top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Autore Sarkar Tapan (Tapan K.)
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (589 p.)
Disciplina 621.384/135
Altri autori (Persone) Salazar-PalmaMagdalena
MokoleEric L
BurintramartSantana
Collana Wiley series in microwave and optical engineering
Soggetto topico Antenna arrays - Mathematical models
MIMO systems - Mathematical models
Broadband communication systems - Mathematical models
ISBN 1-281-73253-2
9786611732530
0-470-28924-4
0-470-28923-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Multiantenna Systems and Broadband Processing; Contents; Preface; Acknowledgments; Chapter 1 What Is an Antenna and How Does It Work?; 1.0 Summary; 1.1 Historical Overview of Maxwell's Equations; 1.2 Review of Maxwell-Heaviside-Hertz Equations; 1.2.1 Faraday's Law; 1.2.2 Generalized Ampère's Law; 1.2.3 Generalized Gauss's Law of Electrostatics; 1.2.4 Generalized Gauss's Law of Magnetostatics; 1.2.5 Equation of Continuity; 1.3 Solution of Maxwell's Equations; 1.4 Radiation and Reception Properties of a Point Source Antenna in Frequency and in Time Domain
1.4.1 Radiation of Fields from Point Sources1.4.1.1 Far Field in Frequency Domain of a Point Radiator; 1.4.1.2 Far Field in Time Domain of a Point Radiator; 1.4.2 Reception Properties of a Point Receiver; 1.5 Radiation and Reception Properties of Finite-Sized Dipole-Like Structures in Frequency and in Time; 1.5.1 Radiation Fields from Wire-like Structures in the Frequency Domain; 1.5.2 Radiation Fields from Wire-like Structures in the Time Domain; 1.5.3 Induced Voltage on a Finite-Sized Receive Wire-like Structure Due to a Transient Incident Field; 1.6 Conclusion; References
Chapter 2 Fundamentals of Antenna Theory in the Frequency Domain2.0 Summary; 2.1 Field Produced by a Hertzian Dipole; 2.2 Concept of Near and Far Fields; 2.3 Field Radiated by a Small Circular Loop; 2.4 Field Produced by a Finite-Sized Dipole; 2.5 Radiation Field from a Linear Antenna; 2.6 Near- and Far-Field Properties of Antennas; 2.6.1 What Is Beamforming Using Antennas; 2.6.2 Use of Spatial Antenna Diversity; 2.7 The Mathematics and Physics of an Antenna Array; 2.8 Propagation Modeling in the Frequency Domain; 2.9 Conclusion; References
Chapter 3 Fundamentals of an Antenna in the Time Domain3.0 Summary; 3.1 Introduction; 3.2 UWB Input Pulse; 3.3 Travelling-Wave Antenna; 3.4 Reciprocity Relation Between Antennas; 3.5 Antenna Simulations; 3.6 Loaded Antennas; 3.6.1 Dipole; 3.6.2 Bicones; 3.6.3 TEM Horn; 3.6.4 Log-Periodic; 3.6.5 Spiral; 3.7 Conventional Wideband Antennas; 3.7.1 Volcano Smoke; 3.7.2 Diamond Dipole; 3.7.3 Monofilar Helix; 3.7.4 Conical Spiral; 3.7.5 Monoloop; 3.7.6 Quad-Ridged Circular Horn; 3.7.7 Bi-Blade with Century Bandwidth; 3.7.8 Cone-Blade; 3.7.9 Vivaldi; 3.7.10 Impulse Radiating Antenna (IRA)
3.7.11 Circular Disc Dipole3.7.12 Bow-Tie; 3.7.13 Planar Slot; 3.8 Experimental Verification of the Wideband Responses from Antennas; 3.9 Conclusion; References; Chapter 4 A Look at the Concept of Channel Capacity from a Maxwellian Viewpoint; 4.0 Summary; 4.1 Introduction; 4.2 History of Entropy and Its Evolution; 4.3 Different Formulations for the Channel Capacity; 4.4 Information Content of a Waveform; 4.5 Numerical Examples Illustrating the Relevance of the Maxwellian Physics in Characterizing the Channel Capacity
4.5.1 Matched Versus Unmatched Receiving Dipole Antenna with a Matched Transmitting Antenna Operating in Free Space
Record Nr. UNINA-9910144136803321
Sarkar Tapan (Tapan K.)  
Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Autore Sarkar Tapan (Tapan K.)
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (589 p.)
Disciplina 621.384/135
Altri autori (Persone) Salazar-PalmaMagdalena
MokoleEric L
BurintramartSantana
Collana Wiley series in microwave and optical engineering
Soggetto topico Antenna arrays - Mathematical models
MIMO systems - Mathematical models
Broadband communication systems - Mathematical models
ISBN 1-281-73253-2
9786611732530
0-470-28924-4
0-470-28923-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Multiantenna Systems and Broadband Processing; Contents; Preface; Acknowledgments; Chapter 1 What Is an Antenna and How Does It Work?; 1.0 Summary; 1.1 Historical Overview of Maxwell's Equations; 1.2 Review of Maxwell-Heaviside-Hertz Equations; 1.2.1 Faraday's Law; 1.2.2 Generalized Ampère's Law; 1.2.3 Generalized Gauss's Law of Electrostatics; 1.2.4 Generalized Gauss's Law of Magnetostatics; 1.2.5 Equation of Continuity; 1.3 Solution of Maxwell's Equations; 1.4 Radiation and Reception Properties of a Point Source Antenna in Frequency and in Time Domain
1.4.1 Radiation of Fields from Point Sources1.4.1.1 Far Field in Frequency Domain of a Point Radiator; 1.4.1.2 Far Field in Time Domain of a Point Radiator; 1.4.2 Reception Properties of a Point Receiver; 1.5 Radiation and Reception Properties of Finite-Sized Dipole-Like Structures in Frequency and in Time; 1.5.1 Radiation Fields from Wire-like Structures in the Frequency Domain; 1.5.2 Radiation Fields from Wire-like Structures in the Time Domain; 1.5.3 Induced Voltage on a Finite-Sized Receive Wire-like Structure Due to a Transient Incident Field; 1.6 Conclusion; References
Chapter 2 Fundamentals of Antenna Theory in the Frequency Domain2.0 Summary; 2.1 Field Produced by a Hertzian Dipole; 2.2 Concept of Near and Far Fields; 2.3 Field Radiated by a Small Circular Loop; 2.4 Field Produced by a Finite-Sized Dipole; 2.5 Radiation Field from a Linear Antenna; 2.6 Near- and Far-Field Properties of Antennas; 2.6.1 What Is Beamforming Using Antennas; 2.6.2 Use of Spatial Antenna Diversity; 2.7 The Mathematics and Physics of an Antenna Array; 2.8 Propagation Modeling in the Frequency Domain; 2.9 Conclusion; References
Chapter 3 Fundamentals of an Antenna in the Time Domain3.0 Summary; 3.1 Introduction; 3.2 UWB Input Pulse; 3.3 Travelling-Wave Antenna; 3.4 Reciprocity Relation Between Antennas; 3.5 Antenna Simulations; 3.6 Loaded Antennas; 3.6.1 Dipole; 3.6.2 Bicones; 3.6.3 TEM Horn; 3.6.4 Log-Periodic; 3.6.5 Spiral; 3.7 Conventional Wideband Antennas; 3.7.1 Volcano Smoke; 3.7.2 Diamond Dipole; 3.7.3 Monofilar Helix; 3.7.4 Conical Spiral; 3.7.5 Monoloop; 3.7.6 Quad-Ridged Circular Horn; 3.7.7 Bi-Blade with Century Bandwidth; 3.7.8 Cone-Blade; 3.7.9 Vivaldi; 3.7.10 Impulse Radiating Antenna (IRA)
3.7.11 Circular Disc Dipole3.7.12 Bow-Tie; 3.7.13 Planar Slot; 3.8 Experimental Verification of the Wideband Responses from Antennas; 3.9 Conclusion; References; Chapter 4 A Look at the Concept of Channel Capacity from a Maxwellian Viewpoint; 4.0 Summary; 4.1 Introduction; 4.2 History of Entropy and Its Evolution; 4.3 Different Formulations for the Channel Capacity; 4.4 Information Content of a Waveform; 4.5 Numerical Examples Illustrating the Relevance of the Maxwellian Physics in Characterizing the Channel Capacity
4.5.1 Matched Versus Unmatched Receiving Dipole Antenna with a Matched Transmitting Antenna Operating in Free Space
Record Nr. UNINA-9910813373003321
Sarkar Tapan (Tapan K.)  
Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless multi-antenna channels : modeling and simulation / / Serguei Primak, Valeri Kontorovich
Wireless multi-antenna channels : modeling and simulation / / Serguei Primak, Valeri Kontorovich
Autore Primak Serguei
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2012
Descrizione fisica 1 online resource (273 p.)
Disciplina 621.3845/6
Altri autori (Persone) KontorovichV. I︠A︡ (Valeriĭ I︠A︡kovlevich)
Collana Wireless communications and mobile computing
Soggetto topico Roaming (Telecommunication) - Mathematical models
MIMO systems - Mathematical models
Antenna radiation patterns - Mathematical models
Antenna arrays - Mathematical models
Adaptive antennas - Mathematical models
ISBN 1-119-96086-X
1-283-30681-6
9786613306814
1-119-95472-X
1-119-95471-1
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Series Editors xi -- 1 Introduction 1 -- 1.1 General remarks 1 -- 1.2 Signals, interference, and types of parallel channels 3 -- 2 Four-parametric model of a SISO channel 7 -- 2.1 Multipath propagation 7 -- 2.2 Random walk approach to modeling of scattering field 13 -- 2.2.1 Random walk in two dimensions as a model for scattering field 13 -- 2.2.2 Phase distribution and scattering strength 14 -- 2.2.3 Distribution of intensity 14 -- 2.2.4 Distribution of the random phase 17 -- 2.3 Gaussian case 18 -- 2.3.1 Four-parametric distribution family 18 -- 2.3.2 Distribution of the magnitude 20 -- 2.3.3 Distribution of the phase 27 -- 2.3.4 Moment generating function, moments and cumulants of four-parametric distribution 29 -- 2.3.5 Some aspects of multiple scattering propagation 29 -- 3 Models of MIMO channels 33 -- 3.1 General classification of MIMO channel models 33 -- 3.2 Physical models 33 -- 3.2.1 Deterministic models 34 -- 3.2.2 Geometry-based stochastic models 35 -- 3.3 Analytical models 36 -- 3.3.1 Channel matrix model 37 -- 3.4 Geometrical phenomenological models 47 -- 3.4.1 Scattering from rough surfaces 48 -- 3.5 On the role of trigonometric polynomials in analysis and simulation of MIMO channels 49 -- 3.5.1 Measures of dependency 50 -- 3.5.2 Non-negative trigonometric polynomials and their use in estimation of AoD and AoA distribution 51 -- 3.5.3 Approximation of marginal PDF using non-negative polynomials 51 -- 3.6 Canonical expansions of bivariate distributions and the structure MIMO channel covariance matrix 52 -- 3.6.1 Canonical variables and expansion 52 -- 3.6.2 General structure of the full covariance matrix 54 -- 3.6.3 Relationship to other models 54 -- 3.7 Bivariate von Mises distribution with correlated transmit and receive sides 56 -- 3.7.1 Single cluster scenario 56 -- 3.7.2 Multiple clusters scenario 58 -- 3.8 Bivariate uniform distributions 58 -- 3.8.1 Harmonic coupling 58 -- 3.8.2 Markov-type bivariate density 61 -- 3.9 Analytical expression for the diversity measure of an antenna array 62.
3.9.1 Relation of the shape of the spatial covariance function to trigonometric moments 62 -- 3.9.2 Approximation of the diversity measure for a large number of antennas 64 -- 3.9.3 Examples 66 -- 3.9.4 Leading term analysis of degrees of freedom 70 -- 3.10 Effect of AoA/AoD dependency on the SDoF 72 -- 3.11 Space-time covariance function 72 -- 3.11.1 Basic equation 72 -- 3.11.2 Approximations 73 -- 3.12 Examples: synthetic data and uniform linear array 75 -- 3.13 Approximation of a matrix by a Toeplitz matrix 77 -- 3.14 Asymptotic expansions of diversity measure 78 -- 3.15 Distributed scattering model 79 -- 4 Modeling of wideband multiple channels 81 -- 4.1 Standard models of channels 82 -- 4.1.1 COST 259/273 82 -- 4.1.2 3GPP SCM 83 -- 4.1.3 WINNER channel models 84 -- 4.2 MDPSS based wideband channel simulator 84 -- 4.2.1 Geometry of the problem 84 -- 4.2.2 Statistical description 85 -- 4.2.3 Multi-cluster environment 87 -- 4.2.4 Simulation of dynamically changing environment 88 -- 4.3 Measurement based simulator 89 -- 4.4 Examples 91 -- 4.4.1 Two cluster model 92 -- 4.4.2 Environment specified by joint AoA/AoD/ToA distribution 93 -- 4.4.3 Measurement based simulator 95 -- 4.5 Appendix A: simulation parameters 96 -- 5 Capacity of communication channels 99 -- 5.1 Introduction 99 -- 5.2 Ergodic capacity of MIMO channel 100 -- 5.2.1 Capacity of a constant (static) MIMO channel 100 -- 5.2.2 Alternative normalization 102 -- 5.2.3 Capacity of a static MIMO channel under different operation modes 103 -- 5.2.4 Ergodic capacity of a random channel 104 -- 5.2.5 Ergodic capacity of MIMO channels 106 -- 5.2.6 Asymptotic analysis of capacity and outage capacity 106 -- 5.3 Effects of MIMO models and their parameters on the predicted capacity of MIMO channels 109 -- 5.3.1 Channel estimation and effective SNR 110 -- 5.3.2 Achievable rates in Rayleigh channels with partial CSI 113 -- 5.3.3 Examples 116 -- 5.4 Time evolution of capacity 119 -- 5.4.1 Time evolution of capacity in SISO channels 119.
5.4.2 SISO channel capacity evolution 120 -- 5.5 Sparse MIMO channel model 122 -- 5.6 Statistical properties of capacity 124 -- 5.6.1 Some mathematical expressions 124 -- 5.7 Time-varying statistics 125 -- 5.7.1 Unordered eigenvalues 125 -- 5.7.2 Single cluster capacity LCR and AFD 126 -- 5.7.3 Approximation of multi-cluster capacity LCR and AFD 126 -- 5.7.4 Statistical simulation results 129 -- 6 Estimation and prediction of communication channels 131 -- 6.1 General remarks on estimation of time-varying channels 131 -- 6.2 Velocity estimation 131 -- 6.2.1 Velocity estimation based on the covariance function approximation 131 -- 6.2.2 Estimation based on reflection coefficients 132 -- 6.3 K-factor estimation 133 -- 6.3.1 Moment matching estimation 133 -- 6.3.2 I/Q based methods 134 -- 6.4 Estimation of four-parametric distributions 135 -- 6.5 Estimation of narrowband MIMO channels 138 -- 6.5.1 Superimposed pilot estimation scheme 138 -- 6.5.2 LS estimation 140 -- 6.5.3 Scaled least-square (SLS) estimation 142 -- 6.5.4 Minimum MSE 144 -- 6.5.5 Relaxed MMSE estimators 146 -- 6.6 Using frames for channel state estimation 148 -- 6.6.1 Properties of the spectrum of a mobile channel 149 -- 6.6.2 Frames based on DPSS 150 -- 6.6.3 Discrete prolate spheroidal sequences 150 -- 6.6.4 Numerical simulation 154 -- 7 Effects of prediction and estimation errors on performance of communication systems 157 -- 7.1 Kolmogorov / SzegŠ o-Krein formula 160 -- 7.2 Prediction error for different antennas and scattering characteristics 162 -- 7.2.1 SISO channel 162 -- 7.2.2 SIMO channel 165 -- 7.2.3 MISO channel 167 -- 7.2.4 MIMO channel 170 -- 7.3 Summary of infinite horizon prediction results 174 -- 7.4 Eigenstructure of two cluster correlation matrix 175 -- 7.5 Preliminary comments on finite horizon prediction 176 -- 7.6 SISO channel prediction 178 -- 7.6.1 Wiener filter 178 -- 7.6.2 Single pilot prediction in a two cluster environment 179 -- 7.6.3 Single cluster prediction with multiple past samples 181.
7.6.4 Two cluster prediction with multiple past samples 182 -- 7.6.5 Role of oversampling 187 -- 7.7 What is the narrowband signal for a rectangular array? 188 -- 7.8 Prediction using the UIU model 190 -- 7.8.1 Separable covariance matrix 191 -- 7.8.2 1 x 2 unseparable example 192 -- 7.8.3 Large number of antennas: no noise 193 -- 7.8.4 Large number of antennas: estimation in noise 194 -- 7.8.5 Effects of the number of antennas, scattering geometry, and observation time on the quality of prediction 195 -- 7.9 Numerical simulations 198 -- 7.9.1 SISO channel single cluster 198 -- 7.9.2 Two cluster prediction 198 -- 7.10 Wiener estimator 199 -- 7.11 Approximation of the Wiener filter 201 -- 7.11.1 Zero order approximation 202 -- 7.11.2 Perturbation solution 202 -- 7.12 Element-wise prediction of separable process 203 -- 7.13 Effect of prediction and estimation errors on capacity calculations 204 -- 7.14 Channel estimation and effective SNR 205 -- 7.14.1 System model 205 -- 7.14.2 Estimation error 205 -- 7.14.3 Effective SNR 207 -- 7.15 Achievable rates in Rayleigh channels with partial CSI 208 -- 7.15.1 No CSI at the transmitter 208 -- 7.15.2 Partial CSI at the transmitter 209 -- 7.15.3 Optimization of the frame length 211 -- 7.16 Examples 211 -- 7.16.1 P(0, 0) Estimation 211 -- 7.16.2 Effect of non-uniform scattering 213 -- 7.17 Conclusions 214 -- 7.18 Appendix A: SzegŠ o summation formula 215 -- 7.19 Appendix B: matrix inversion lemma 216 -- 8 Coding, modulation, and signaling over multiple channels 219 -- 8.1 Signal constellations and their characteristics 219 -- 8.2 Performance of OSTBC in generalized Gaussian channels and hardening effect 224 -- 8.2.1 Introduction 224 -- 8.2.2 Channel representation 225 -- 8.2.3 Probability of error 227 -- 8.2.4 Hardening effect 229 -- 8.3 Differential time-space modulation (DTSM) and an effective solution for the non-coherent MIMO channel 233 -- 8.3.1 Introduction to DTSM 233 -- 8.3.2 Performance of autocorrelation receiver of DSTM in generalized Gaussian channels 234.
8.3.3 Comments on MIMO channel model 235 -- 8.3.4 Differential space-time modulation 235 -- 8.3.5 Performance of DTSM 237 -- 8.3.6 Numerical results and discussions 243 -- 8.3.7 Some comments 243 -- Bibliography 245 -- Index 257.
Record Nr. UNINA-9910139570403321
Primak Serguei  
Hoboken, New Jersey : , : Wiley, , c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless multi-antenna channels : modeling and simulation / / Serguei Primak, Valeri Kontorovich
Wireless multi-antenna channels : modeling and simulation / / Serguei Primak, Valeri Kontorovich
Autore Primak Serguei
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2012
Descrizione fisica 1 online resource (273 p.)
Disciplina 621.3845/6
Altri autori (Persone) KontorovichV. I︠A︡ (Valeriĭ I︠A︡kovlevich)
Collana Wireless communications and mobile computing
Soggetto topico Roaming (Telecommunication) - Mathematical models
MIMO systems - Mathematical models
Antenna radiation patterns - Mathematical models
Antenna arrays - Mathematical models
Adaptive antennas - Mathematical models
ISBN 1-119-96086-X
1-283-30681-6
9786613306814
1-119-95472-X
1-119-95471-1
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Series Editors xi -- 1 Introduction 1 -- 1.1 General remarks 1 -- 1.2 Signals, interference, and types of parallel channels 3 -- 2 Four-parametric model of a SISO channel 7 -- 2.1 Multipath propagation 7 -- 2.2 Random walk approach to modeling of scattering field 13 -- 2.2.1 Random walk in two dimensions as a model for scattering field 13 -- 2.2.2 Phase distribution and scattering strength 14 -- 2.2.3 Distribution of intensity 14 -- 2.2.4 Distribution of the random phase 17 -- 2.3 Gaussian case 18 -- 2.3.1 Four-parametric distribution family 18 -- 2.3.2 Distribution of the magnitude 20 -- 2.3.3 Distribution of the phase 27 -- 2.3.4 Moment generating function, moments and cumulants of four-parametric distribution 29 -- 2.3.5 Some aspects of multiple scattering propagation 29 -- 3 Models of MIMO channels 33 -- 3.1 General classification of MIMO channel models 33 -- 3.2 Physical models 33 -- 3.2.1 Deterministic models 34 -- 3.2.2 Geometry-based stochastic models 35 -- 3.3 Analytical models 36 -- 3.3.1 Channel matrix model 37 -- 3.4 Geometrical phenomenological models 47 -- 3.4.1 Scattering from rough surfaces 48 -- 3.5 On the role of trigonometric polynomials in analysis and simulation of MIMO channels 49 -- 3.5.1 Measures of dependency 50 -- 3.5.2 Non-negative trigonometric polynomials and their use in estimation of AoD and AoA distribution 51 -- 3.5.3 Approximation of marginal PDF using non-negative polynomials 51 -- 3.6 Canonical expansions of bivariate distributions and the structure MIMO channel covariance matrix 52 -- 3.6.1 Canonical variables and expansion 52 -- 3.6.2 General structure of the full covariance matrix 54 -- 3.6.3 Relationship to other models 54 -- 3.7 Bivariate von Mises distribution with correlated transmit and receive sides 56 -- 3.7.1 Single cluster scenario 56 -- 3.7.2 Multiple clusters scenario 58 -- 3.8 Bivariate uniform distributions 58 -- 3.8.1 Harmonic coupling 58 -- 3.8.2 Markov-type bivariate density 61 -- 3.9 Analytical expression for the diversity measure of an antenna array 62.
3.9.1 Relation of the shape of the spatial covariance function to trigonometric moments 62 -- 3.9.2 Approximation of the diversity measure for a large number of antennas 64 -- 3.9.3 Examples 66 -- 3.9.4 Leading term analysis of degrees of freedom 70 -- 3.10 Effect of AoA/AoD dependency on the SDoF 72 -- 3.11 Space-time covariance function 72 -- 3.11.1 Basic equation 72 -- 3.11.2 Approximations 73 -- 3.12 Examples: synthetic data and uniform linear array 75 -- 3.13 Approximation of a matrix by a Toeplitz matrix 77 -- 3.14 Asymptotic expansions of diversity measure 78 -- 3.15 Distributed scattering model 79 -- 4 Modeling of wideband multiple channels 81 -- 4.1 Standard models of channels 82 -- 4.1.1 COST 259/273 82 -- 4.1.2 3GPP SCM 83 -- 4.1.3 WINNER channel models 84 -- 4.2 MDPSS based wideband channel simulator 84 -- 4.2.1 Geometry of the problem 84 -- 4.2.2 Statistical description 85 -- 4.2.3 Multi-cluster environment 87 -- 4.2.4 Simulation of dynamically changing environment 88 -- 4.3 Measurement based simulator 89 -- 4.4 Examples 91 -- 4.4.1 Two cluster model 92 -- 4.4.2 Environment specified by joint AoA/AoD/ToA distribution 93 -- 4.4.3 Measurement based simulator 95 -- 4.5 Appendix A: simulation parameters 96 -- 5 Capacity of communication channels 99 -- 5.1 Introduction 99 -- 5.2 Ergodic capacity of MIMO channel 100 -- 5.2.1 Capacity of a constant (static) MIMO channel 100 -- 5.2.2 Alternative normalization 102 -- 5.2.3 Capacity of a static MIMO channel under different operation modes 103 -- 5.2.4 Ergodic capacity of a random channel 104 -- 5.2.5 Ergodic capacity of MIMO channels 106 -- 5.2.6 Asymptotic analysis of capacity and outage capacity 106 -- 5.3 Effects of MIMO models and their parameters on the predicted capacity of MIMO channels 109 -- 5.3.1 Channel estimation and effective SNR 110 -- 5.3.2 Achievable rates in Rayleigh channels with partial CSI 113 -- 5.3.3 Examples 116 -- 5.4 Time evolution of capacity 119 -- 5.4.1 Time evolution of capacity in SISO channels 119.
5.4.2 SISO channel capacity evolution 120 -- 5.5 Sparse MIMO channel model 122 -- 5.6 Statistical properties of capacity 124 -- 5.6.1 Some mathematical expressions 124 -- 5.7 Time-varying statistics 125 -- 5.7.1 Unordered eigenvalues 125 -- 5.7.2 Single cluster capacity LCR and AFD 126 -- 5.7.3 Approximation of multi-cluster capacity LCR and AFD 126 -- 5.7.4 Statistical simulation results 129 -- 6 Estimation and prediction of communication channels 131 -- 6.1 General remarks on estimation of time-varying channels 131 -- 6.2 Velocity estimation 131 -- 6.2.1 Velocity estimation based on the covariance function approximation 131 -- 6.2.2 Estimation based on reflection coefficients 132 -- 6.3 K-factor estimation 133 -- 6.3.1 Moment matching estimation 133 -- 6.3.2 I/Q based methods 134 -- 6.4 Estimation of four-parametric distributions 135 -- 6.5 Estimation of narrowband MIMO channels 138 -- 6.5.1 Superimposed pilot estimation scheme 138 -- 6.5.2 LS estimation 140 -- 6.5.3 Scaled least-square (SLS) estimation 142 -- 6.5.4 Minimum MSE 144 -- 6.5.5 Relaxed MMSE estimators 146 -- 6.6 Using frames for channel state estimation 148 -- 6.6.1 Properties of the spectrum of a mobile channel 149 -- 6.6.2 Frames based on DPSS 150 -- 6.6.3 Discrete prolate spheroidal sequences 150 -- 6.6.4 Numerical simulation 154 -- 7 Effects of prediction and estimation errors on performance of communication systems 157 -- 7.1 Kolmogorov / SzegŠ o-Krein formula 160 -- 7.2 Prediction error for different antennas and scattering characteristics 162 -- 7.2.1 SISO channel 162 -- 7.2.2 SIMO channel 165 -- 7.2.3 MISO channel 167 -- 7.2.4 MIMO channel 170 -- 7.3 Summary of infinite horizon prediction results 174 -- 7.4 Eigenstructure of two cluster correlation matrix 175 -- 7.5 Preliminary comments on finite horizon prediction 176 -- 7.6 SISO channel prediction 178 -- 7.6.1 Wiener filter 178 -- 7.6.2 Single pilot prediction in a two cluster environment 179 -- 7.6.3 Single cluster prediction with multiple past samples 181.
7.6.4 Two cluster prediction with multiple past samples 182 -- 7.6.5 Role of oversampling 187 -- 7.7 What is the narrowband signal for a rectangular array? 188 -- 7.8 Prediction using the UIU model 190 -- 7.8.1 Separable covariance matrix 191 -- 7.8.2 1 x 2 unseparable example 192 -- 7.8.3 Large number of antennas: no noise 193 -- 7.8.4 Large number of antennas: estimation in noise 194 -- 7.8.5 Effects of the number of antennas, scattering geometry, and observation time on the quality of prediction 195 -- 7.9 Numerical simulations 198 -- 7.9.1 SISO channel single cluster 198 -- 7.9.2 Two cluster prediction 198 -- 7.10 Wiener estimator 199 -- 7.11 Approximation of the Wiener filter 201 -- 7.11.1 Zero order approximation 202 -- 7.11.2 Perturbation solution 202 -- 7.12 Element-wise prediction of separable process 203 -- 7.13 Effect of prediction and estimation errors on capacity calculations 204 -- 7.14 Channel estimation and effective SNR 205 -- 7.14.1 System model 205 -- 7.14.2 Estimation error 205 -- 7.14.3 Effective SNR 207 -- 7.15 Achievable rates in Rayleigh channels with partial CSI 208 -- 7.15.1 No CSI at the transmitter 208 -- 7.15.2 Partial CSI at the transmitter 209 -- 7.15.3 Optimization of the frame length 211 -- 7.16 Examples 211 -- 7.16.1 P(0, 0) Estimation 211 -- 7.16.2 Effect of non-uniform scattering 213 -- 7.17 Conclusions 214 -- 7.18 Appendix A: SzegŠ o summation formula 215 -- 7.19 Appendix B: matrix inversion lemma 216 -- 8 Coding, modulation, and signaling over multiple channels 219 -- 8.1 Signal constellations and their characteristics 219 -- 8.2 Performance of OSTBC in generalized Gaussian channels and hardening effect 224 -- 8.2.1 Introduction 224 -- 8.2.2 Channel representation 225 -- 8.2.3 Probability of error 227 -- 8.2.4 Hardening effect 229 -- 8.3 Differential time-space modulation (DTSM) and an effective solution for the non-coherent MIMO channel 233 -- 8.3.1 Introduction to DTSM 233 -- 8.3.2 Performance of autocorrelation receiver of DSTM in generalized Gaussian channels 234.
8.3.3 Comments on MIMO channel model 235 -- 8.3.4 Differential space-time modulation 235 -- 8.3.5 Performance of DTSM 237 -- 8.3.6 Numerical results and discussions 243 -- 8.3.7 Some comments 243 -- Bibliography 245 -- Index 257.
Record Nr. UNINA-9910814849203321
Primak Serguei  
Hoboken, New Jersey : , : Wiley, , c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui