top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
MXene Reinforced Polymer Composites : Fabrication, Characterization and Applications
MXene Reinforced Polymer Composites : Fabrication, Characterization and Applications
Autore Deshmukh Kalim
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (569 pages)
Disciplina 620.192
Altri autori (Persone) PandeyMayank
HussainChaudhery Mustansar
Soggetto topico MXenes
Polymeric composites
ISBN 9781119901273
1119901278
9781119901266
111990126X
9781119901280
1119901286
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Two-Dimensional MXenes: Fundamentals, Characteristics, Synthesis Methods, Processing, Compositions, Structure, and Applications -- 1.1 Introduction -- 1.2 Fundamentals -- 1.2.1 Crystallographic Structure -- 1.2.2 Electronic Structure -- 1.2.3 Magnetic Structure -- 1.3 General Characteristics of the MXenes -- 1.3.1 Physical Properties -- 1.3.2 Chemical Properties -- 1.4 Synthesis Methods -- 1.4.1 Wet Chemical Etching -- 1.4.2 Urea Glass Route -- 1.4.3 Chemical Vapor Deposition -- 1.4.4 Molten Salt Etching -- 1.4.5 Hydrothermal Synthesis -- 1.4.6 Electrochemical Synthesis at Room Temperature -- 1.5 Applications -- 1.5.1 Nitrogen Reduction Reaction (NRR) -- 1.5.2 Oxygen Evolution Reaction (OER)/Oxygen Reduction Reaction (ORR) -- 1.5.3 Hydrogen Evolution Reaction (HER) -- 1.5.4 Energy Storages -- 1.5.4.1 Battery -- 1.5.4.2 Supercapacitor -- 1.5.4.3 Electromagnetic Interference Shielding -- 1.5.5 Biomedical Applications -- 1.6 Conclusion and Future Scope -- Acknowledgement -- References -- Chapter 2 Chemical Exfoliation and Delamination Methods of MXenes -- 2.1 Introduction -- 2.2 HF Etching Method -- 2.3 In Situ HF-Forming Etching Method -- 2.3.1 Fluoride Salts/Acids Etching Method -- 2.3.2 Bifluoride Salts Etching Method -- 2.4 Molten Salt Etching Method -- 2.4.1 Fluorine-Containing Molten Salt Etching Route -- 2.4.2 Fluorine-Free Molten Salt Etching Route -- 2.5 Electrochemical Etching Method -- 2.6 Hydrothermal Etching Method -- 2.7 Alkali Etching Method -- 2.8 Other Etching Methods -- 2.9 Exfoliation Strategies of Multilayered MXene -- 2.10 Conclusion -- Acknowledgement -- References -- Chapter 3 Surface Terminations and Surface Functionalization Strategies of MXenes -- 3.1 Introduction -- 3.2 Surface Termination Strategies in MXenes -- 3.2.1 Hydrofluoric Acid-Based Etching.
3.2.2 Molten Salt Etching -- 3.2.3 Alkali-Based Etching -- 3.2.4 Electrochemically-Assisted Etching -- 3.2.5 Manipulation of Terminations: Surface Modification and Doping in MXenes -- 3.3 Methods of Surface Functionalization in MXenes -- 3.3.1 Controlling Surface Terminations -- 3.3.2 Single Heteroatom Method -- 3.3.3 Small Molecules -- 3.3.4 Surface-Initiated Polymerization -- 3.3.5 Other Methods -- 3.4 Application of Surface Modified MXenes -- 3.4.1 Energy Generation and Storage -- 3.4.2 Biomedicine -- 3.4.2.1 Biosensing and Bioimaging -- 3.4.2.2 Photothermal Therapy -- 3.4.2.3 Drug Delivery -- 3.4.2.4 Antibacterial Activity -- 3.4.3 Catalysis -- 3.4.3.1 CO Oxidation -- 3.4.3.2 Activation and Conversion of CO2 -- 3.4.3.3 Water-Gas Shift (WGS) -- 3.4.4 Other Applications of Surface Modified MXenes -- 3.4.4.1 Sensors -- 3.4.4.2 Membrane-Based Separation -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Electronic, Electrical and Optical Properties of MXenes -- 4.1 Introduction -- 4.2 Structure of MXenes -- 4.3 An Overview of Various Methods of Synthesis of MXenes -- 4.3.1 Aqueous Acid Etching (AAE) Method -- 4.3.2 Chemical Vapor Deposition (CVD) Method -- 4.4 Electronic Properties -- 4.4.1 Density of States and Electronic Distribution -- 4.4.2 Band Structure and Bandgap Estimation -- 4.4.3 Methods to Enhance Electronic Properties -- 4.5 Electrical Properties -- 4.5.1 MXene Structure and Composition -- 4.5.2 Electrical Conductivity -- 4.5.3 Surface Functionalization -- 4.5.4 Methods to Enhance Electrical Properties -- 4.6 Optical Properties -- 4.6.1 Photoluminescence Response -- 4.6.2 Absorption Properties -- 4.6.3 Dielectric Properties -- 4.6.4 Non-Linear Optical Properties -- 4.6.5 Plasmonic Properties -- 4.6.6 Methods to Improve the Optical Properties -- 4.7 Conclusion -- References.
Chapter 5 Magnetic, Mechanical and Thermal Properties of MXenes -- 5.1 Introduction -- 5.1.1 Applications of MXenes -- 5.1.2 Structure of MXenes -- 5.2 Magnetic Characteristics of MXenes -- 5.3 Mechanical Characteristics of MXenes -- 5.4 Thermal Characteristics of MXenes -- 5.5 Conclusion -- References -- Chapter 6 MXene-Reinforced Polymer Composites: Fabrication Methods, Processing, Properties and Applications -- 6.1 Introduction -- 6.2 Fabrication Methods and Processing -- 6.2.1 Direct Physical Mixing -- 6.2.2 Surface Modification -- 6.2.3 In Situ Polymerization -- 6.2.4 Others -- 6.3 Properties -- 6.3.1 Electrical Properties -- 6.3.2 Thermal Properties -- 6.3.3 Mechanical Properties -- 6.3.4 Photo Thermal Properties -- 6.3.5 Flame Retardant Properties -- 6.3.6 Others -- 6.4 Applications -- 6.4.1 Sensors -- 6.4.2 Energy Applications -- 6.4.3 Electromagnetic Interference Shielding -- 6.4.4 Catalytically Conversion -- 6.4.5 Oil/Water Separation -- 6.4.6 Others -- 6.5 Conclusion and Outlook -- Acknowledgment -- References -- Chapter 7 Structural, Morphological and Tribological Properties of Polymer/MXene Composites -- Abbreviations -- 7.1 Introduction -- 7.2 Overview of MXene -- 7.3 MXene/Polymer Nanocomposites -- 7.4 MXene/Polymer Nanocomposite Fabrication Methods -- 7.4.1 Solution Mixing -- 7.4.2 In Situ Polymerization Blending -- 7.4.3 Hot Press -- 7.4.4 Other Methods -- 7.5 Characteristics of Polymer/MXene Composites -- 7.5.1 Structural Properties -- 7.5.2 Tri-Biological Properties -- 7.5.3 Morphological Properties -- 7.5.4 Interfacial Strength -- 7.5.5 Other Properties -- 7.6 Novel Applications of Polymer/MXene Composites -- 7.7 Conclusion and Outlook -- References -- Chapter 8 MXene-Reinforced Polymer Composites for Dielectric Applications -- 8.1 Introduction -- 8.2 Synthesis of MXene -- 8.2.1 Etching of MAX Phases.
8.2.2 Modified Acid Etching Methods of MAX Phases -- 8.2.3 Fluoride Salts as Etchants -- 8.2.4 Fluoride-Free Synthesis Methods -- 8.3 Modification Strategies of MXene -- 8.3.1 Covalent Interaction -- 8.3.2 Non-Covalent Interaction -- 8.4 Synthesis Methods and Fabrication of MXene-Based Polymer Composites -- 8.4.1 Ex Situ Mixing -- 8.4.2 In Situ Mixing -- 8.4.3 Fabrication Techniques -- 8.4.3.1 Drop Casting -- 8.4.3.2 Vacuum-Assisted Filtration (VAF) -- 8.4.3.3 Hot Press (HP) -- 8.5 Properties of MXene/Polymer Composite -- 8.5.1 Electronic and Dielectric Property -- 8.5.2 Dielectric Constant -- 8.5.3 Dielectric Loss -- 8.5.4 Breakdown Strength -- 8.5.5 AC Electrical Conductivity -- 8.6 Dielectric Applications of MXene/Polymer Composite Materials -- 8.7 Conclusion -- References -- Chapter 9 MXenes-Reinforced Polymer Composites for Microwave Absorption and Electromagnetic Interference Shielding Applications -- 9.1 Introduction to MXenes -- 9.1.1 Structure and Properties -- 9.1.2 Applications -- 9.2 Materials for EMI Shielding and Microwave Absorption -- 9.3 MXenes-Based Materials for EMI Shielding and Microwave Absorption -- 9.3.1 MXenes -- 9.3.2 MXenes/Carbon Composites -- 9.3.3 MXenes/Magnetic Materials -- 9.3.4 MXenes/Polymer Composites -- 9.3.5 Hybrid Combinations -- 9.4 EMI Shielding Mechanisms for MXene-Based Materials -- 9.5 MXenes/Polymer Composites for EMI Shielding and Microwave Absorption -- 9.6 Electrospun Fibers with MXenes as Additives -- 9.7 Conclusions and Future Outlook -- References -- Chapter 10 Polymer/MXene Composites for Supercapacitor and Electrochemical Double Layer Capacitor Applications -- 10.1 Introduction -- 10.2 MXene-Polymer Composites -- 10.2.1 Classification -- 10.2.2 Preparation Methods -- 10.2.2.1 Ex Situ Blending (Solvent Processing) -- 10.2.2.2 In Situ Polymerization -- 10.2.2.3 Other Preparation Methods.
10.2.3 Properties -- 10.2.3.1 Electrical Properties -- 10.2.3.2 Thermal Properties -- 10.2.3.3 Mechanical Properties -- 10.3 Applications of MXene Polymer Composites for Supercapacitor Applications -- 10.3.1 Introduction to Supercapacitor and Its Classification -- 10.3.2 Classification of Supercapacitor -- 10.3.3 Recent Advancements and Achievements in Various MXene-Polymer Composites for Supercapacitor Applications -- 10.4 Challenges and Future Perspectives -- 10.5 Conclusion -- References -- Chapter 11 MXene-Based Polymer Composites for Hazardous Gas and Volatile Organic Compound Detection -- 11.1 Introduction -- 11.2 Synthesis of MXenes and MXene-Polymer Composites -- 11.2.1 Synthesis of MXenes -- 11.2.2 Synthesis of MXene-Based Composites -- 11.2.3 MXene-Polymer Composites -- 11.3 Properties of MXenes and MXene-Polymer Composites -- 11.3.1 Mechanical Properties -- 11.3.2 Electronic Properties -- 11.3.3 Magnetic Properties -- 11.4 Mxene-Polymer Composites Applications -- 11.4.1 Detection of VOCs and Hazardous Gases -- 11.4.2 Environment-Related Applications -- 11.4.2.1 Catalysis -- 11.4.2.2 Electrocatalysis -- 11.4.2.3 Photocatalysis -- 11.4.3 Water Remediation -- 11.5 Future Directions -- 11.5.1 Bioimaging -- 11.5.1.1 Magnetic Resonance Imaging (MRI) -- 11.5.1.2 Photoacoustic (PA) Imaging -- 11.5.2 Computed Tomography (CT) -- 11.5.3 Bone Regeneration -- 11.6 Conclusion -- Acknowledgement -- References -- Chapter 12 MXene-Reinforced Polymer Composites as Flexible Wearable Sensors -- 12.1 Introduction -- 12.2 Performance Parameter for Flexible Pressure and Strain Sensor -- 12.2.1 Sensitivity -- 12.2.2 Stretchability -- 12.2.3 Hysteresis -- 12.2.4 Durability and Range -- 12.3 Design of MXenes/Polymer Composites as Flexible Pressure Sensors -- 12.4 Design of MXenes/Polymer Composites as Flexible Strain Sensors.
12.5 Design of MXenes/Biopolymer Composites as a Flexible Pressure Sensor.
Record Nr. UNINA-9911019765403321
Deshmukh Kalim  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MXenes : Fundamentals and Applications
MXenes : Fundamentals and Applications
Autore Singh Jay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (385 pages)
Disciplina 546.6
Altri autori (Persone) SinghKshitij Rb
Pratap SinghRavindra
AdetunjiCharles Oluwaseun
Soggetto topico MXenes
Two-dimensional materials
ISBN 9781119874003
1119874009
9781119874027
1119874025
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.
4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials.
7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations.
10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy.
14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction.
18.2 Progressive Approach Towards MXene Composites and Hybrids.
Record Nr. UNINA-9911019413103321
Singh Jay  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition Metal Carbides and Nitrides (MXenes) Handbook : Synthesis, Processing, Properties and Applications
Transition Metal Carbides and Nitrides (MXenes) Handbook : Synthesis, Processing, Properties and Applications
Autore Zhang Chuanfang
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (781 pages)
Disciplina 546.6
Altri autori (Persone) NaguibMichael
Soggetto topico MXenes
Transition metal compounds
ISBN 9781119869528
1119869528
9781119869504
1119869501
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I The Introduction -- Chapter 1 Introduction to the MXene Handbook -- References -- Part II Guidelines on MXenes Synthesis, Characterizations and Processing -- Chapter 2 Synthesis of MXene Precursors - Tips and Tricks -- 2.1 Structure and Composition of MXene Precursors -- 2.1.1 MAX Phases (Nitrides/Carbides/Alloys) and o-MAX Phases -- 2.1.2 i-MAX Phases -- 2.1.3 Mo2Ga2C and Zr/Hf-based Carbides -- 2.2 Synthesis of MXene Precursors - Including Good "Tips" and Guidelines -- 2.2.1 MAX Phases (Nitrides/Carbides/Alloys) and o-MAX Phases -- 2.2.1.1 Preparation for Synthesis -- 2.2.1.2 Synthesis, Techniques, and Conditions -- 2.2.1.3 Preparation of Powders for MXene Synthesis -- 2.2.2 i-MAX Phases -- 2.2.3 Mo2Ga2C and Zr/Hf-based Carbides -- References -- Chapter 3 Guidelines on Fluorine-based Synthesis of MXenes -- 3.1 Introduction -- 3.2 M-A vs. M-X Bonding Roles in Fluorine-based Synthesis -- 3.3 Interactions of Fluorine with A-group Elements within Precursor Phases -- 3.4 Effect of Precursor Structure on Fluorine-based MXene Synthesis -- 3.5 Diversity of Fluorine-based Etchants in MXene Synthesis -- 3.6 Safety Considerations and Protocols -- 3.7 Conclusion -- Acknowledgments -- References -- Chapter 4 Guidelines Low-temperature (LT) F-free Synthesis of MXenes -- 4.1 Introduction -- 4.2 Electrochemical Etching Method -- 4.2.1 Producing Carbide-derived Carbons by Electrochemical Etching -- 4.2.2 Electrochemical Etching of MAX into 2D MXenes -- 4.3 Chloride Ion Hydrothermal Etching Method -- 4.4 Halogen Etching Method -- 4.5 Alkali Etching Method -- 4.5.1 Alkali Etching Under Low Concentration -- 4.5.2 Alkali Etching Under High Concentration -- 4.5.3 Organic Alkali Etching -- 4.6 Other F-free Etching Methods -- References.
Chapter 5 Guidelines for the Molten Salt Etching of MXenes -- 5.1 Introduction -- 5.2 Reactive Molten Salt Synthesis of MXenes -- 5.2.1 One-Component Lewis Salt Molten Salt (LAMS) for Etching -- 5.2.2 Multicomponent Salts Containing Lewis Salts for Etching -- 5.2.3 Parameters Influencing Molten Salt Etching -- 5.3 Inert Molten Salt Synthesis of MXenes -- 5.4 Surface Terminations of MXenes Regulated by Molten Salt -- 5.5 Electrochemical Etching of MAX in Molten Salt -- 5.6 Interconversion of MXene and MAX in Molten Salt -- 5.6.1 From MAX to New MAX -- 5.6.2 From MAX to New Terminated MXene -- 5.6.3 From MXene to MAX -- 5.7 Limitations and Outlook -- References -- Chapter 6 Guidelines on the Intercalation of Ions and Molecules in MXenes -- 6.1 Introduction -- 6.2 The 002 Peak and the Interlayer Spacing in MXenes -- 6.3 Ion Exchange Properties and Its Dependence on MXene Synthesis Conditions -- 6.4 Why Do Cations Intercalate MXene Multilayers? -- 6.5 Anions and MXene -- 6.6 Types of Ion/Molecules that Intercalate Between MXene Layers -- 6.6.1 Inorganic Ions -- 6.6.2 Organic Molecules -- 6.7 Complexity of Ion Intercalation in MXenes -- 6.8 Cation Exchange Capacity -- 6.9 Hydration and Dehydration of MXene Multilayers -- 6.10 General Guidelines for Ion Intercalation in MXenes and Possible Pitfalls -- 6.11 Summary -- References -- Chapter 7 MXene Thermal and Chemical Stability and Degradation Mechanism -- 7.1 Introduction -- 7.2 Surface Chemistry and Chemical Modification of MXenes -- 7.3 MXene Chemical Stability and Degradation in Aqueous Solutions -- 7.3.1 MAX Phase Synthesis -- 7.3.2 Etchant -- 7.3.3 Storage Environment -- 7.3.4 Additives -- 7.3.5 Annealing -- 7.4 MXene Thermal Stability -- 7.4.1 Elimination of MXene Surface Functional Groups -- 7.4.2 Transformations of MXene Skeleton Structure -- 7.5 Conclusions and Outlook -- References.
Chapter 8 Guidelines on MXene Handling and Storage Strategies -- 8.1 Introduction -- 8.2 The Degradation of MXene -- 8.2.1 Understanding the Degradation Process of MXenes -- 8.2.1.1 The Degradation of Wet MXene -- 8.2.1.2 Oxidation of Dry MXene -- 8.2.2 Characterizing the Oxidation of MXenes -- 8.2.2.1 Monitoring the Oxidation Process -- 8.2.2.2 Characterizing Extent of MXene Oxidation -- 8.2.3 Parameters Influencing Oxidation Rate -- 8.2.3.1 MAX Phase Quality and synthetic methods of Synthesis -- 8.2.3.2 Aqueous Environment -- 8.2.3.3 Air or Oxygen -- 8.2.3.4 Temperature -- 8.2.3.5 UV Light -- 8.3 Preventing the Oxidation of MXene -- 8.3.1 Defect Control During MXene Synthesis -- 8.3.2 Storing MXene in Solvents -- 8.3.2.1 Isolation of Water -- 8.3.2.2 Isolation of Oxygen or Air -- 8.3.2.3 Antioxidants -- 8.3.2.4 Low Temperature -- 8.3.2.5 Surface Modification -- 8.3.3 Coating Protection -- 8.4 Summary and Outlook -- References -- Chapter 9 Beyond Single-M MXenes: Synthesis, Properties, and Applications -- 9.1 Introduction -- 9.1.1 Synthesis of MAX -- 9.2 Random (Disordered) Solid Solutions -- 9.2.1 Properties and Applications of Random Solid Solutions -- 9.2.2 High-Entropy MXenes -- 9.3 Ordered MXenes -- 9.3.1 Out-of-Plane Ordered o-MXenes -- 9.3.2 In-Plane Ordered i-MXenes -- 9.4 Outlook -- Acknowledgments -- References -- Chapter 10 Structural Confirmation and Morphological Investigation of MXenes -- 10.1 Summary and Outlook -- References -- Chapter 11 MXene Surface Terminations -- 11.1 Introduction -- 11.2 Termination Controlled Properties -- 11.3 Chemical Etching -- 11.4 Molten Salt Etching -- 11.5 Termination Site Preference -- 11.6 MXene Surface Termination Saturation -- 11.7 Thermal Stability of Terminations -- 11.8 Post Processing of Terminations -- 11.9 Summary -- References -- Chapter 12 Delamination and Surface Functionalization of MXenes.
12.1 Introduction -- 12.2 Effect of Preparation Routes on the Surface Terminations of MXenes -- 12.2.1 HF Etching -- 12.2.2 Fluoride-Containing Solution Etching -- 12.2.3 Fluoride-Free Etching -- 12.3 Intercalation and Delamination of Single and Few-Layer MXenes -- 12.3.1 Metal Cation and Inorganic Intercalants -- 12.3.2 Organic-Base Molecules -- 12.3.3 Ultrasonication and Physical Delamination -- 12.3.4 Dispersibility and Stability of Delaminated MXene Flakes -- 12.4 Other Methods for Delamination and Surface Engineering -- 12.4.1 Hydrothermal-Assisted Intercalation (HAI) -- 12.4.2 Microwave-Assisted Delamination -- 12.4.3 Freeze-and-Thaw (FAT)-Assisted Method -- 12.4.4 Low-Temperature Plasma Techniques -- 12.5 Summary and Outlooks -- References -- Chapter 13 Solution Processing of MXenes for Printing, Wet Coating, and 2D Film Formation -- 13.1 Introduction -- 13.2 Preparing Stable MXene Dispersions -- 13.3 Tuning the Rheological Properties of MXene Dispersions -- 13.4 Ink Formulation and Printing of MXenes -- 13.5 2D Printing of MXenes -- 13.6 Wet Coating of MXenes -- 13.7 Summary and Outlook -- References -- Chapter 14 Three-Dimensional (3D) Printing of MXenes -- 14.1 Introduction -- 14.2 MXene Inks for DIW -- 14.2.1 Rheological Properties of DIW Inks -- 14.2.2 Additive-Free MXene Inks -- 14.2.3 Multicomponent MXene Inks -- 14.3 3D Printing of MXene-based Devices -- 14.4 Conclusion -- Acknowledgments -- References -- Chapter 15 Assembling of MXenes from Liquid to Solid, Including Liquid Crystals, Fibers -- 15.1 Introduction -- 15.2 1D Macroscopic MXene Fibers -- 15.2.1 Neat MXene Fibers -- 15.2.2 MXene Composite Fibers -- 15.2.2.1 Coated MXene Composite Fibers -- 15.2.2.2 Spun MXene Composite Fibers -- 15.2.2.3 Biscrolled MXene Composite Fibers -- 15.3 2D Macroscopic MXene Films -- 15.3.1 Neat MXene Films -- 15.3.1.1 Lamellar Structure.
15.3.1.2 In-Plane Nanochannel Structure -- 15.3.1.3 Porous Structure -- 15.3.2 MXene-based Composite Films -- 15.3.2.1 MXene-Inorganics Composite Films -- 15.3.2.2 MXene-Organics Composite Films -- 15.4 3D MXene Assemblies, Including Hydrogels and Aerogels -- 15.4.1 3D MXene Assemblies with Crumpled Structures -- 15.4.2 Template-assisted 3D MXene Assemblies -- 15.4.3 MXene-Inorganics Hydrogels and Aerogels -- 15.4.3.1 Cation-Crosslinked Hydrogels -- 15.4.3.2 GO-assisted MXene Hydrogels and Aerogels -- 15.4.3.3 Other MXene-Inorganics Hybrid Assemblies -- 15.4.4 MXene-Organics Composite Hydrogels and Aerogels -- 15.4.4.1 Organic Molecule Crosslinked MXene Hydrogels -- 15.4.4.2 MXene-Polymer Composite Hydrogels -- 15.5 Summary -- Acknowledgments -- References -- Part III Guidelines on Obtaining MXenes Properties -- Chapter 16 Insights into the Properties of MXenes and MXene Analogs from Atomistic Simulation -- 16.1 Introduction -- 16.2 Computational Methods -- 16.3 Structures of MXenes and MXene Analogs -- 16.4 Predicted Structures and Thermodynamic Stabilities -- 16.4.1 Structure Prediction -- 16.4.2 Stability Prediction -- 16.5 Electronic Properties -- 16.6 Energy Storage Properties -- 16.6.1 Rechargeable Metal-Ion Batteries -- 16.6.2 Supercapacitors -- 16.6.3 Ion Mobility -- 16.7 Insights from Molecular Dynamics -- 16.7.1 Ab initio Molecular Dynamics and Approximate Quantum Chemical Simulations -- 16.7.2 Reactive and Classical Force Field Simulations -- 16.8 Summary and Future Opportunities -- Acknowledgments -- References -- Chapter 17 MXenes' Optical and Optoelectronic Properties and Related Applications -- 17.1 Introduction -- 17.2 Plasmonic Properties -- 17.3 Plasmonic Applications -- 17.4 Ultrafast Carrier Dynamics -- 17.5 Nonlinear Optical Properties -- 17.6 Nonlinear Optical Applications -- 17.7 Optoelectronic Properties.
17.8 Optoelectronic Applications.
Record Nr. UNINA-9910876871203321
Zhang Chuanfang  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui