top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big data management in sensing : applications in AI and IoT / / editors : Renny Fernandez, Terrance Frederick Fernandez
Big data management in sensing : applications in AI and IoT / / editors : Renny Fernandez, Terrance Frederick Fernandez
Edizione [1st ed.]
Pubbl/distr/stampa Gistrup, Denmark : , : River Publishers, , [2021]
Descrizione fisica 1 online resource (288 pages)
Disciplina 005.7
Collana River Publishers series in biomedical engineering
Soggetto topico Big data - Industrial applications
Big data
Machine learning - Industrial applications
ISBN 1-000-79743-0
1-00-333735-X
1-003-33735-X
1-000-79427-X
1-5231-4445-9
87-7022-414-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795113103321
Gistrup, Denmark : , : River Publishers, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big data management in sensing : applications in AI and IoT / / editors : Renny Fernandez, Terrance Frederick Fernandez
Big data management in sensing : applications in AI and IoT / / editors : Renny Fernandez, Terrance Frederick Fernandez
Edizione [1st ed.]
Pubbl/distr/stampa Gistrup, Denmark : , : River Publishers, , [2021]
Descrizione fisica 1 online resource (288 pages)
Disciplina 005.7
Collana River Publishers series in biomedical engineering
Soggetto topico Big data - Industrial applications
Big data
Machine learning - Industrial applications
ISBN 1-000-79743-0
1-00-333735-X
1-003-33735-X
1-000-79427-X
1-5231-4445-9
87-7022-414-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910826413803321
Gistrup, Denmark : , : River Publishers, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent computing theories and application . Part II : 18th International Conference, ICIC 2022, Xi'an, China, August 7-11, 2022, proceedings / / editors, De-Shuang Huang [and five others]
Intelligent computing theories and application . Part II : 18th International Conference, ICIC 2022, Xi'an, China, August 7-11, 2022, proceedings / / editors, De-Shuang Huang [and five others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (843 pages)
Disciplina 006.3
Collana Lecture notes in computer science
Soggetto topico Machine learning - Industrial applications
Computational intelligence
Biomedical engineering - Data processing
ISBN 3-031-13829-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Biomedical Data Modeling and Mining -- A Comparison Study of Predicting lncRNA-Protein Interactions via Representative Network Embedding Methods -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Survey of Network Embedding Methods -- 2.3 LncRNA-Protein Interactions Prediction -- 3 Results and Discussion -- 4 Conclusion -- References -- GATSDCD: Prediction of circRNA-Disease Associations Based on Singular Value Decomposition and Graph Attention Network -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Feature Representation -- 2.3 Singular Value Decomposition for Feature Noise Reduction -- 2.4 Graph Attention Network Embedding Features -- 2.5 Neural Network for Prediction -- 2.6 Evaluation Criteria -- 3 Experiments and Results -- 3.1 GATSDCD Performance -- 3.2 Impact of Parameters -- 3.3 Ablation Study -- 3.4 Performance Comparison with Other Methods -- 3.5 Case Study -- 4 Conclusion -- References -- Anti-breast Cancer Drug Design and ADMET Prediction of ERa Antagonists Based on QSAR Study -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Dataset and Data Processing -- 3.2 Hierarchical Clustering -- 3.3 Model Building -- 3.4 Multiple Stepwise Regression -- 3.5 Fisher Discrimination -- 4 Experimental Results -- 4.1 MLP Results -- 4.2 Results of Stepwise Regression -- 4.3 Optimization of Candidate Compounds Based on Fisher Discriminant -- 5 Conclusion -- References -- Real-Time Optimal Scheduling of Large-Scale Electric Vehicles Based on Non-cooperative Game -- 1 Introduction -- 2 Mathematical Models of New Energy Microgrid and Electric Vehicle Charging and Discharging Behavior -- 2.1 The Price Function of Selling Electricity of New Energy Microgrid -- 2.2 Modeling of Electric Vehicle Charging and Discharging Behavior -- 3 Optimization Objective.
4 Decentralized Electric Vehicle Control Method Based on Non-cooperative Game -- 4.1 Non-cooperative Game Model -- 4.2 Broadcast Programming for Strategy Solving -- 5 Experimental Results -- 5.1 Evaluation Index -- 5.2 Experimental Results -- 6 Conclusion -- References -- TBC-Unet: U-net with Three-Branch Convolution for Gliomas MRI Segmentation -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 TBC Module -- 3.2 Loss Function -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Metrics for Evaluation -- 4.3 Experiment Detail -- 4.4 Ablation Study -- 4.5 Results -- 5 Conclusion -- References -- Drug-Target Interaction Prediction Based on Graph Neural Network and Recommendation System -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Attribute Representation -- 2.3 Graph Convolutional Network -- 2.4 Neural Factorization Machine -- 2.5 Architecture -- 3 Result and Discussion -- 3.1 Evaluation Criteria -- 3.2 Performance Evaluation of GCNNFM Using 5-Fold Cross-Validation -- 3.3 Compared GCNNFM with Different Machine Learning Algorithms -- 3.4 Compared GCNNFM with Existing State-of-the-Art Prediction Methods -- 4 Conclusions -- References -- NSAP: A Neighborhood Subgraph Aggregation Method for Drug-Disease Association Prediction -- 1 Introduction -- 2 Dataset -- 3 Method -- 3.1 Neighborhood Graph Extraction -- 3.2 Metagraph and Contextual Graph Extraction -- 3.3 Metagraph and Contextual Graph Aggregation -- 3.4 Link Prediction -- 4 Experiment -- 4.1 Comparison Methods -- 4.2 Comparison of Results -- 4.3 Parameter Sensitivity Analysis -- 5 Conclusion -- References -- Comprehensive Evaluation of BERT Model for DNA-Language for Prediction of DNA Sequence Binding Specificities in Fine-Tuning Phase -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Model Architectures -- 2.3 Training and Fine-Tuning.
3 Results and Analysis -- 3.1 Relatively Small Learning Rate Leads to Better Performance -- 3.2 DNABERT with Different k Value of k-mer Embedding Achieves Similar Performances -- 3.3 DNABERT Achieves Outstanding Performance Overall -- 4 Conclusion -- References -- Identification and Evaluation of Key Biomarkers of Acute Myocardial Infarction by Machine Learning -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Collection -- 2.2 DEG Screening -- 2.3 GO, KEGG, DO and GSEA Enrichment Analysis -- 2.4 Screening and Identification of Gene Prediction Model for Early Diagnosis -- 2.5 The Immune Cell Infiltration Analysis -- 3 Results -- 3.1 Preprocessing and Analysis of AMI-Related Differentially Expressed Genes -- 3.2 GO, KEGG, DO and GSEA Enrichment Analysis of Differential Genes -- 3.3 Screening and Identification of Gene Prediction Model for Early Diagnosis -- 3.4 Immune Infiltration Analyses -- 4 Discussion -- References -- Glioblastoma Subtyping by Immuogenomics -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Collection -- 2.2 Cluster Analysis -- 2.3 Evaluation of Tumor Components -- 2.4 GO, KEGG Pathway and GSEA Analysis -- 2.5 Statistical Methods -- 3 Results -- 3.1 Clinical Information of Patients in the Cancer Genome Atlas Dataset -- 3.2 Immune Typing and Immune Scoring -- 3.3 Correlation Between Immune Typing and Human Leukocyte Antigen, Smoking and Some Immune Genes -- 3.4 Distribution and Gene Enrichment Analysis of Tumor-Infiltrating Immune Cells in Immunophenotyping -- 4 Discussion -- References -- Functional Analysis of Molecular Subtypes with Deep Similarity Learning Model Based on Multi-omics Data -- 1 Introduction -- 2 Methodology -- 2.1 Dataset Collection and Processing -- 2.2 The Proposed Workflow -- 2.3 Performance Evaluation Metrics -- 3 Experimental Results -- 3.1 Performance Validation.
3.2 Clinical Characteristics Analysis of Ovarian Subtypes -- 3.3 Biological Function Analysis of Breast Molecular Subtypes -- 4 Conclusion and Discussion -- References -- Predicting Drug-Disease Associations by Self-topological Generalized Matrix Factorization with Neighborhood Constraints -- 1 Introduction -- 2 Related Work -- 3 Materials and Methods -- 3.1 Materials and Preprocessing -- 3.2 Weighted Similarity Data Fusion -- 3.3 NSGMF for DDAs Prediction -- 4 Experiments -- 4.1 Ablation Studies -- 4.2 Comparison with State-of-the-Art DDAs Prediction Methods -- 4.3 Case Studies -- 5 Conclusion -- References -- Intelligent Computing in Computational Biology -- iEnhancer-BERT: A Novel Transfer Learning Architecture Based on DNA-Language Model for Identifying Enhancers and Their Strength -- 1 Introduction -- 2 Materials and Methods -- 2.1 Benchmark Datasets -- 2.2 Methods -- 2.3 Two-Stage Identification Framework -- 2.4 Baseline Method -- 2.5 Performance Evaluation Metrics -- 3 Experimental Results -- 3.1 Different k-mer Pre-training Models -- 3.2 Effect of Pre-training on Model Performance -- 3.3 Effect of Different Fine-Tuning Methods -- 3.4 Performance Comparison with Existing Methods -- 4 Discussion and Conclusion -- References -- GCNMFCDA: A Method Based on Graph Convolutional Network and Matrix Factorization for Predicting circRNA-Disease Associations -- 1 Introduction -- 2 Materials and Methods -- 2.1 Known CircRNA-Disease Association -- 2.2 Disease Semantic Similarity Network -- 2.3 CircRNA Functional Similarity Network -- 2.4 Gaussian Interaction Profile Kernel Similarity for CircRNA and Disease -- 2.5 Combine Multiple Similarity (CircRNA and Disease) -- 2.6 Feature Extraction Based on Graph Convolution Networks -- 2.7 CircRNA-disease Association Prediction and Loss Function -- 3 Results and Discussion -- 3.1 Experimental Setup.
3.2 Performance Analysis -- 3.3 Compared with Other Methods -- 3.4 Parameters Setting -- 3.5 Case Studies -- 4 Conclusions -- References -- Prediction of MiRNA-Disease Association Based on Higher-Order Graph Convolutional Networks -- 1 Introduction -- 2 Material and Methods -- 2.1 Human MiRNA-disease Associations Database -- 2.2 MiRNA Functional Similarity -- 2.3 Disease Semantic Similarity -- 2.4 Gaussian Interaction Profile Kernel Similarity for MiRNAs and Diseases -- 2.5 Integrated Similarity for MiRNAs and Diseases -- 2.6 MIXHOPMDA -- 3 Results -- 3.1 Experiment Settings -- 3.2 Performance Evaluation -- 3.3 Effect of Number of Projection Dimensions -- 3.4 Effect of Number of Layers -- 3.5 Effect of Number of the Value of P -- 3.6 Comparison with Other Latest Methods -- 4 Case Studies -- 5 Conclusion -- References -- SCDF: A Novel Single-Cell Classification Method Based on Dimension-Reduced Data Fusion -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Normalization -- 2.3 Determining the Optimal Number of Low-Dimensional Components -- 2.4 Concatenation -- 2.5 Classification Using Fused Data -- 3 Result -- 3.1 The Optimal Number of Low-Dimensional Components -- 3.2 The Accuracy of Classification with SCDF -- 4 Conclusion -- References -- Research on the Potential Mechanism of Rhizoma Drynariae in the Treatment of Periodontitis Based on Network Pharmacology -- 1 Introduction -- 2 Material and Method -- 2.1 Screening of the Active Ingredients of Rhizoma Drynariae and Corresponding Targets -- 2.2 Periodontitis Related Targets Retrieval -- 2.3 Common Targets of Rhizoma Drynariae and Periodontitis -- 2.4 Network of Rhizoma Drynariae Active Ingredient and Periodontal Disease Target -- 2.5 Protein-Protein Interaction (PPI) Network -- 2.6 GO and KEGG Pathway Analysis -- 3 Results.
3.1 Active Compounds and Corresponding Targets in Rhizoma Drynariae.
Record Nr. UNISA-996485668503316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Interpretability for Industry 4.0 : statistical and machine learning approaches / / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi, editors
Interpretability for Industry 4.0 : statistical and machine learning approaches / / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (130 pages) : illustrations
Disciplina 658.4038028563
Soggetto topico Industry 4.0
Machine learning - Industrial applications
Industry 4.0 - Statistical methods
Aprenentatge automàtic
Aplicacions industrials
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12402-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Different Views of Interpretability -- 1.1 Introduction -- 1.2 Interpretability: In Praise of Transparent Models -- 1.2.1 What Happened? -- 1.2.2 What Will Happen? -- 1.2.3 What Shall be Done to Make It Happen? -- 1.2.4 Patterns and Models -- 1.3 Generalizability and Interpretability with Industry 4.0 Implications -- 1.3.1 Introduction to Interpretable AI -- 1.3.2 A Wide Angle Perspective of Generalizability -- 1.3.3 Statistical Generalizability -- 1.4 Connections Between Interpretability in Machine Learning and Sensitivity Analysis of Model Outputs -- 1.4.1 Machine Learning and Uncertainty Quantification -- 1.4.2 Basics on Sensitivity Analysis and Its Main Settings -- 1.4.3 A Brief Taxonomy of Interpretability in Machine Learning -- 1.4.4 A Review of Sensitivity Analysis Powered Interpretability Methods -- References -- 2 Model Interpretability, Explainability and Trust for Manufacturing 4.0 -- 2.1 Manufacturing 4.0: Driving Trends for Data Mining -- 2.1.1 Process Monitoring in Manufacturing 4.0 -- 2.1.2 Design of Experiments in Manufacturing 4.0 -- 2.1.3 Increasing Trust in AI Models for Manufacturing 4.0: Interpretability, Explainability and Robustness -- 2.2 Additive Manufacturing as a Paradigmatic Example of Manufacturing 4.0 -- 2.3 Increase Trust in Additive Manufacturing: Robust Functional Analysis of Variance in Video-Image Analysis -- 2.3.1 The RoFANOVA Approach -- 2.3.2 An Additive Manufacturing Application -- References -- 3 Interpretability via Random Forests -- 3.1 Introduction -- 3.2 Interpretable Rule-Based Models -- 3.2.1 Literature Review -- 3.2.1.1 Definitions and Origins of Rule Models -- 3.2.1.2 Decision Trees -- 3.2.1.3 Tree-Based Rule Learning -- 3.2.1.4 Modern Rule Learning -- 3.2.2 SIRUS: Stable and Interpretable RUle Set -- 3.2.2.1 SIRUS Algorithm -- 3.2.2.2 Theoretical Analysis.
3.2.2.3 Experiments -- 3.2.3 Discussion -- 3.3 Post-Processing of Black-Box Algorithms via Variable Importance -- 3.3.1 Literature Review -- 3.3.1.1 Model-Specific Variable Importance -- 3.3.1.2 Global Sensitivity Analysis -- 3.3.1.3 Local Interpretability -- 3.3.2 Sobol-MDA -- 3.3.2.1 Sobol-MDA Algorithm -- 3.3.2.2 Sobol-MDA Properties -- 3.3.2.3 Experiments -- 3.3.3 SHAFF: SHApley eFfects Estimates via Random Forests -- 3.3.3.1 SHAFF Algorithm -- 3.3.3.2 SHAFF Consistency -- 3.3.3.3 Experiments -- 3.3.4 Discussion -- References -- 4 Interpretability in Generalized Additive Models -- 4.1 GAMs: A Basic Framework for Flexible Interpretable Regression -- 4.1.1 Flexibility Can Be Important -- 4.1.2 Making the Model Computable -- 4.1.3 Estimation and Inference -- 4.1.4 Checking, Effective Degrees of Freedom and Model Selection -- 4.1.5 GAM Computation with mgcv in R -- 4.1.6 Smooths of Several Predictors -- 4.1.7 Further Interpretable Structure -- 4.2 From GAM to GAMLSS: Interpretability for Model Building -- 4.2.1 GAMLSS Modelling of UK Aggregate Electricity Demand -- 4.2.1.1 Data Overview and Pre-processing -- 4.2.1.2 Interactive GAMLSS Model Building -- 4.3 From GAMs to Aggregations of Experts, Are We Still Interpretable? -- 4.3.1 Online Forecasting with Online Aggregation of Experts -- 4.3.2 Visualizing the Black Boxes -- References.
Record Nr. UNISA-996495169103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine learning and artificial intelligence with industrial applications : from big data to small data / / Diego Carou, Antonio Sartal, and J. Paulo Davim, editors
Machine learning and artificial intelligence with industrial applications : from big data to small data / / Diego Carou, Antonio Sartal, and J. Paulo Davim, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (216 pages)
Disciplina 006.3
Collana Management and Industrial Engineering
Soggetto topico Artificial intelligence - Industrial applications
Machine learning - Industrial applications
ISBN 3-030-91006-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910552744003321
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning and data mining in materials science / / edited by Norbert Huber, Surya R. Kalidindi, Benjamin Klusemann and Christian Johannes Cyro
Machine learning and data mining in materials science / / edited by Norbert Huber, Surya R. Kalidindi, Benjamin Klusemann and Christian Johannes Cyro
Pubbl/distr/stampa Lausanne : , : Frontiers Media SA, , 2020
Descrizione fisica 1 online resource : illustrations
Soggetto topico Machine learning - Industrial applications
Data mining
Materials science - Data processing
ISBN 9782889636518
2889636518
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557221003321
Lausanne : , : Frontiers Media SA, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Industrial Applications
Machine Learning for Industrial Applications
Autore Prakash Kolla Bhanu
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (341 pages)
Disciplina 006.3/1
Collana Next-generation computing and communication engineering
Soggetto topico Machine learning - Industrial applications
ISBN 9781394268993
1394268998
9781394268986
139426898X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Chapter 1 Overview of Machine Learning -- 1.1 Introduction -- 1.2 Sorts of Machine Learning -- 1.3 Regulated Gaining Knowledge of Dog and Human -- 1.4 Solo Learning -- 1.5 Support Mastering -- 1.6 Bundles or Applications of Machine Learning -- 1.6.1 Photograph Reputation -- 1.6.2 Discourse Recognition -- 1.6.3 Traffic Prediction -- 1.6.4 Item Recommendations -- 1.6.5 Self-Using Vehicles -- 1.6.6 Electronic Mail Unsolicited Mail And Malware Filtering -- 1.6.7 Computerized Private Assistant -- 1.6.8 Online Fraud Detection -- 1.6.9 Securities Exchange Buying and Selling -- 1.6.10 Clinical Prognosis -- 1.6.11 Computerized Language Translation -- 1.6.12 Online Media Features -- 1.6.13 Feeling Evaluation -- 1.6.14 Robotizing Employee Get Right of Entry to Manipulate -- 1.6.15 Marine Flora and Fauna Protection -- 1.6.16 Anticipate Potential Coronary Heart Failure -- 1.6.17 Directing Healthcare Efficiency and Scientific Offerings -- 1.6.18 Transportation and Commuting (Uber) -- 1.6.19 Dynamic Pricing -- 1.6.19.1 How Does Uber Decide the Cost of Your Excursion? -- 1.6.20 Online Video Streaming (Netflix) -- 1.7 Challenges in Machine Learning -- 1.8 Limitations of Machine Learning -- 1.9 Projects in Machine Learning -- References -- Chapter 2 Machine Learning Building Blocks -- 2.1 Data Collection -- 2.1.1 Importing the Data from CSV Files -- 2.2 Data Preparation -- 2.2.1 Data Exploration -- 2.2.2 Data Pre-Processing -- 2.3 Data Wrangling -- 2.4 Data Analysis -- 2.5 Model Selection -- 2.6 Model Building -- 2.7 Model Evaluation -- 2.7.1 Classification Metrics -- 2.7.1.1 Accuracy -- 2.7.1.2 Precision -- 2.7.1.3 Recall -- 2.7.2 Regression Metrics -- 2.7.2.1 Mean Squared Error -- 2.7.2.2 Root Mean Squared Error -- 2.7.2.3 Mean Absolute Error -- 2.8 Deployment.
2.8.1 Machine Learning Projects -- 2.8.2 Spam Detection Using Machine Learning -- 2.8.3 Spam Detection for YouTube Comments Using Naïve Bayes Classifier -- 2.8.4 Fake News Detection -- 2.8.5 House Price Prediction -- 2.8.6 Gold Price Prediction -- Bibliography -- Chapter 3 Multilayer Perceptron (in Neural Networks) -- 3.1 Multilayer Perceptron for Digit Classification -- 3.1.1 Implementation of MLP using TensorFlow for Classifying Image Data -- 3.2 Training Multilayer Perceptron -- 3.3 Backpropagation -- References -- Chapter 4 Kernel Machines -- 4.1 Different Kernels and Their Applications -- 4.2 Some Other Kernel Functions -- 4.2.1 Gaussian Radial Basis Function (RBF) -- 4.2.2 Laplace RBF Kernel -- 4.2.3 Hyperbolic Tangent Kernel -- 4.2.4 Bessel Function of the First-Kind Kernel -- 4.2.5 ANOVA Radial Basis Kernel -- 4.2.6 Linear Splines Kernel in One Dimension -- 4.2.7 Exponential Kernel -- 4.2.8 Kernels in Support Vector Machine -- References -- Chapter 5 Linear and Rule-Based Models -- 5.1 Least Squares Methods -- 5.2 The Perceptron -- 5.2.1 Bias -- 5.2.2 Perceptron Weighted Sum -- 5.2.3 Activation Function -- 5.2.3.1 Types of Activation Functions -- 5.2.4 Perceptron Training -- 5.2.5 Online Learning -- 5.2.6 Perceptron Training Error -- 5.3 Support Vector Machines -- 5.4 Linearity with Kernel Methods -- References -- Chapter 6 Distance-Based Models -- 6.1 Introduction -- 6.1.1 Distance-Based Clustering -- 6.2 K-Means Algorithm -- 6.2.1 K-Means Algorithm Working Process -- 6.3 Elbow Method -- 6.4 K-Median -- 6.4.1 Algorithm -- 6.5 K-Medoids, PAM (Partitioning Around Medoids) -- 6.5.1 Advantages -- 6.5.2 Drawbacks -- 6.5.3 Algorithm -- 6.6 CLARA (Clustering Large Applications) -- 6.6.1 Advantages -- 6.6.2 Disadvantages -- 6.7 CLARANS (Clustering Large Applications Based on Randomized Search) -- 6.7.1 Advantages -- 6.7.2 Disadvantages.
6.7.3 Algorithm -- 6.8 Hierarchical Clustering -- 6.9 Agglomerative Nesting Hierarchical Clustering (AGNES) -- 6.10 DIANA -- References -- Chapter 7 Model Ensembles -- 7.1 Bagging -- 7.1.1 Advantages -- 7.1.2 Disadvantages -- 7.1.3 Bagging Workage -- 7.1.4 Algorithm -- 7.2 Boosting -- 7.2.1 Types of Boosting -- 7.2.2 Advantages -- 7.2.3 Disadvantages -- 7.2.4 Algorithm -- 7.3 Stacking -- 7.3.1 Architecture of Stacking -- 7.3.2 Stacking Ensemble Family -- References -- Chapter 8 Binary and Beyond Binary Classification -- 8.1 Binary Classification -- 8.2 Logistic Regression -- 8.3 Support Vector Machine -- 8.4 Estimating Class Probabilities -- 8.5 Confusion Matrix -- 8.6 Beyond Binary Classification -- 8.7 Multi-Class Classification -- 8.8 Multi-Label Classification -- Reference -- Chapter 9 Model Selection -- 9.1 Model Selection Considerations -- 9.1.1 What Do We Care Approximately When Choosing the Final Version? -- 9.2 Model Selection Strategies -- 9.3 Types of Model Selection -- 9.3.1 Methods of Re-Sampling -- 9.3.2 Random Separation -- 9.3.3 Time Divide -- 9.3.4 K-Fold Cross-Validation -- 9.3.5 Stratified K-Fold -- 9.3.6 Bootstrap -- 9.3.7 Possible Steps -- 9.3.8 Akaike Information Criterion (AIC) -- 9.3.9 Bayesian Information Criterion (BIC) -- 9.3.10 Minimum Definition Length (MDL) -- 9.3.11 Building Risk Reduction (SRM) -- 9.3.12 Excessive Installation (Overfitting) -- 9.4 The Principle of Parsimony -- 9.5 Examples of Model Selection Criterions -- 9.6 Other Popular Properties -- 9.7 Key Considerations -- 9.8 Model Validation -- 9.8.1 Why is Model Validation Important? -- 9.8.2 How to Validate the Model -- 9.8.3 What is a Model Validation Test? -- 9.8.4 Benefits of Modeling Validation -- 9.8.5 Model Validation Traps -- 9.8.6 Data Verification -- 9.8.7 Model Performance and Validation -- 9.9 Self-Driving Cars -- 9.10 K-Fold Cross Validation.
9.11 No One-Size-Fits-All Model Validation -- 9.12 Validation Strategies -- 9.13 K-Fold Cross-Validation -- 9.14 Capture Confirmation Using Hold-Out Validation -- 9.15 Comparison of Validation Strategy -- References -- Chapter 10 Support Vector Machines -- 10.1 History -- 10.2 Model -- 10.3 Kinds of Support Vector Machine -- 10.3.1 Straight SVM -- 10.3.2 Non-Direct SVM -- 10.3.3 Benefits of Help Vector Machines -- 10.3.4 The Negative Marks of Help Vector Machines -- 10.3.5 Applications -- 10.4 Hyperplane and Support Vectors Inside the SVM Set of Rules -- 10.4.1 Hyperplane -- 10.5 Support Vectors -- 10.6 SVM Kernel -- 10.7 How Can It Function? -- 10.7.1 See the Right Hyperplane (Circumstance 1) -- 10.7.2 See the Appropriate Hyperplane (Situation 2) -- 10.7.3 Distinguish the Right Hyper-Airplane (Situation 3) -- 10.7.4 Would We Have the Option to Organize Models (Circumstance 4)? -- 10.7.5 Track Down the Hyperplane to Isolate Into Guidelines (Situation 5) -- 10.8 SVM for Classification -- 10.9 SVM for Regression -- 10.10 Python Implementation of Support Vector Machine -- 10.10.1 Data Pre-Taking Care of Step -- 10.10.2 Fitting the SVM Classifier to the Readiness Set -- 10.10.2.1 Outcome -- 10.10.3 Anticipating the Investigated Set Final Product -- 10.10.3.1 Yield -- 10.10.4 Fostering the Disarray Lattice -- 10.10.5 Picturing the Preparation Set Outcome -- 10.10.5.1 Yield -- 10.10.6 Imagining the Investigated Set Outcome -- 10.10.6.1 Yield -- 10.10.7 Part or Kernel -- 10.10.8 Support Vector Machine (SVM) Code in Python -- 10.10.9 Intricacy of SVM -- References -- Chapter 11 Clustering -- 11.1 Example -- 11.2 Kinds of Clustering -- 11.2.1 Hard Clustering -- 11.2.2 Delicate Clustering -- 11.2.2.1 Dividing Clustering or Partitioning Clustering -- 11.2.2.2 Thickness Essentially Based Clustering or Density Fundamentally Based Clustering.
11.2.2.3 Transport Model-Based Clustering or Distribution Model-Based Clustering -- 11.2.2.4 Progressive Clustering or Hierarchical Clustering -- 11.2.2.5 Fluffy Clustering or Fuzzy Clustering -- 11.3 What are the Utilization of Clustering? -- 11.4 Models -- 11.5 Uses of Clustering -- 11.5.1 In Character of Most Tumor Cells -- 11.5.2 In Web Crawlers Like Google -- 11.5.3 Shopper Segmentation -- 11.5.4 In Biology -- 11.5.5 In Land Use -- 11.6 Bunching Algorithms or Clustering Algorithms -- 11.6.1 K-Means Clustering -- 11.6.2 Mean-Shift Clustering -- 11.6.3 Thickness or Density-Based Spatial Clustering of Application with Noise (DBSCAN) -- 11.6.4 Assumption Maximization Clustering Utilizing Gaussian Combination Models -- 11.6.5 Agglomerative Hierarchical Clustering -- 11.7 Instances of Clustering Algorithms -- 11.7.1 Library Setup -- 11.7.2 Grouping or Clustering Dataset -- 11.7.3 Fondness or Affinity Propagation -- 11.7.4 Agglomerative Clustering -- 11.7.5 BIRCH -- 11.7.6 DBSCAN -- 11.7.7 K-Means -- 11.7.8 Mini-Batch K-Means -- 11.7.9 Mean Shift -- 11.7.10 OPTICS -- 11.7.11 Unearthly or Spectral Clustering -- 11.7.12 Gaussian Mixture Model -- 11.8 Python Implementation of K-Means -- 11.8.1 Stacking the Data -- 11.8.2 Plotting the Information -- 11.8.3 Choosing the Component -- 11.8.4 Clustering -- 11.8.5 Clustering Results -- 11.8.6 WCSS and Elbow Technique -- 11.8.7 Uses of K-Mean Bunching -- 11.8.8 Benefits of K-Means -- 11.8.9 Bad Marks of K-MEAN -- References -- Chapter 12 Reinforcement Learning -- 12.1 Model -- 12.2 Terms Utilized in Reinforcement Learning -- 12.3 Key Elements of Reinforcement Learning -- 12.4 Instances of Reinforcement Learning -- 12.5 Advantages of Reinforcement Learning -- 12.6 Challenges with Reinforcement Learning -- 12.7 Sorts of Reinforcement -- 12.7.1 Positive -- 12.7.2 Negative.
12.8 What are the Useful Utilizations of Reinforcement Learning?.
Record Nr. UNINA-9911019499103321
Prakash Kolla Bhanu  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning tools for chemical engineering : methodologies and applications / / Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega
Machine learning tools for chemical engineering : methodologies and applications / / Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega
Autore López-Flores Francisco Javier
Edizione [1st ed.]
Pubbl/distr/stampa Elsevier Science [Imprint]
Descrizione fisica 1 online resource (630 pages)
Disciplina 660.0285631
Soggetto topico Chemical engineering - Data processing
Machine learning - Industrial applications
Génie chimique - Informatique
Apprentissage automatique - Applications industrielles
ISBN 0-443-29059-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911044026503321
López-Flores Francisco Javier  
Elsevier Science [Imprint]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mastering machine learning with spark 2.x : create scalable machine learning applications to power a modern data-driven business using spark / / Alex Tellez, Max Pumperla, Michal Malohlava
Mastering machine learning with spark 2.x : create scalable machine learning applications to power a modern data-driven business using spark / / Alex Tellez, Max Pumperla, Michal Malohlava
Autore Tellez Alex
Edizione [1st edition]
Pubbl/distr/stampa Birmingham, England ; ; Mumbai, [India] : , : Packt, , 2017
Descrizione fisica 1 online resource (320 pages) : illustrations (some color)
Disciplina 006.31
Soggetto topico Machine learning
Machine learning - Industrial applications
Soggetto genere / forma Electronic books.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910493179403321
Tellez Alex  
Birmingham, England ; ; Mumbai, [India] : , : Packt, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mastering machine learning with spark 2.x : create scalable machine learning applications to power a modern data-driven business using spark / / Alex Tellez, Max Pumperla, Michal Malohlava
Mastering machine learning with spark 2.x : create scalable machine learning applications to power a modern data-driven business using spark / / Alex Tellez, Max Pumperla, Michal Malohlava
Autore Tellez Alex
Edizione [1st edition]
Pubbl/distr/stampa Birmingham, England ; ; Mumbai, [India] : , : Packt, , 2017
Descrizione fisica 1 online resource (320 pages) : illustrations (some color)
Disciplina 006.31
Soggetto topico Machine learning
Machine learning - Industrial applications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910796533903321
Tellez Alex  
Birmingham, England ; ; Mumbai, [India] : , : Packt, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui