top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNINA-9911024074903321
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
Edizione [1st ed.]
Pubbl/distr/stampa Berlin ; ; Boston : , : De Gruyter, , [2025]
Descrizione fisica 1 online resource (X, 202 p.)
Collana De Gruyter Proceedings in Mathematics
Soggetto topico MATHEMATICS / Optimization
Soggetto non controllato Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning
ISBN 3-11-137774-1
3-11-137677-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index
Record Nr. UNISA-996657772003316
Berlin ; ; Boston : , : De Gruyter, , [2025]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Shape optimization and spectral theory / / Antoine Henrot
Shape optimization and spectral theory / / Antoine Henrot
Autore Henrot Antoine
Pubbl/distr/stampa De Gruyter, 2017
Descrizione fisica 1 online resource
Soggetto topico MATHEMATICS / Optimization
ISBN 3-11-055088-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- 1 Introduction / Henrot, Antoine -- 2 Existence results / Bucur, Dorin -- 3 Regularity of optimal spectral domains / Lamboley, Jimmy / Pierre, Michel -- 4 The Robin problem / Bucur, Dorin / Freitas, Pedro / Kennedy, James -- 5 Spectral geometry of the Steklov problem / Girouard, Alexandre / Polterovich, Iosif -- 6 Triangles and Other Special Domains / Laugesen, Richard S. / Siudeja, Bartłomiej A. -- 7 Spectral inequalities in quantitative form / Brasco, Lorenzo / De Philippis, Guido -- 8 Universal Inequalities for the Eigenvalues of the Dirichlet Laplacian / Ashbaugh, Mark S. -- 9 Spectral optimization problems for Schrödinger operators / Buttazzo, Giuseppe / Velichkov, Bozhidar -- 10 Nodal and spectral minimal partitions - The state of the art in 2016 - / Bonnaillie-Noël, Virginie / Helffer, Bernard -- 11 Numerical results for extremal problem for eigenvalues of the Laplacian / Antunes, Pedro R. S. / Oudet, Edouard -- Bibliography -- Index
Record Nr. UNISA-996308833203316
Henrot Antoine  
De Gruyter, 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Shape optimization and spectral theory / / Antoine Henrot
Shape optimization and spectral theory / / Antoine Henrot
Autore Henrot Antoine
Pubbl/distr/stampa De Gruyter, 2017
Descrizione fisica 1 online resource
Disciplina 514.2400000000
Soggetto topico MATHEMATICS / Optimization
ISBN 9783110550887
3110550881
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- 1 Introduction / Henrot, Antoine -- 2 Existence results / Bucur, Dorin -- 3 Regularity of optimal spectral domains / Lamboley, Jimmy / Pierre, Michel -- 4 The Robin problem / Bucur, Dorin / Freitas, Pedro / Kennedy, James -- 5 Spectral geometry of the Steklov problem / Girouard, Alexandre / Polterovich, Iosif -- 6 Triangles and Other Special Domains / Laugesen, Richard S. / Siudeja, Bartłomiej A. -- 7 Spectral inequalities in quantitative form / Brasco, Lorenzo / De Philippis, Guido -- 8 Universal Inequalities for the Eigenvalues of the Dirichlet Laplacian / Ashbaugh, Mark S. -- 9 Spectral optimization problems for Schrödinger operators / Buttazzo, Giuseppe / Velichkov, Bozhidar -- 10 Nodal and spectral minimal partitions - The state of the art in 2016 - / Bonnaillie-Noël, Virginie / Helffer, Bernard -- 11 Numerical results for extremal problem for eigenvalues of the Laplacian / Antunes, Pedro R. S. / Oudet, Edouard -- Bibliography -- Index
Record Nr. UNINA-9910220024203321
Henrot Antoine  
De Gruyter, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui