top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3652.1-2020 - IEEE guide for architectural framework and application of federated machine learning / / IEEE
3652.1-2020 - IEEE guide for architectural framework and application of federated machine learning / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 006.3
Soggetto topico Computational intelligence - Simulation methods
Machine learning - Mathematical models
ISBN 1-5044-7053-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910445559703321
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3652.1-2020 - IEEE guide for architectural framework and application of federated machine learning / / IEEE
3652.1-2020 - IEEE guide for architectural framework and application of federated machine learning / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 006.3
Soggetto topico Computational intelligence - Simulation methods
Machine learning - Mathematical models
ISBN 1-5044-7053-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574668003316
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910449823103321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910783421103321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in learning theory : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910814308603321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dataset shift in machine learning / / [edited by] Joaquin Quinonero-Candela ... [et al.]
Dataset shift in machine learning / / [edited by] Joaquin Quinonero-Candela ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2009
Descrizione fisica 1 online resource (246 p.)
Disciplina 006.3/1
Altri autori (Persone) Quinonero-CandelaJoaquin
Collana Neural information processing series
Soggetto topico Machine learning
Machine learning - Mathematical models
ISBN 0-262-29253-X
1-282-24038-2
0-262-25510-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; I - Introduction to Dataset Shift; 1 - When Training and Test Sets Are Different: Characterizing Learning Transfer; 2 - Projection and Projectability; II - Theoretical Views on Dataset and Covariate Shift; 3 - Binary Classi cation under Sample Selection Bias; 4 - On Bayesian Transduction: Implications for the Covariate Shift Problem; 5 - On the Training/Test Distributions Gap: A Data Representation Learning Framework; III - Algorithms for Covariate Shift; 6 - Geometry of Covariate Shift with Applications to Active Learning
7 - A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift 8 - Covariate Shift by Kernel Mean Matching; 9 - Discriminative Learning under Covariate Shift with a Single Optimization Problem; 10 - An Adversarial View of Covariate Shift and a Minimax Approach; IV - Discussion; 11 - Author Comments; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910812927803321
Cambridge, Mass., : MIT Press, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gaussian processes for machine learning [[electronic resource] /] / Carl Edward Rasmussen, Christopher K.I. Williams
Gaussian processes for machine learning [[electronic resource] /] / Carl Edward Rasmussen, Christopher K.I. Williams
Autore Rasmussen Carl Edward
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2006
Descrizione fisica xviii, 248 p. : ill
Disciplina 519.2/3
Altri autori (Persone) WilliamsChristopher K. I
Collana Adaptive computation and machine learning
Soggetto topico Gaussian processes - Data processing
Machine learning - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 0-262-26107-3
9786612097966
1-4237-6990-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910451997003321
Rasmussen Carl Edward  
Cambridge, Mass., : MIT Press, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gaussian processes for machine learning / / Carl Edward Rasmussen, Christopher K.I. Williams
Gaussian processes for machine learning / / Carl Edward Rasmussen, Christopher K.I. Williams
Autore Rasmussen Carl Edward
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2006
Descrizione fisica xviii, 248 p. : ill
Disciplina 519.2/3
Altri autori (Persone) WilliamsChristopher K. I
Collana Adaptive computation and machine learning
Soggetto topico Gaussian processes - Data processing
Machine learning - Mathematical models
ISBN 0-262-26107-3
9786612097966
1-4237-6990-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Foreword -- Preface -- Symbols and Notation -- Chapter 1 Introduction -- Chapter 2 Regression -- Chapter 3 Classification -- Chapter 4 Covariance functions -- Chapter 5 Model Selection and Adaptation of Hyperparameters -- Chapter 6 Relationships between GPs and Other Models -- Chapter 7 Theoretical Perspectives -- Chapter 8 Approximation Methods for Large Datasets -- Chapter 9 Further Issues and Conclusions -- Appendix A Mathematical Background -- Appendix B Gaussian Markov Processes -- Appendix C Datasets and Code -- Bibliography -- Author Index -- Subject Index.
Record Nr. UNINA-9910666795503321
Rasmussen Carl Edward  
Cambridge, Mass., : MIT Press, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interpreting machine learning models : learn model interpretability and explainability methods / / Anirban Nandi and Aditya Kumar Pal
Interpreting machine learning models : learn model interpretability and explainability methods / / Anirban Nandi and Aditya Kumar Pal
Autore Nandi Anirban
Pubbl/distr/stampa New York, New York : , : Apress, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 006.31
Soggetto topico Machine learning - Mathematical models
ISBN 1-5231-5100-5
1-4842-7802-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: The Evolution of Machine Learning -- Chapter 2: Introduction to Model interpretability. -- Chapter 3: Machine Learning Interpretability Taxonomy -- Chapter 4: Common Properties of Explanations Generated by Interpretability Methods -- Chapter 5: Human Factors in Model Interpretability -- Chapter 6: Explainability Facts: A Framework for Systematic Assessment of Explainable Approaches -- Chapter 7: Interpretable ML and Explainable ML Differences -- Chapter 8: Framework of Model Explanations -- Chapter 9: Feature Importance methods -- Details and usage examples -- Chapter 10: Detailing rule-based methods -- Chapter 11: Detailing Counterfactual Methods -- Chapter 12: Detailing Image interpretability methods -- Chapter 13: Explaining text classification models -- Chapter 14: Role of Data in Interpretability -- Chapter 15: The 8 pitfalls of explainability methods -- Conclusion. -- References.
Record Nr. UNINA-9910522997303321
Nandi Anirban  
New York, New York : , : Apress, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / / Armando Fandango
Mastering TensorFlow 1.x : advanced machine learning and deep learning concepts using TensorFlow 1.x and Keras / / Armando Fandango
Autore Fandango Armando
Edizione [1st edition]
Pubbl/distr/stampa Birmingham, England : , : Packt Publishing, , 2018
Descrizione fisica 1 online resource (474 pages)
Disciplina 006.31
Soggetto topico Machine learning - Mathematical models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794628603321
Fandango Armando  
Birmingham, England : , : Packt Publishing, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui