure, and Properties
Record Nr. UNINA-9910139468303321
Weinheim, : Wiley-VCH, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Magnetic nanoparticles [[electronic resource] /] / edited by Sergey P. Gubin
Magnetic nanoparticles [[electronic resource] /] / edited by Sergey P. Gubin
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2009
Descrizione fisica 1 online resource (482 p.)
Disciplina 620.5
Altri autori (Persone) GubinS. P (Sergeĭ Pavlovich)
Soggetto topico Magnetic nanoparticles
ISBN 1-282-46105-2
9786612461057
3-527-62756-1
1-61583-495-8
3-527-62757-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Magnetic Nanoparticles; Contents; Preface; List of Contributors; 1 Introduction; 1.1 Some Words about Nanoparticles; 1.2 Scope; 1.2.1 Magnetic Nanoparticles Inside Us and Everywhere Around Us; 1.3 The Most Extensively Studied Magnetic Nanoparticles and Their Preparation; 1.3.1 Metals; 1.3.2 Nanoparticles of Rare Earth Metals; 1.3.3 Oxidation of Metallic Nanoparticles; 1.3.4 Magnetic Alloys; 1.3.4.1 Fe-Co Alloys; 1.3.5 Magnetic Oxides; 1.3.6 Final Remarks; 2 Synthesis of Nanoparticulate Magnetic Materials; 2.1 What Makes Synthesis of Inorganic Nanoparticles Different from Bulk Materials?
2.2 Synthesis of Magnetic Metal Nanoparticles2.2.1 Reduction of Metal Salts in Solution; 2.2.1.1 Electron Transfer Reduction; 2.2.1.2 Reduction via Intermediate Complexes; 2.2.2 Thermal Decomposition Reactions; 2.2.2.1 Decomposition of Metal Carbonyls; 2.2.2.2 Decomposition of Metal Alkene and Arene Complexes; 2.2.3 Combination Methods Used for Synthesis of Alloy Nanoparticles; 2.3 Synthesis of Magnetic Metal Oxide Nanoparticles; 2.3.1 Reactions of Hydrolysis; 2.3.1.1 Hydrolysis in Aqueous Solutions; 2.3.1.2 Hydrolysis in Nonaqueous Solutions; 2.3.2 Oxidation Reactions
2.3.3 Thermal Decomposition of Metal Complexes with O-Donor Ligands2.4 Technology of the Preparation of Magnetic Nanoparticles; 2.4.1 Stabilizing Agents in Homogeneous Solution Techniques; 2.4.2 Heterogeneous Solution Techniques; 2.5 Conclusions; 3 Magnetic Metallopolymer Nanocomposites: Preparation and Properties; 3.1 Introduction; 3.2 The General Methods of Synthesis and Characterization of Magnetic Nanoparticles in a Polymer Matrix; 3.2.1 Magnetic Nanoparticles in Inorganic Matrices; 3.2.2 Magnetic Nanoparticles in Polymer Matrices
3.2.3 Preparation of Magnetic Polymer Nanocomposites in Magnetic Fields3.2.4 Peculiarities of Magnetic Behavior of Metallic Nanoparticles in Polymer Matrix; 3.3 Magnetic Metal Nanoparticles in Stabilizing the Polymer Matrix In Situ via Thermal Transformations of Metal-Containing Monomers; 3.3.1 The Kinetics of Thermolysis of Metal-Containing Monomers; 3.3.1.1 Dehydration; 3.3.1.2 Polymerization; 3.3.1.3 Kinetics of Decarboxylation; 3.3.2 The Topography and Structure of Magnetic Metallopolymer Nanocomposites; 3.3.3 The Magnetic Properties of the Metallopolymer Nanocomposites; 3.4 Conclusion
Acknowledgments4 Magnetic Nanocomposites Based on the Metal-Containing (Fe, Co, Ni) Nanoparticles Inside the Polyethylene Matrix; 4.1 Introduction; 4.2 Experimental Details; 4.2.1 Synthesis; 4.2.2 Composition and Structure of Magnetic Nanometallopolymers; 4.3 Magnetic Properties of Metal-Containing Nanoparticles; 4.3.1 Iron Containing Nanoparticles; 4.3.2 Iron Oxide Nanoparticles; 4.3.3 Cobalt Nanoparticles; 4.3.4 Co@Fe2O3 Particles; 4.4 FMR Investigations of Nanocomposites; 4.5 Conclusions; Acknowledgments
5 Organized Ensembles of Magnetic Nanoparticles: Preparation, Structure, and Properties
Record Nr. UNINA-9910829927903321
Weinheim, : Wiley-VCH, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui