Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen
| Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen |
| Autore | Cao Kecai |
| Pubbl/distr/stampa | Boston ; ; Berlin : , : De Gruyter, , [2018] |
| Descrizione fisica | 1 online resource (140 pages) |
| Disciplina | 363.32/30151583 |
| Collana | Fractional calculus in applied sciences and engineering |
| Soggetto topico |
Pedestrian traffic flow - Mathematical models
Fractional calculus MATHEMATICS / Differential Equations MATHEMATICS / Mathematical Analysis MATHEMATICS / Calculus MATHEMATICS / Applied |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-11-047283-X
3-11-047398-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- Acronyms -- 1. Introduction -- Part I. Fractional modeling of large crowds of pedestrians -- 2. Microscopic model of fractional order for evacuation of crowds -- 3. Macroscopic model of fractional order for crowds of pedestrians -- 4. Mesoscopic model of fractional order for crowds of pedestrians -- Part II: Fractional control of large crowds of pedestrians -- 5. Cluster consensus for crowds of pedestrians at micro-scale -- 6. Feedback control of crowds of pedestrians at macro-scale -- 7. Intelligent evacuation systems for crowds of pedestrians -- Index |
| Record Nr. | UNINA-9910466684103321 |
Cao Kecai
|
||
| Boston ; ; Berlin : , : De Gruyter, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen
| Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen |
| Autore | Cao Kecai |
| Pubbl/distr/stampa | Boston ; ; Berlin : , : De Gruyter, , [2018] |
| Descrizione fisica | 1 online resource (140 pages) |
| Disciplina | 363.32/30151583 |
| Collana | Fractional calculus in applied sciences and engineering |
| Soggetto topico |
Pedestrian traffic flow - Mathematical models
Fractional calculus MATHEMATICS / Differential Equations MATHEMATICS / Mathematical Analysis MATHEMATICS / Calculus MATHEMATICS / Applied |
| ISBN |
3-11-047283-X
3-11-047398-4 |
| Classificazione | MAT003000MAT005000MAT007000MAT034000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- Acronyms -- 1. Introduction -- Part I. Fractional modeling of large crowds of pedestrians -- 2. Microscopic model of fractional order for evacuation of crowds -- 3. Macroscopic model of fractional order for crowds of pedestrians -- 4. Mesoscopic model of fractional order for crowds of pedestrians -- Part II: Fractional control of large crowds of pedestrians -- 5. Cluster consensus for crowds of pedestrians at micro-scale -- 6. Feedback control of crowds of pedestrians at macro-scale -- 7. Intelligent evacuation systems for crowds of pedestrians -- Index |
| Record Nr. | UNINA-9910796981303321 |
Cao Kecai
|
||
| Boston ; ; Berlin : , : De Gruyter, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen
| Fractional order crowd dynamics : cyber-human system modeling and control / / Kecai Cao, YangQuan Chen |
| Autore | Cao Kecai |
| Pubbl/distr/stampa | Boston ; ; Berlin : , : De Gruyter, , [2018] |
| Descrizione fisica | 1 online resource (140 pages) |
| Disciplina | 363.32/30151583 |
| Collana | Fractional calculus in applied sciences and engineering |
| Soggetto topico |
Pedestrian traffic flow - Mathematical models
Fractional calculus MATHEMATICS / Differential Equations MATHEMATICS / Mathematical Analysis MATHEMATICS / Calculus MATHEMATICS / Applied |
| ISBN |
3-11-047283-X
3-11-047398-4 |
| Classificazione | MAT003000MAT005000MAT007000MAT034000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- Acronyms -- 1. Introduction -- Part I. Fractional modeling of large crowds of pedestrians -- 2. Microscopic model of fractional order for evacuation of crowds -- 3. Macroscopic model of fractional order for crowds of pedestrians -- 4. Mesoscopic model of fractional order for crowds of pedestrians -- Part II: Fractional control of large crowds of pedestrians -- 5. Cluster consensus for crowds of pedestrians at micro-scale -- 6. Feedback control of crowds of pedestrians at macro-scale -- 7. Intelligent evacuation systems for crowds of pedestrians -- Index |
| Record Nr. | UNINA-9910807397903321 |
Cao Kecai
|
||
| Boston ; ; Berlin : , : De Gruyter, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology
| Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology |
| Autore | Sawano Yoshihiro |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020 |
| Descrizione fisica | 1 online resource |
| Disciplina | 515/.732 |
| Collana | Monographs and research notes in mathematics |
| Soggetto topico |
Banach spaces
Harmonic analysis Differential equations, Partial - Numerical solutions Differential equations, Elliptic - Numerical solutions Integral operators MATHEMATICS / General MATHEMATICS / Differential Equations MATHEMATICS / Functional Analysis |
| ISBN |
0-429-53202-4
0-429-08592-3 1-4987-6552-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Notation in this book -- 1. Banach function lattices -- 1.1 Lp spaces -- 1.1.1 Measure space -- 1.1.2 Integration theorems -- 1.1.3 Fubini theorem and Lebesgue spaces -- 1.1.4 Exercises -- 1.2 Morrey spaces -- 1.2.1 Morrey norms -- 1.2.2 Examples of functions in Morrey spaces -- 1.2.3 The role of the parameters -- 1.2.4 Inclusions in Morrey spaces -- 1.2.5 Weak Morrey spaces -- 1.2.6 Morrey spaces and ball Banach function spaces -- 1.2.7 Exercises -- 1.3 Local Morrey spaces, Bσ-spaces, Herz spaces and Herz-Morrey spaces -- 1.3.1 Local Morrey spaces -- 1.3.2 Herz spaces and Herz-Morrey spaces -- 1.3.3 Exercises -- 1.4 Distributions and Lorentz spaces -- 1.4.1 Distribution function -- 1.4.2 Lorentz spaces -- 1.4.3 Hardy operators and Hardy's inequality -- 1.4.4 Inequalities for monotone functions and their applications to Lorentz norms -- 1.4.5 Exercises -- 1.5 Young functions and Orlicz spaces -- 1.5.1 Young functions -- 1.5.2 Orlicz spaces -- 1.5.3 Orlicz-averages -- 1.5.4 Lebesgue spaces with a variable exponent -- 1.5.5 Exercises -- 1.6 Smoothness function spaces -- 1.6.1 Sobolev spaces -- 1.6.2 Hölder-Zygmund spaces -- 1.7 Notes -- 2. Fundamental facts in functional analysis -- 2.1 Normed spaces and Banach spaces -- 2.1.1 Hahn-Banach theorem and Banach-Alaoglu theorem -- 2.1.2 Refinement of the triangle inequality -- 2.1.3 Sum and intersection of Banach spaces -- 2.1.4 Exercises -- 2.2 Hilbert spaces -- 2.2.1 Komlos theorem -- 2.2.2 Cotlar's lemma -- 2.2.3 Exercises -- 2.3 Bochner integral -- 2.3.1 Measurable functions -- 2.3.2 Convergence theorems -- 2.3.3 Fubini's theorem for Bochner integral -- 2.3.4 Exercises -- 2.4 Notes -- 3. Polynomials and harmonic functions -- 3.1 Preliminary facts on polynomials -- 3.1.1 The space Pk (Rn).
3.1.2 Moment inequalities -- 3.1.3 Control of derivatives by integrals -- 3.1.4 Best approximation -- 3.1.5 Exercises -- 3.2 Spherical harmonic functions -- 3.2.1 The spaces Hk (Rn) and Hk(Rn) -- 3.2.2 Norm estimates for spherical harmonics -- 3.2.3 Laplacian and integration by parts formula -- 3.2.4 Exercises -- 3.3 Notes -- 4. Various operators in Lebesgue spaces -- 4.1 Maximal operators -- 4.1.1 Hardy-Littlewood maximal operator -- 4.1.2 Hardy-Littlewood maximal inequality -- 4.1.3 Local estimates for the Hardy-Littlewood maximal operator -- 4.1.4 Fefferman-Stein vector-valued maximal inequality -- 4.1.5 Orlicz-maximal operators -- 4.1.6 Composition of the maximal operators -- 4.1.7 Local boundednss of the Φ-maximal operators -- 4.1.8 Estimates for convolutions -- 4.1.9 Exercises -- 4.2 Sharp maximal operators -- 4.2.1 Sharp-maximal inequalities -- 4.2.2 Distributional maximal function and median -- 4.2.3 Generalized dyadic grid and the Lerner-Hyt onen decomposition -- 4.2.4 Exercises -- 4.3 Fractional maximal operators -- 4.3.1 Fractional maximal operators -- 4.3.2 Local estimates for the maximal operators and the fractional maximal operators -- 4.3.3 Sparse estimate for fractional maximal operators -- 4.3.4 Exercises -- 4.4 Fractional integral operators -- 4.4.1 Fractional integral operators on Lebesgue spaces -- 4.4.2 Local estimates for the fractional integral operators -- 4.4.3 Sparse estimate of the fractional integral operators -- 4.4.4 Fundamental solution to the elliptic differential operators -- 4.4.5 The Bessel potential operator (1 - Δ)- 2, s > -- 0 -- 4.4.6 Morrey's lemma -- 4.4.7 Exercises -- 4.5 Singular integral operators -- 4.5.1 Riesz transform -- 4.5.2 Calderón-Zygmund operators -- 4.5.3 Calderón-Zgymund decomposition -- 4.5.4 Weak-(1, 1) boundedness and strong-(p, p) boundedness -- 4.5.5 Truncation and pointwise convergence. 4.5.6 Examples of singular integral operators -- 4.5.7 Sparse estimate of singular integral operators -- 4.5.8 Local estimates for singular integral operators -- 4.5.9 Exercises -- 4.6 Notes -- 5. BMO spaces and Morrey-Campanato spaces -- 5.1 The space BMO(Rn) and commutators -- 5.1.1 The space BMO -- 5.1.2 John-Nirenberg inequality -- 5.1.3 Exercises -- 5.2 Commutators -- 5.2.1 Commutators generated by BMO and singular integral operators -- 5.2.2 Commutators generated by BMO and fractional integral operators -- 5.2.3 Exercises -- 5.3 Morrey-Campanato spaces -- 5.3.1 Morrey-Campanato spaces -- 5.3.2 Morrey-Campanato spaces and Hölder-Zygmund spaces -- 5.3.3 Exercises -- 5.4 Notes -- 6. General metric measure spaces -- 6.1 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.1 Covering lemmas on Euclidean spaces -- 6.1.2 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.3 Differentiation theorem -- 6.1.4 Universal estimates -- 6.1.5 Examples of metric measure spaces -- 6.1.6 Exercises -- 6.2 Maximal operators on metric measure spaces with general Radon measures -- 6.2.1 Weak-(1, 1) estimate and strong-(p, p) estimate -- 6.2.2 Vector-valued boundedness of the Hardy-Littlewood maximal operators -- 6.2.3 Examples of metric measure spaces which require modification -- 6.2.4 Exercises -- 6.3 Notes -- 7. Weighted Lebesgue spaces -- 7.1 One-weighted norm inequality -- 7.1.1 The class A1 -- 7.1.2 The class Ap -- 7.1.3 The class A∞ -- 7.1.4 The class Ap,q -- 7.1.5 Extrapolation -- 7.1.6 A2-theorem -- 7.1.7 Exercises -- 7.2 Two-weight norm inequality -- 7.2.1 Weighted estimates for the Hardy operator -- 7.2.2 Two-weight norm inequality for fractional maximal operators -- 7.2.3 Two-weight norm inequality for singular integral operators -- 7.2.4 Exercises -- 7.3 Notes -- 8. Approximations in Morrey spaces. 8.1 Various closed subspaces of Morrey spaces -- 8.1.1 Closed subspaces generated by linear lattices -- 8.1.2 Closed subspaces generated by the translation -- 8.1.3 Inclusions in closed subspaces of Morrey spaces -- 8.1.4 Exercises -- 8.2 Approximation in Morrey spaces -- 8.2.1 Characterization of Mp(Rn) -- 8.2.2 Approximations and closed subspaces -- 8.2.3 Examples of functions in closed subspaces -- 8.2.4 Exercises -- 8.3 Notes -- 9. Predual of Morrey spaces -- 9.1 Predual of Morrey spaces -- 9.1.1 Definition of block spaces and examples -- 9.1.2 Finite decomposition and a dense subspace -- 9.1.3 Duality-block spaces and Morrey spaces -- 9.1.4 Fatou property of block spaces -- 9.1.5 Köthe dual of Morrey spaces -- 9.1.6 Decomposition and averaging technique in Morrey spaces -- 9.1.7 Exercises -- 9.2 Choquet integral and predual spaces -- 9.2.1 Hausdorff capacity -- 9.2.2 Choquet integral -- 9.2.3 Predual spaces of Morrey spaces by way of the Choquet integral -- 9.2.4 Exercises -- 9.3 Notes -- 10. Linear and sublinear operators in Morrey spaces -- 10.1 Maximal operators in Morrey spaces -- 10.1.1 Maximal operator in Morrey spaces -- 10.1.2 Maximal operator in local Morrey spaces -- 10.1.3 Exercises -- 10.2 Sharp maximal operators in Morrey spaces -- 10.2.1 Sharp maximal inequalities for Morrey spaces -- 10.2.2 Sharp maximal inequalities for local Morrey spaces -- 10.2.3 Exercises -- 10.3 Fractional integral operators in Morrey spaces -- 10.3.1 Fractional integral operators in Morrey spaces -- 10.3.2 Fractional integral operators in local Morrey spaces -- 10.3.3 Exercises -- 10.4 Singular integral operators in Morrey spaces -- 10.4.1 Singular integral operators in Morrey spaces -- 10.4.2 Singular integral operators in local Morrey spaces -- 10.4.3 Exercises -- 10.5 Commutators in Morrey spaces -- 10.5.1 Commutators in Morrey spaces. 10.5.2 Commutators in local Morrey spaces -- 10.5.3 Exercises -- 10.6 Notes -- Bibliography -- Index. |
| Record Nr. | UNINA-9910987815103321 |
Sawano Yoshihiro
|
||
| Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||