Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
| Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2025] |
| Descrizione fisica | 1 online resource (X, 202 p.) |
| Collana | De Gruyter Proceedings in Mathematics |
| Soggetto topico | MATHEMATICS / Optimization |
| Soggetto non controllato | Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning |
| ISBN |
3-11-137774-1
3-11-137677-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index |
| Record Nr. | UNINA-9911024074903321 |
| Berlin ; ; Boston : , : De Gruyter, , [2025] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey
| Mathematical Optimization for Machine Learning : Proceedings of the MATH+ Thematic Einstein Semester 2023 / / ed. by Martin Weiser, Aswin Kannan, Sebastian Pokutta, Kartikey Sharma, Daniel Walter, Andrea Walther, Konstantin Fackeldey |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2025] |
| Descrizione fisica | 1 online resource (X, 202 p.) |
| Collana | De Gruyter Proceedings in Mathematics |
| Soggetto topico | MATHEMATICS / Optimization |
| Soggetto non controllato | Mathematical optimization, Machine learning, Nonlinear optimization, Discrete optimization, Physics informed learning |
| ISBN |
3-11-137774-1
3-11-137677-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Acknowledgment -- Contents -- A framework to solve inverse problems for parametric PDEs using adaptive finite elements and neural networks -- Generation of value function data for bilevel optimal control and application to hybrid electric vehicle -- Graph neural networks to predict strokes from blood flow simulations -- Capturing the macroscopic behavior of molecular dynamics with membership functions -- Adaptive gradient-enhanced Gaussian process surrogates for inverse problems -- Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems -- Constrained piecewise linear optimization by an active signature method -- Parallel trust-region approaches in neural network training -- Trustworthy optimization learning: a brief overview -- Compression-aware training of neural networks using Frank–Wolfe -- Approximation of generalized frequency response functions via vector fitting -- On the nonsmooth regularity condition LIKQ for different abs-normal representations -- Divergence of the ADAM algorithm with fixed-stepsize: a (very) simple example -- Index |
| Record Nr. | UNISA-996657772003316 |
| Berlin ; ; Boston : , : De Gruyter, , [2025] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Shape optimization and spectral theory / / Antoine Henrot
| Shape optimization and spectral theory / / Antoine Henrot |
| Autore | Henrot Antoine |
| Pubbl/distr/stampa | De Gruyter, 2017 |
| Descrizione fisica | 1 online resource |
| Soggetto topico | MATHEMATICS / Optimization |
| ISBN | 3-11-055088-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- 1 Introduction / Henrot, Antoine -- 2 Existence results / Bucur, Dorin -- 3 Regularity of optimal spectral domains / Lamboley, Jimmy / Pierre, Michel -- 4 The Robin problem / Bucur, Dorin / Freitas, Pedro / Kennedy, James -- 5 Spectral geometry of the Steklov problem / Girouard, Alexandre / Polterovich, Iosif -- 6 Triangles and Other Special Domains / Laugesen, Richard S. / Siudeja, Bartłomiej A. -- 7 Spectral inequalities in quantitative form / Brasco, Lorenzo / De Philippis, Guido -- 8 Universal Inequalities for the Eigenvalues of the Dirichlet Laplacian / Ashbaugh, Mark S. -- 9 Spectral optimization problems for Schrödinger operators / Buttazzo, Giuseppe / Velichkov, Bozhidar -- 10 Nodal and spectral minimal partitions - The state of the art in 2016 - / Bonnaillie-Noël, Virginie / Helffer, Bernard -- 11 Numerical results for extremal problem for eigenvalues of the Laplacian / Antunes, Pedro R. S. / Oudet, Edouard -- Bibliography -- Index |
| Record Nr. | UNISA-996308833203316 |
Henrot Antoine
|
||
| De Gruyter, 2017 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Shape optimization and spectral theory / / Antoine Henrot
| Shape optimization and spectral theory / / Antoine Henrot |
| Autore | Henrot Antoine |
| Pubbl/distr/stampa | De Gruyter, 2017 |
| Descrizione fisica | 1 online resource |
| Disciplina | 514.2400000000 |
| Soggetto topico | MATHEMATICS / Optimization |
| ISBN |
9783110550887
3110550881 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- 1 Introduction / Henrot, Antoine -- 2 Existence results / Bucur, Dorin -- 3 Regularity of optimal spectral domains / Lamboley, Jimmy / Pierre, Michel -- 4 The Robin problem / Bucur, Dorin / Freitas, Pedro / Kennedy, James -- 5 Spectral geometry of the Steklov problem / Girouard, Alexandre / Polterovich, Iosif -- 6 Triangles and Other Special Domains / Laugesen, Richard S. / Siudeja, Bartłomiej A. -- 7 Spectral inequalities in quantitative form / Brasco, Lorenzo / De Philippis, Guido -- 8 Universal Inequalities for the Eigenvalues of the Dirichlet Laplacian / Ashbaugh, Mark S. -- 9 Spectral optimization problems for Schrödinger operators / Buttazzo, Giuseppe / Velichkov, Bozhidar -- 10 Nodal and spectral minimal partitions - The state of the art in 2016 - / Bonnaillie-Noël, Virginie / Helffer, Bernard -- 11 Numerical results for extremal problem for eigenvalues of the Laplacian / Antunes, Pedro R. S. / Oudet, Edouard -- Bibliography -- Index |
| Record Nr. | UNINA-9910220024203321 |
Henrot Antoine
|
||
| De Gruyter, 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||