top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
General airgap field modulation theory for electrical machines : principles and practice / / Ming Cheng [and three others]
General airgap field modulation theory for electrical machines : principles and practice / / Ming Cheng [and three others]
Autore Cheng Ming
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (563 pages)
Disciplina 621.31042
Soggetto topico Electric machinery
Magnetic fields - Industrial applications
ISBN 1-119-90037-9
1-119-90035-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Authors -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Review of Historical Development of Electrical Machines -- 1.2 Limitations of Classical Electrical Machine Theories -- 1.2.1 Fragmentation of Electrical Machine Theories -- 1.2.2 Limitations in Analysis of Operating Principles -- 1.2.3 Lack of Uniformity in Performance Analysis -- 1.3 Overview of Magnetic Field Modulation Machines and their Theories -- 1.4 Scope and Organization of the Book -- References -- Chapter 2 Airgap Magnetic Field Modulation Phenomena in Electrical Machines -- 2.1 Traditional Electrical Machines -- 2.1.1 Brushed Direct Current Machines -- 2.1.2 Induction Machines -- 2.1.3 Synchronous Machines -- 2.2 Field Modulation Magnetic Gears -- 2.2.1 Construction and Operating Principle -- 2.2.2 Airgap Magnetic Field Modulation Behaviors -- 2.2.3 Other MG Types -- 2.3 Magnetically Geared Machines -- 2.3.1 Evolution of MGMs -- 2.3.2 Airgap Magnetic Field Modulation Behaviors -- 2.4 PM Vernier Machine -- 2.4.1 Machine Construction -- 2.4.2 Airgap Magnetic Field Modulation Behaviors -- 2.5 Linear PMV Machine -- 2.5.1 Machine Construction -- 2.5.2 Airgap Magnetic Field Modulation Behaviors -- 2.6 Flux‐switching PM Machine -- 2.6.1 Magnetic Field Modulation Mechanism of PM Field -- 2.6.2 Magnetic Field Modulation Mechanism of Armature Field -- 2.7 Doubly‐Fed Machines -- 2.7.1 Classification and Operating Principles -- 2.7.2 Cascaded Type -- 2.7.3 Modulation Type -- 2.7.4 Commonalities and Differences of Existing Brushless Doubly‐fed Machines -- 2.8 Uniformity of Machine Operating Principles -- References -- Chapter 3 Three Key Elements Model for Electrical Machines -- 3.1 Introduction -- 3.2 Classical Winding Function Theory and Its Limitations -- 3.2.1 Winding MMF.
3.2.2 Classical Winding Function Theory -- 3.2.3 Limitations of Classical Winding Function Theory -- 3.3 Three Key Elements -- 3.3.1 Source of Excitation -- 3.3.2 Modulator -- 3.3.3 Filter -- 3.4 Mathematical Representation of Three Key Elements -- 3.4.1 Source MMF -- 3.4.2 Modulation Operator -- 3.4.3 Filter -- 3.4.4 Unified Airgap Model -- 3.4.5 Duality Between Electrical Machines and Switching Power Converters -- 3.5 Torque Decomposition -- 3.5.1 General Torque Equation -- 3.5.2 Wound‐Field Salient‐Pole SM -- 3.5.3 SynRM -- 3.5.4 Squirrel‐Cage IM -- 3.5.5 BDFRM -- 3.5.6 BDFIM -- 3.5.7 FSPM Machine -- 3.5.8 PMV Machine -- 3.5.9 Axial‐Flux PMV Machine -- References -- Chapter 4 Analysis of Magnetic Field Modulation Behaviors -- 4.1 Introduction -- 4.2 Magnetic Field Modulation Behaviors and Torque Components -- 4.2.1 Asynchronous and Synchronous Modulation Behaviors -- 4.2.2 Asynchronous and Synchronous Torque Components -- 4.3 Characterization of Modulation Behaviors in Typical Machine Topologies -- 4.3.1 Brushed DCM -- 4.3.2 Wound-Field Salient-Pole SM -- 4.3.3 Wound-Field Non-Salient-Pole SM and Slip‐Ring Doubly‐Fed Induction Machine -- 4.3.4 Squirrel Cage IM and BDFIM -- 4.3.5 Synchronous Reluctance Machine and Brushless Doubly‐Fed Reluctance Machine -- 4.3.6 Surface‐Mounted PMSM and FRPM Machine -- 4.3.7 Interior PMSM and FSPM Machine -- 4.3.8 Switched Reluctance Machine and Vernier Machine -- 4.3.9 Magnetically‐Geared Machine and PM Vernier Machine -- 4.4 Torque Composition of Typical Machine Topologies -- 4.4.1 Case Study I - BDFIM -- 4.4.2 Case Study II - BDFM with a Hybrid Rotor -- 4.4.3 Case Study III - FSPM Machine -- 4.5 Magnetic Field Modulation Behaviors of Various Modulators -- 4.5.1 Salient Reluctance Pole Modulator -- 4.5.2 Multilayer Flux Barrier Modulator -- 4.5.3 Short‐Circuited Coil Modulator.
4.6 Interchangeability of Modulators -- 4.6.1 Comparison of Three Basic Modulator Types -- 4.6.2 Influence of Modulators on Machine Performance -- References -- Chapter 5 Performance Evaluation of Electrical Machines Based on General Airgap Field Modulation Theory -- 5.1 Introduction -- 5.2 Squirrel-Cage IM -- 5.2.1 Airgap Magnetic Field Analysis -- 5.2.2 Inductance and Torque Characteristics -- 5.3 Brushless Doubly‐fed Machines -- 5.3.1 Stator Winding MMF -- 5.3.2 Airgap Magnetic Field and Inductances -- 5.3.3 Quantitative Analysis of 4/2 BDFRM -- 5.3.4 Quantitative Analysis of 4/2 BDFIM -- 5.4 SynRM -- 5.4.1 Inductances -- 5.4.2 Torque Characteristic -- 5.5 FRPM Machine -- 5.5.1 Magnetic Field Modulation Behavior -- 5.5.2 Influence of Key Topological Parameters -- 5.5.3 Experimental Validation -- 5.6 Comparison of Representative Machine Topologies -- References -- Chapter 6 Innovation of Electrical Machine Topologies -- 6.1 Innovation Methods -- 6.1.1 Change of Source MMF -- 6.1.2 Change of Modulator -- 6.1.3 Change of Filter -- 6.1.4 Change of Relative Position of Three Key Elements -- 6.1.5 Change of Relative Motion of Three Key Elements -- 6.2 DSPM Machine with Π‐Shaped Stator Core -- 6.2.1 Machine Construction and Operating Principle -- 6.2.2 Performance Analysis and Comparison -- 6.2.3 Prototype and Experimental Results -- 6.3 Stator‐PM Variable Reluctance Resolver -- 6.3.1 Machine Construction and Operating Principle -- 6.3.2 Odd‐Pole Issue and Solutions Based on GAFMT -- 6.4 FRPM Machine -- 6.4.1 Operating Principle -- 6.4.2 Analysis of Open‐Circuit Back‐EMF Based on GAFMT -- 6.5 FSPM Machine with Full‐Pitch Windings -- 6.5.1 Machine Construction and Operating Principle -- 6.5.2 Influence of Key Geometric Parameters -- 6.5.3 Comparative Study -- 6.6 Rotor‐PM FSPM Machine -- 6.6.1 Machine Construction and Operating Principle.
6.6.2 Winding Consistency and Complementarity -- 6.6.3 Fundamental Electromagnetic Performance -- 6.7 Dual‐Rotor Magnetically‐Geared Power Split Machine -- 6.7.1 Machine Construction and Operating Principle -- 6.7.2 Modes of Operation -- 6.7.3 Asymmetry in Magnetic Circuits -- 6.7.4 Complementary MGPSM and Experimental Validation -- 6.8 Stator Field‐Excitation HTS Machines -- 6.8.1 Stator Field‐Excitation HTS Flux‐Switching Machine -- 6.8.2 Double-Stator Field Modulation Superconducting Excitation Machine -- 6.8.3 Technical Challenges and Outlook of Field Modulation HTS Machines -- 6.9 Brushless Doubly‐Fed Reluctance Machine with an Asymmetrical Composite Modulator -- 6.9.1 Phase Shift Phenomenon of Modulated Harmonics -- 6.9.2 Asymmetrical Composite Modulator -- 6.9.3 Experimental Verification -- References -- Chapter 7 Other Applications of General Airgap Field Modulation Theory -- 7.1 Introduction -- 7.2 Analysis of Radial Forces in Brushless Doubly‐fed Machines -- 7.2.1 Electromagnetic Vibration and Noise in Electrical Machines -- 7.2.2 Analysis of Radial Forces -- 7.2.3 Calculation of Radial Forces -- 7.2.4 Pole‐Pair Combinations Without UMP -- 7.3 Design of Suspension Windings for Bearingless Homopolar and Consequent Pole PM Machines -- 7.3.1 Design Principle of Pole‐Changing Windings -- 7.3.2 Solution 1: Coil Span y & -- equals -- 4 -- 7.3.3 Solution 2: Coil Span y & -- equals -- 5 -- 7.4 Loss Calculation -- 7.4.1 Stray Load Loss Calculation for IMs -- 7.4.2 Computationally Efficient Core Loss Calculation for FSPM Machines Supplied by PWM Inverters -- 7.5 Optimization of Salient Reluctance Pole Modulators for Typical Field Modulation Electrical Machines -- 7.5.1 Typical Salient Reluctance Poles -- 7.5.2 Optimization for Magnetically‐Geared PM Machine -- 7.5.3 Optimization for FRPM Machine -- 7.5.4 General Guidelines.
7.6 Airgap‐Harmonic‐Oriented Design Optimization Methodology -- 7.6.1 Airgap‐Harmonic‐Oriented Design Optimization Concept -- 7.6.2 Sensitivity Analysis -- 7.6.3 Multi‐Objective Optimization -- 7.6.4 Optimization Results and Experimental Validation -- References -- Appendix A Derivation of Modulation Operators -- A.1 Derivation of Modulation Operator for Short‐circuited Coils -- A.2 Derivation of Modulation Operator for Salient Reluctance Poles -- A.3 Derivation of Modulation Operator for Multilayer Flux Barriers -- Appendix B Magnetic Force of Current‐Carrying Conductors in Airgap and in Slots -- References -- Appendix C Methods for Force and Torque Calculation -- C.1 Maxwell Stress Tensor Method -- C.2 Principle of Virtual Work -- C.2.1 Torque Derived from Magnetic Stored Energy and Virtual Displacement -- C.2.2 Torque Derived from Co‐energy and Virtual Displacement -- References -- Index -- EULA.
Record Nr. UNINA-9910829864603321
Cheng Ming  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials processing in magnetic fields [[electronic resource] ] : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Materials processing in magnetic fields [[electronic resource] ] : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (387 p.)
Disciplina 530.141
620.11
Altri autori (Persone) Schneider-MuntauHans J
WadaHitoshi
Soggetto topico Magnetic fields
Magnetic fields - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 1-281-89738-8
9786611897383
981-270-180-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EDITORS ' PREFACE; Table of Contents; Texturing and Phase Transitions; Chemical and Physical Processes; Control of Liquids; Magnetic Separation; Biological Applications; Diamagnetic Effects; Magnetic Anisotropy and Alignment; Other Topics; AUTHOR INDEX
Altri titoli varianti Proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004
Record Nr. UNINA-9910450702403321
Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials processing in magnetic fields [[electronic resource] ] : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Materials processing in magnetic fields [[electronic resource] ] : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (387 p.)
Disciplina 530.141
620.11
Altri autori (Persone) Schneider-MuntauHans J
WadaHitoshi
Soggetto topico Magnetic fields
Magnetic fields - Industrial applications
ISBN 1-281-89738-8
9786611897383
981-270-180-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EDITORS ' PREFACE; Table of Contents; Texturing and Phase Transitions; Chemical and Physical Processes; Control of Liquids; Magnetic Separation; Biological Applications; Diamagnetic Effects; Magnetic Anisotropy and Alignment; Other Topics; AUTHOR INDEX
Altri titoli varianti Proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004
Record Nr. UNINA-9910783922703321
Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials processing in magnetic fields : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Materials processing in magnetic fields : proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004 / / editors, Hans J. Schneider-Muntau, Hitoshi Wada
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Descrizione fisica 1 online resource (387 p.)
Disciplina 530.141
620.11
Altri autori (Persone) Schneider-MuntauHans J
WadaHitoshi
Soggetto topico Magnetic fields
Magnetic fields - Industrial applications
ISBN 1-281-89738-8
9786611897383
981-270-180-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto EDITORS ' PREFACE; Table of Contents; Texturing and Phase Transitions; Chemical and Physical Processes; Control of Liquids; Magnetic Separation; Biological Applications; Diamagnetic Effects; Magnetic Anisotropy and Alignment; Other Topics; AUTHOR INDEX
Altri titoli varianti Proceedings of the International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, Florida, 17-19 March, 2004
Record Nr. UNINA-9910827563603321
Singapore ; ; Hackensack, N.J., : World Scientific, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui