top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Alternating direction method of multipliers for machine learning / / Zhouchen Lin, Huan Li, and Cong Fang
Alternating direction method of multipliers for machine learning / / Zhouchen Lin, Huan Li, and Cong Fang
Autore Lin Zhouchen
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (274 pages)
Disciplina 005.1
Soggetto topico Computer algorithms
Machine learning - Statistical methods
ISBN 981-16-9840-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910578685303321
Lin Zhouchen  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Alternating direction method of multipliers for machine learning / / Zhouchen Lin, Huan Li, and Cong Fang
Alternating direction method of multipliers for machine learning / / Zhouchen Lin, Huan Li, and Cong Fang
Autore Lin Zhouchen
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (274 pages)
Disciplina 005.1
Soggetto topico Computer algorithms
Machine learning - Statistical methods
ISBN 981-16-9840-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996478866403316
Lin Zhouchen  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayesian tensor decomposition for signal processing and machine learning : modeling, tuning-free algorithms and applications / / Lei Cheng, Zhongtao Chen, and Yik-Chung Wu
Bayesian tensor decomposition for signal processing and machine learning : modeling, tuning-free algorithms and applications / / Lei Cheng, Zhongtao Chen, and Yik-Chung Wu
Autore Cheng Lei
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (189 pages)
Disciplina 006.31
Soggetto topico Machine learning - Statistical methods
Signal processing - Statistical methods
ISBN 3-031-22438-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Tensor decomposition: Basics, algorithms, and recent advances -- Bayesian learning for sparsity-aware modeling -- Bayesian tensor CPD: Modeling and inference -- Bayesian tensor CPD: Performance and real-world applications -- When stochastic optimization meets VI: Scaling Bayesian CPD to massive data -- Bayesian tensor CPD with nonnegative factors -- Complex-valued CPD, orthogonality constraint and beyond Gaussian noises -- Handling missing value: A case study in direction-of-arrival estimation -- From CPD to other tensor decompositions.
Record Nr. UNINA-9910672446803321
Cheng Lei  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deterministic and statistical methods in machine learning : first international workshop, Sheffield, UK, September 7-10, 2004 : revised lectures / / Joab Winkler, Mahesan Niranjan, Neil Lawrence (eds.)
Deterministic and statistical methods in machine learning : first international workshop, Sheffield, UK, September 7-10, 2004 : revised lectures / / Joab Winkler, Mahesan Niranjan, Neil Lawrence (eds.)
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2005
Descrizione fisica 1 online resource (VIII, 341 p.)
Disciplina 006.3
Altri autori (Persone) WinklerJoab
NiranjanMahesan
LawrenceNeil (Neil D.)
Collana Lecture notes in computer science. Lecture notes in artificial intelligence
Soggetto topico Machine learning
Machine learning - Statistical methods
ISBN 3-540-31728-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Object Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction.
Record Nr. UNINA-9910483748103321
Berlin ; ; New York, : Springer, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An elementary introduction to statistical learning theory [[electronic resource] /] / Sanjeev Kulkarni, Gilbert Harman
An elementary introduction to statistical learning theory [[electronic resource] /] / Sanjeev Kulkarni, Gilbert Harman
Autore Kulkarni Sanjeev
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (235 p.)
Disciplina 006.3/1
006.31
Altri autori (Persone) HarmanGilbert
Collana Wiley series in probability and statistics
Soggetto topico Machine learning - Statistical methods
Pattern recognition systems
ISBN 1-283-09868-7
9786613098689
1-118-02346-3
1-118-02347-1
1-118-02343-9
Classificazione ST 300
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Elementary Introduction to Statistical Learning Theory; Contents; Preface; 1 Introduction: Classification, Learning, Features, and Applications; 1.1 Scope; 1.2 Why Machine Learning?; 1.3 Some Applications; 1.3.1 Image Recognition; 1.3.2 Speech Recognition; 1.3.3 Medical Diagnosis; 1.3.4 Statistical Arbitrage; 1.4 Measurements, Features, and Feature Vectors; 1.5 The Need for Probability; 1.6 Supervised Learning; 1.7 Summary; 1.8 Appendix: Induction; 1.9 Questions; 1.10 References; 2 Probability; 2.1 Probability of Some Basic Events; 2.2 Probabilities of Compound Events
2.3 Conditional Probability2.4 Drawing Without Replacement; 2.5 A Classic Birthday Problem; 2.6 Random Variables; 2.7 Expected Value; 2.8 Variance; 2.9 Summary; 2.10 Appendix: Interpretations of Probability; 2.11 Questions; 2.12 References; 3 Probability Densities; 3.1 An Example in Two Dimensions; 3.2 Random Numbers in [0,1]; 3.3 Density Functions; 3.4 Probability Densities in Higher Dimensions; 3.5 Joint and Conditional Densities; 3.6 Expected Value and Variance; 3.7 Laws of Large Numbers; 3.8 Summary; 3.9 Appendix: Measurability; 3.10 Questions; 3.11 References
4 The Pattern Recognition Problem4.1 A Simple Example; 4.2 Decision Rules; 4.3 Success Criterion; 4.4 The Best Classifier: Bayes Decision Rule; 4.5 Continuous Features and Densities; 4.6 Summary; 4.7 Appendix: Uncountably Many; 4.8 Questions; 4.9 References; 5 The Optimal Bayes Decision Rule; 5.1 Bayes Theorem; 5.2 Bayes Decision Rule; 5.3 Optimality and Some Comments; 5.4 An Example; 5.5 Bayes Theorem and Decision Rule with Densities; 5.6 Summary; 5.7 Appendix: Defining Conditional Probability; 5.8 Questions; 5.9 References; 6 Learning from Examples; 6.1 Lack of Knowledge of Distributions
6.2 Training Data6.3 Assumptions on the Training Data; 6.4 A Brute Force Approach to Learning; 6.5 Curse of Dimensionality, Inductive Bias, and No Free Lunch; 6.6 Summary; 6.7 Appendix: What Sort of Learning?; 6.8 Questions; 6.9 References; 7 The Nearest Neighbor Rule; 7.1 The Nearest Neighbor Rule; 7.2 Performance of the Nearest Neighbor Rule; 7.3 Intuition and Proof Sketch of Performance; 7.4 Using more Neighbors; 7.5 Summary; 7.6 Appendix: When People use Nearest Neighbor Reasoning; 7.6.1 Who Is a Bachelor?; 7.6.2 Legal Reasoning; 7.6.3 Moral Reasoning; 7.7 Questions; 7.8 References
8 Kernel Rules8.1 Motivation; 8.2 A Variation on Nearest Neighbor Rules; 8.3 Kernel Rules; 8.4 Universal Consistency of Kernel Rules; 8.5 Potential Functions; 8.6 More General Kernels; 8.7 Summary; 8.8 Appendix: Kernels, Similarity, and Features; 8.9 Questions; 8.10 References; 9 Neural Networks: Perceptrons; 9.1 Multilayer Feedforward Networks; 9.2 Neural Networks for Learning and Classification; 9.3 Perceptrons; 9.3.1 Threshold; 9.4 Learning Rule for Perceptrons; 9.5 Representational Capabilities of Perceptrons; 9.6 Summary; 9.7 Appendix: Models of Mind; 9.8 Questions; 9.9 References
10 Multilayer Networks
Record Nr. UNINA-9910139455203321
Kulkarni Sanjeev  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An elementary introduction to statistical learning theory / / Sanjeev Kulkarni, Gilbert Harman
An elementary introduction to statistical learning theory / / Sanjeev Kulkarni, Gilbert Harman
Autore Kulkarni Sanjeev
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (235 p.)
Disciplina 006.3/1
Altri autori (Persone) HarmanGilbert
Collana Wiley series in probability and statistics
Soggetto topico Machine learning - Statistical methods
Pattern recognition systems
ISBN 9786613098689
9781283098687
1283098687
9781118023464
1118023463
9781118023471
1118023471
9781118023433
1118023439
Classificazione ST 300
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Elementary Introduction to Statistical Learning Theory; Contents; Preface; 1 Introduction: Classification, Learning, Features, and Applications; 1.1 Scope; 1.2 Why Machine Learning?; 1.3 Some Applications; 1.3.1 Image Recognition; 1.3.2 Speech Recognition; 1.3.3 Medical Diagnosis; 1.3.4 Statistical Arbitrage; 1.4 Measurements, Features, and Feature Vectors; 1.5 The Need for Probability; 1.6 Supervised Learning; 1.7 Summary; 1.8 Appendix: Induction; 1.9 Questions; 1.10 References; 2 Probability; 2.1 Probability of Some Basic Events; 2.2 Probabilities of Compound Events
2.3 Conditional Probability2.4 Drawing Without Replacement; 2.5 A Classic Birthday Problem; 2.6 Random Variables; 2.7 Expected Value; 2.8 Variance; 2.9 Summary; 2.10 Appendix: Interpretations of Probability; 2.11 Questions; 2.12 References; 3 Probability Densities; 3.1 An Example in Two Dimensions; 3.2 Random Numbers in [0,1]; 3.3 Density Functions; 3.4 Probability Densities in Higher Dimensions; 3.5 Joint and Conditional Densities; 3.6 Expected Value and Variance; 3.7 Laws of Large Numbers; 3.8 Summary; 3.9 Appendix: Measurability; 3.10 Questions; 3.11 References
4 The Pattern Recognition Problem4.1 A Simple Example; 4.2 Decision Rules; 4.3 Success Criterion; 4.4 The Best Classifier: Bayes Decision Rule; 4.5 Continuous Features and Densities; 4.6 Summary; 4.7 Appendix: Uncountably Many; 4.8 Questions; 4.9 References; 5 The Optimal Bayes Decision Rule; 5.1 Bayes Theorem; 5.2 Bayes Decision Rule; 5.3 Optimality and Some Comments; 5.4 An Example; 5.5 Bayes Theorem and Decision Rule with Densities; 5.6 Summary; 5.7 Appendix: Defining Conditional Probability; 5.8 Questions; 5.9 References; 6 Learning from Examples; 6.1 Lack of Knowledge of Distributions
6.2 Training Data6.3 Assumptions on the Training Data; 6.4 A Brute Force Approach to Learning; 6.5 Curse of Dimensionality, Inductive Bias, and No Free Lunch; 6.6 Summary; 6.7 Appendix: What Sort of Learning?; 6.8 Questions; 6.9 References; 7 The Nearest Neighbor Rule; 7.1 The Nearest Neighbor Rule; 7.2 Performance of the Nearest Neighbor Rule; 7.3 Intuition and Proof Sketch of Performance; 7.4 Using more Neighbors; 7.5 Summary; 7.6 Appendix: When People use Nearest Neighbor Reasoning; 7.6.1 Who Is a Bachelor?; 7.6.2 Legal Reasoning; 7.6.3 Moral Reasoning; 7.7 Questions; 7.8 References
8 Kernel Rules8.1 Motivation; 8.2 A Variation on Nearest Neighbor Rules; 8.3 Kernel Rules; 8.4 Universal Consistency of Kernel Rules; 8.5 Potential Functions; 8.6 More General Kernels; 8.7 Summary; 8.8 Appendix: Kernels, Similarity, and Features; 8.9 Questions; 8.10 References; 9 Neural Networks: Perceptrons; 9.1 Multilayer Feedforward Networks; 9.2 Neural Networks for Learning and Classification; 9.3 Perceptrons; 9.3.1 Threshold; 9.4 Learning Rule for Perceptrons; 9.5 Representational Capabilities of Perceptrons; 9.6 Summary; 9.7 Appendix: Models of Mind; 9.8 Questions; 9.9 References
10 Multilayer Networks
Record Nr. UNINA-9910818427003321
Kulkarni Sanjeev  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to statistical machine learning / / Masashi Sugiyama
Introduction to statistical machine learning / / Masashi Sugiyama
Autore Sugiyama Masashi <1974->
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2016]
Descrizione fisica 1 online resource (535 p.)
Disciplina 006.3/1
Soggetto topico Machine learning - Statistical methods
Information science - Statistical methods
Pattern recognition systems
ISBN 0-12-802350-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Introduction to Statistical Machine Learning; Copyright; Table of Contents; Biography; Preface; 1 INTRODUCTION; 1 Statistical Machine Learning; 1.1 Types of Learning; 1.2 Examples of Machine Learning Tasks; 1.2.1 Supervised Learning; 1.2.2 Unsupervised Learning; 1.2.3 Further Topics; 1.3 Structure of This Textbook; 2 STATISTICS AND PROBABILITY; 2 Random Variables and Probability Distributions; 2.1 Mathematical Preliminaries; 2.2 Probability; 2.3 Random Variable and Probability Distribution; 2.4 Properties of Probability Distributions; 2.4.1 Expectation, Median, and Mode
2.4.2 Variance and Standard Deviation2.4.3 Skewness, Kurtosis, and Moments; 2.5 Transformation of Random Variables; 3 Examples of Discrete Probability Distributions; 3.1 Discrete Uniform Distribution; 3.2 Binomial Distribution; 3.3 Hypergeometric Distribution; 3.4 Poisson Distribution; 3.5 Negative Binomial Distribution; 3.6 Geometric Distribution; 4 Examples of Continuous Probability Distributions; 4.1 Continuous Uniform Distribution; 4.2 Normal Distribution; 4.3 Gamma Distribution, Exponential Distribution, and Chi-Squared Distribution; 4.4 Beta Distribution
4.5 Cauchy Distribution and Laplace Distribution4.6 t-Distribution and F-Distribution; 5 Multidimensional Probability Distributions; 5.1 Joint Probability Distribution; 5.2 Conditional Probability Distribution; 5.3 Contingency Table; 5.4 Bayes' Theorem; 5.5 Covariance and Correlation; 5.6 Independence; 6 Examples of Multidimensional Probability Distributions; 6.1 Multinomial Distribution; 6.2 Multivariate Normal Distribution; 6.3 Dirichlet Distribution; 6.4 Wishart Distribution; 7 Sum of Independent Random Variables; 7.1 Convolution; 7.2 Reproductive Property; 7.3 Law of Large Numbers
7.4 Central Limit Theorem8 Probability Inequalities; 8.1 Union Bound; 8.2 Inequalities for Probabilities; 8.2.1 Markov's Inequality and Chernoff's Inequality; 8.2.2 Cantelli's Inequality and Chebyshev's Inequality; 8.3 Inequalities for Expectation; 8.3.1 Jensen's Inequality; 8.3.2 Hölder's Inequality and Schwarz's Inequality; 8.3.3 Minkowski's Inequality; 8.3.4 Kantorovich's Inequality; 8.4 Inequalities for the Sum of Independent Random Variables; 8.4.1 Chebyshev's Inequality and Chernoff's Inequality; 8.4.2 Hoeffding's Inequality and Bernstein's Inequality; 8.4.3 Bennett's Inequality
9 Statistical Estimation9.1 Fundamentals of Statistical Estimation; 9.2 Point Estimation; 9.2.1 Parametric Density Estimation; 9.2.2 Nonparametric Density Estimation; 9.2.3 Regression and Classification; 9.2.4 Model Selection; 9.3 Interval Estimation; 9.3.1 Interval Estimation for Expectation of Normal Samples; 9.3.2 Bootstrap Confidence Interval; 9.3.3 Bayesian Credible Interval; 10 Hypothesis Testing; 10.1 Fundamentals of Hypothesis Testing; 10.2 Test for Expectation of Normal Samples; 10.3 Neyman-Pearson Lemma; 10.4 Test for Contingency Tables
10.5 Test for Difference in Expectations of Normal Samples
Record Nr. UNINA-9910583088403321
Sugiyama Masashi <1974->  
Amsterdam : , : Elsevier, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning with R / / Brett Lantz
Machine learning with R / / Brett Lantz
Autore Lantz Brett
Edizione [1st edition]
Pubbl/distr/stampa Birmingham : , : Packt Publishing, , 2013
Descrizione fisica 1 online resource (396 p.)
Collana Community experience distilled
Soggetto topico Machine learning - Statistical methods
R (Computer program language)
Programming languages (Electronic computers)
Soggetto genere / forma Electronic books.
ISBN 1-68015-358-7
1-78216-215-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910453395303321
Lantz Brett  
Birmingham : , : Packt Publishing, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning with R / / Brett Lantz
Machine learning with R / / Brett Lantz
Autore Lantz Brett
Edizione [1st edition]
Pubbl/distr/stampa Birmingham : , : Packt Publishing, , 2013
Descrizione fisica 1 online resource (396 p.)
Collana Community experience distilled
Soggetto topico Machine learning - Statistical methods
R (Computer program language)
Programming languages (Electronic computers)
ISBN 1-68015-358-7
1-78216-215-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910790503303321
Lantz Brett  
Birmingham : , : Packt Publishing, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning with R / / Brett Lantz
Machine learning with R / / Brett Lantz
Autore Lantz Brett
Edizione [1st edition]
Pubbl/distr/stampa Birmingham : , : Packt Publishing, , 2013
Descrizione fisica 1 online resource (396 p.)
Collana Community experience distilled
Soggetto topico Machine learning - Statistical methods
R (Computer program language)
Programming languages (Electronic computers)
ISBN 1-68015-358-7
1-78216-215-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910824972803321
Lantz Brett  
Birmingham : , : Packt Publishing, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui