top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Statics and Dynamics : An Introduction Based on the Finite Element Method / / by Andreas Öchsner
Computational Statics and Dynamics : An Introduction Based on the Finite Element Method / / by Andreas Öchsner
Autore Öchsner Andreas
Edizione [3rd ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (723 pages)
Disciplina 620.00151535
620.00151825
Soggetto topico Mathematics - Data processing
Mechanics, Applied
Solids
Condensed matter
Numerical analysis
Mechanics
Computational Mathematics and Numerical Analysis
Solid Mechanics
Condensed Matter Physics
Numerical Analysis
Classical Mechanics
Mètode dels elements finits
Mecànica
Simulació per ordinador
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09673-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to the Finite Element Method -- Rods and Trusses -- Euler-Bernoulli Beams and Frames -- Timoshenko Beams -- Plane Elements -- Classical Plate Elements -- Three-Dimensional Elements -- Principles of Linear Dynamics -- Integration Methods for Transient Problems -- Appendix A: Mathematics -- Appendix B: Mechanics -- Appendix C: Units and Conversion -- Appendix D: Summary of Stiffness Matrices.
Record Nr. UNINA-9910659478703321
Öchsner Andreas  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite Element Method / / Yongtao Lyu
Finite Element Method / / Yongtao Lyu
Autore Lyu Yongtao
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Descrizione fisica 1 online resource (210 pages)
Disciplina 620.00151535
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 9789811933639
9789811933622
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996485659803316
Lyu Yongtao  
Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite Element Method / / Yongtao Lyu
Finite Element Method / / Yongtao Lyu
Autore Lyu Yongtao
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Descrizione fisica 1 online resource (210 pages)
Disciplina 620.00151535
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 9789811933639
9789811933622
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910590065603321
Lyu Yongtao  
Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite elements II : Galerkin approximation, elliptic and mixed PDEs / / Alexandre Ern and Jean-Luc Guermond
Finite elements II : Galerkin approximation, elliptic and mixed PDEs / / Alexandre Ern and Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (491 pages)
Disciplina 515
Collana Texts in Applied Mathematics ;
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Anàlisi funcional
Mètodes de Galerkin
Soggetto genere / forma Llibres electrònics
ISBN 3-030-56923-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466551503316
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite elements II : Galerkin approximation, elliptic and mixed PDEs / / Alexandre Ern and Jean-Luc Guermond
Finite elements II : Galerkin approximation, elliptic and mixed PDEs / / Alexandre Ern and Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (491 pages)
Disciplina 515
Collana Texts in Applied Mathematics ;
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Anàlisi funcional
Mètodes de Galerkin
Soggetto genere / forma Llibres electrònics
ISBN 3-030-56923-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483944703321
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (417 pages)
Disciplina 515
Collana Texts in Applied Mathematics
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-57348-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Part XII First-order PDEs -- 56 Friedrichs' systems -- 56.1 Basic ideas -- 56.1.1 The fields mathcalK and mathcalAk -- 56.1.2 Integration by parts -- 56.1.3 The model problem -- 56.2 Examples -- 56.2.1 Advection-reaction equation -- 56.2.2 Darcy's equations -- 56.2.3 Maxwell's equations -- 56.3 Weak formulation and well-posedness -- 56.3.1 Minimal domain, maximal domain, and graph space -- 56.3.2 The boundary operators N and M -- 56.3.3 Well-posedness -- 56.3.4 Examples -- 57 Residual-based stabilization -- 57.1 Model problem -- 57.2 Least-squares (LS) approximation -- 57.2.1 Weak problem -- 57.2.2 Finite element setting -- 57.2.3 Error analysis -- 57.3 Galerkin/least-squares (GaLS) -- 57.3.1 Local mesh-dependent weights -- 57.3.2 Discrete problem and error analysis -- 57.3.3 Scaling -- 57.3.4 Examples -- 57.4 Boundary penalty for Friedrichs' systems -- 57.4.1 Model problem -- 57.4.2 Boundary penalty method -- 57.4.3 GaLS stabilization with boundary penalty -- 58 Fluctuation-based stabilization (I) -- 58.1 Discrete setting -- 58.2 Stability analysis -- 58.3 Continuous interior penalty -- 58.3.1 Design of the CIP stabilization -- 58.3.2 Error analysis -- 58.4 Examples -- 59 Fluctuation-based stabilization (II) -- 59.1 Two-scale decomposition -- 59.2 Local projection stabilization -- 59.3 Subgrid viscosity -- 59.4 Error analysis -- 59.5 Examples -- 60 Discontinuous Galerkin -- 60.1 Discrete setting -- 60.2 Centered fluxes -- 60.2.1 Local and global formulation -- 60.2.2 Error analysis -- 60.2.3 Examples -- 60.3 Tightened stability by jump penalty -- 60.3.1 Local and global formulation -- 60.3.2 Error analysis -- 60.3.3 Examples -- 61 Advection-diffusion -- 61.1 Model problem -- 61.2 Discrete setting -- 61.3 Stability and error analysis -- 61.3.1 Stability and well-posedness -- 61.3.2 Consistency/boundedness.
61.3.3 Error estimates -- 61.4 Divergence-free advection -- 62 Stokes equations: Residual-based stabilization -- 62.1 Model problem -- 62.2 Discrete setting for GaLS stabilization -- 62.3 Stability and well-posedness -- 62.4 Error analysis -- 63 Stokes equations: Other stabilizations -- 63.1 Continuous interior penalty -- 63.1.1 Discrete setting -- 63.1.2 Stability and well-posedness -- 63.1.3 Error analysis -- 63.2 Discontinuous Galerkin -- 63.2.1 Discrete setting -- 63.2.2 Stability and well-posedness -- 63.2.3 Error analysis -- Part XIII Parabolic PDEs -- 64 Bochner integration -- 64.1 Bochner integral -- 64.1.1 Strong measurability and Bochner integrability -- 64.1.2 Main properties -- 64.2 Weak time derivative -- 64.2.1 Strong and weak time derivatives -- 64.2.2 Functional spaces with weak time derivative -- 65 Weak formulation and well-posedness -- 65.1 Weak formulation -- 65.1.1 Heuristic argument for the heat equation -- 65.1.2 Abstract parabolic problem -- 65.1.3 Weak formulation -- 65.1.4 Example: the heat equation -- 65.1.5 Ultraweak formulation -- 65.2 Well-posedness -- 65.2.1 Uniqueness using a coercivity-like argument -- 65.2.2 Existence using a constructive argument -- 65.3 Maximum principle for the heat equation -- 66 Semi-discretization in space -- 66.1 Model problem -- 66.2 Principle and algebraic realization -- 66.3 Error analysis -- 66.3.1 Error equation -- 66.3.2 Basic error estimates -- 66.3.3 Application to the heat equation -- 66.3.4 Extension to time-varying diffusion -- 67 Implicit and explicit Euler schemes -- 67.1 Implicit Euler scheme -- 67.1.1 Time mesh -- 67.1.2 Principle and algebraic realization -- 67.1.3 Stability -- 67.1.4 Error analysis -- 67.1.5 Application to the heat equation -- 67.2 Explicit Euler scheme -- 67.2.1 Principle and algebraic realization -- 67.2.2 Stability -- 67.2.3 Error analysis.
68 BDF2 and Crank-Nicolson schemes -- 68.1 Discrete setting -- 68.2 BDF2 scheme -- 68.2.1 Principle and algebraic realization -- 68.2.2 Stability -- 68.2.3 Error analysis -- 68.3 Crank-Nicolson scheme -- 68.3.1 Principle and algebraic realization -- 68.3.2 Stability -- 68.3.3 Error analysis -- 69 Discontinuous Galerkin in time -- 69.1 Setting for the time discretization -- 69.2 Formulation of the method -- 69.2.1 Quadratures and interpolation -- 69.2.2 Discretization in time -- 69.2.3 Reformulation using a time reconstruction operator -- 69.2.4 Equivalence with Radau IIA IRK -- 69.3 Stability and error analysis -- 69.3.1 Stability -- 69.3.2 Error analysis -- 69.4 Algebraic realization -- 69.4.1 IRK implementation -- 69.4.2 General case -- 70 Continuous Petrov-Galerkin in time -- 70.1 Formulation of the method -- 70.1.1 Quadratures and interpolation -- 70.1.2 Discretization in time -- 70.1.3 Equivalence with Kuntzmann-Butcher IRK -- 70.1.4 Collocation schemes -- 70.2 Stability and error analysis -- 70.2.1 Stability -- 70.2.2 Error analysis -- 70.3 Algebraic realization -- 70.3.1 IRK implementation -- 70.3.2 General case -- 71 Analysis using inf-sup stability -- 71.1 Well-posedness -- 71.1.1 Functional setting -- 71.1.2 Boundedness and inf-sup stability -- 71.1.3 Another proof of Lions' theorem -- 71.1.4 Ultraweak formulation -- 71.2 Semi-discretization in space -- 71.2.1 Mesh-dependent inf-sup stability -- 71.2.2 Inf-sup stability in the X-norm -- 71.3 dG(k) scheme -- 71.4 cPG(k) scheme -- Part XIV Time-dependent Stokes equations -- 72 Weak formulations and well-posedness -- 72.1 Model problem -- 72.2 Constrained weak formulation -- 72.3 Mixed weak formulation with smooth data -- 72.4 Mixed weak formulation with rough data -- 73 Monolithic time discretization -- 73.1 Model problem -- 73.2 Space semi-discretization -- 73.2.1 Discrete formulation.
73.2.2 Error equations and approximation operators -- 73.2.3 Error analysis -- 73.3 Implicit Euler approximation -- 73.3.1 Discrete formulation -- 73.3.2 Algebraic realization and preconditioning -- 73.3.3 Error analysis -- 73.4 Higher-order time approximation -- 74 Projection methods -- 74.1 Model problem and Helmholtz decomposition -- 74.2 Pressure correction in standard form -- 74.2.1 Formulation of the method -- 74.2.2 Stability and convergence properties -- 74.3 Pressure correction in rotational form -- 74.3.1 Formulation of the method -- 74.3.2 Stability and convergence properties -- 74.4 Finite element approximation -- 75 Artificial compressibility -- 75.1 Stability under compressibility perturbation -- 75.2 First-order artificial compressibility -- 75.3 Higher-order artificial compressibility -- 75.4 Finite element implementation -- Part XV Time-dependent first-order linear PDEs -- 76 Well-posedness and space semi-discretization -- 76.1 Maximal monotone operators -- 76.2 Well-posedness -- 76.3 Time-dependent Friedrichs' systems -- 76.4 Space semi-discretization -- 76.4.1 Discrete setting -- 76.4.2 Discrete problem and well-posedness -- 76.4.3 Error analysis -- 77 Implicit time discretization -- 77.1 Model problem and space discretization -- 77.1.1 Model problem -- 77.1.2 Setting for the space discretization -- 77.2 Implicit Euler scheme -- 77.2.1 Time discrete setting and algebraic realization -- 77.2.2 Stability -- 77.3 Error analysis -- 77.3.1 Approximation in space -- 77.3.2 Error estimate in the L-norm -- 77.3.3 Error estimate in the graph norm -- 78 Explicit time discretization -- 78.1 Explicit Runge-Kutta (ERK) schemes -- 78.1.1 Butcher tableau -- 78.1.2 Examples -- 78.1.3 Order conditions -- 78.2 Explicit Euler scheme -- 78.3 Second-order two-stage ERK schemes -- 78.4 Third-order three-stage ERK schemes.
Part XVI Nonlinear hyperbolic PDEs -- 79 Scalar conservation equations -- 79.1 Weak and entropy solutions -- 79.1.1 The model problem -- 79.1.2 Short-time existence and loss of smoothness -- 79.1.3 Weak solutions -- 79.1.4 Existence and uniqueness -- 79.2 Riemann problem -- 79.2.1 One-dimensional Riemann problem -- 79.2.2 Convex or concave flux -- 79.2.3 General case -- 79.2.4 Riemann cone and averages -- 79.2.5 Multidimensional flux -- 80 Hyperbolic systems -- 80.1 Weak solutions and examples -- 80.1.1 First-order quasilinear hyperbolic systems -- 80.1.2 Hyperbolic systems in conservative form -- 80.1.3 Examples -- 80.2 Riemann problem -- 80.2.1 Expansion wave, contact discontinuity, and shock -- 80.2.2 Maximum speed and averages -- 80.2.3 Invariant sets -- 81 First-order approximation -- 81.1 Scalar conservation equations -- 81.1.1 The finite element space -- 81.1.2 The scheme -- 81.1.3 Maximum principle -- 81.1.4 Entropy inequalities -- 81.2 Hyperbolic systems -- 81.2.1 The finite element space -- 81.2.2 The scheme -- 81.2.3 Upper bounds on λmax -- 82 Higher-order approximation -- 82.1 Higher order in time -- 82.1.1 Key ideas -- 82.1.2 Examples -- 82.1.3 Butcher tableau versus (α-β) representation -- 82.2 Higher order in space for scalar equations -- 82.2.1 Heuristic motivation and preliminary result -- 82.2.2 Smoothness-based graph viscosity -- 82.2.3 Greedy graph viscosity -- 83 Higher-order approximation and limiting -- 83.1 Higher-order techniques -- 83.1.1 Diminishing the graph viscosity -- 83.1.2 Dispersion correction: consistent mass matrix -- 83.2 Limiting -- 83.2.1 Key principles -- 83.2.2 Conservative algebraic formulation -- 83.2.3 Boris-Book-Zalesak's limiting for scalar equations -- 83.2.4 Convex limiting for hyperbolic systems -- References -- Index.
Altri titoli varianti Finite elements 3
Finite elements three
Record Nr. UNISA-996466550903316
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (417 pages)
Disciplina 515
Collana Texts in Applied Mathematics
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-57348-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Part XII First-order PDEs -- 56 Friedrichs' systems -- 56.1 Basic ideas -- 56.1.1 The fields mathcalK and mathcalAk -- 56.1.2 Integration by parts -- 56.1.3 The model problem -- 56.2 Examples -- 56.2.1 Advection-reaction equation -- 56.2.2 Darcy's equations -- 56.2.3 Maxwell's equations -- 56.3 Weak formulation and well-posedness -- 56.3.1 Minimal domain, maximal domain, and graph space -- 56.3.2 The boundary operators N and M -- 56.3.3 Well-posedness -- 56.3.4 Examples -- 57 Residual-based stabilization -- 57.1 Model problem -- 57.2 Least-squares (LS) approximation -- 57.2.1 Weak problem -- 57.2.2 Finite element setting -- 57.2.3 Error analysis -- 57.3 Galerkin/least-squares (GaLS) -- 57.3.1 Local mesh-dependent weights -- 57.3.2 Discrete problem and error analysis -- 57.3.3 Scaling -- 57.3.4 Examples -- 57.4 Boundary penalty for Friedrichs' systems -- 57.4.1 Model problem -- 57.4.2 Boundary penalty method -- 57.4.3 GaLS stabilization with boundary penalty -- 58 Fluctuation-based stabilization (I) -- 58.1 Discrete setting -- 58.2 Stability analysis -- 58.3 Continuous interior penalty -- 58.3.1 Design of the CIP stabilization -- 58.3.2 Error analysis -- 58.4 Examples -- 59 Fluctuation-based stabilization (II) -- 59.1 Two-scale decomposition -- 59.2 Local projection stabilization -- 59.3 Subgrid viscosity -- 59.4 Error analysis -- 59.5 Examples -- 60 Discontinuous Galerkin -- 60.1 Discrete setting -- 60.2 Centered fluxes -- 60.2.1 Local and global formulation -- 60.2.2 Error analysis -- 60.2.3 Examples -- 60.3 Tightened stability by jump penalty -- 60.3.1 Local and global formulation -- 60.3.2 Error analysis -- 60.3.3 Examples -- 61 Advection-diffusion -- 61.1 Model problem -- 61.2 Discrete setting -- 61.3 Stability and error analysis -- 61.3.1 Stability and well-posedness -- 61.3.2 Consistency/boundedness.
61.3.3 Error estimates -- 61.4 Divergence-free advection -- 62 Stokes equations: Residual-based stabilization -- 62.1 Model problem -- 62.2 Discrete setting for GaLS stabilization -- 62.3 Stability and well-posedness -- 62.4 Error analysis -- 63 Stokes equations: Other stabilizations -- 63.1 Continuous interior penalty -- 63.1.1 Discrete setting -- 63.1.2 Stability and well-posedness -- 63.1.3 Error analysis -- 63.2 Discontinuous Galerkin -- 63.2.1 Discrete setting -- 63.2.2 Stability and well-posedness -- 63.2.3 Error analysis -- Part XIII Parabolic PDEs -- 64 Bochner integration -- 64.1 Bochner integral -- 64.1.1 Strong measurability and Bochner integrability -- 64.1.2 Main properties -- 64.2 Weak time derivative -- 64.2.1 Strong and weak time derivatives -- 64.2.2 Functional spaces with weak time derivative -- 65 Weak formulation and well-posedness -- 65.1 Weak formulation -- 65.1.1 Heuristic argument for the heat equation -- 65.1.2 Abstract parabolic problem -- 65.1.3 Weak formulation -- 65.1.4 Example: the heat equation -- 65.1.5 Ultraweak formulation -- 65.2 Well-posedness -- 65.2.1 Uniqueness using a coercivity-like argument -- 65.2.2 Existence using a constructive argument -- 65.3 Maximum principle for the heat equation -- 66 Semi-discretization in space -- 66.1 Model problem -- 66.2 Principle and algebraic realization -- 66.3 Error analysis -- 66.3.1 Error equation -- 66.3.2 Basic error estimates -- 66.3.3 Application to the heat equation -- 66.3.4 Extension to time-varying diffusion -- 67 Implicit and explicit Euler schemes -- 67.1 Implicit Euler scheme -- 67.1.1 Time mesh -- 67.1.2 Principle and algebraic realization -- 67.1.3 Stability -- 67.1.4 Error analysis -- 67.1.5 Application to the heat equation -- 67.2 Explicit Euler scheme -- 67.2.1 Principle and algebraic realization -- 67.2.2 Stability -- 67.2.3 Error analysis.
68 BDF2 and Crank-Nicolson schemes -- 68.1 Discrete setting -- 68.2 BDF2 scheme -- 68.2.1 Principle and algebraic realization -- 68.2.2 Stability -- 68.2.3 Error analysis -- 68.3 Crank-Nicolson scheme -- 68.3.1 Principle and algebraic realization -- 68.3.2 Stability -- 68.3.3 Error analysis -- 69 Discontinuous Galerkin in time -- 69.1 Setting for the time discretization -- 69.2 Formulation of the method -- 69.2.1 Quadratures and interpolation -- 69.2.2 Discretization in time -- 69.2.3 Reformulation using a time reconstruction operator -- 69.2.4 Equivalence with Radau IIA IRK -- 69.3 Stability and error analysis -- 69.3.1 Stability -- 69.3.2 Error analysis -- 69.4 Algebraic realization -- 69.4.1 IRK implementation -- 69.4.2 General case -- 70 Continuous Petrov-Galerkin in time -- 70.1 Formulation of the method -- 70.1.1 Quadratures and interpolation -- 70.1.2 Discretization in time -- 70.1.3 Equivalence with Kuntzmann-Butcher IRK -- 70.1.4 Collocation schemes -- 70.2 Stability and error analysis -- 70.2.1 Stability -- 70.2.2 Error analysis -- 70.3 Algebraic realization -- 70.3.1 IRK implementation -- 70.3.2 General case -- 71 Analysis using inf-sup stability -- 71.1 Well-posedness -- 71.1.1 Functional setting -- 71.1.2 Boundedness and inf-sup stability -- 71.1.3 Another proof of Lions' theorem -- 71.1.4 Ultraweak formulation -- 71.2 Semi-discretization in space -- 71.2.1 Mesh-dependent inf-sup stability -- 71.2.2 Inf-sup stability in the X-norm -- 71.3 dG(k) scheme -- 71.4 cPG(k) scheme -- Part XIV Time-dependent Stokes equations -- 72 Weak formulations and well-posedness -- 72.1 Model problem -- 72.2 Constrained weak formulation -- 72.3 Mixed weak formulation with smooth data -- 72.4 Mixed weak formulation with rough data -- 73 Monolithic time discretization -- 73.1 Model problem -- 73.2 Space semi-discretization -- 73.2.1 Discrete formulation.
73.2.2 Error equations and approximation operators -- 73.2.3 Error analysis -- 73.3 Implicit Euler approximation -- 73.3.1 Discrete formulation -- 73.3.2 Algebraic realization and preconditioning -- 73.3.3 Error analysis -- 73.4 Higher-order time approximation -- 74 Projection methods -- 74.1 Model problem and Helmholtz decomposition -- 74.2 Pressure correction in standard form -- 74.2.1 Formulation of the method -- 74.2.2 Stability and convergence properties -- 74.3 Pressure correction in rotational form -- 74.3.1 Formulation of the method -- 74.3.2 Stability and convergence properties -- 74.4 Finite element approximation -- 75 Artificial compressibility -- 75.1 Stability under compressibility perturbation -- 75.2 First-order artificial compressibility -- 75.3 Higher-order artificial compressibility -- 75.4 Finite element implementation -- Part XV Time-dependent first-order linear PDEs -- 76 Well-posedness and space semi-discretization -- 76.1 Maximal monotone operators -- 76.2 Well-posedness -- 76.3 Time-dependent Friedrichs' systems -- 76.4 Space semi-discretization -- 76.4.1 Discrete setting -- 76.4.2 Discrete problem and well-posedness -- 76.4.3 Error analysis -- 77 Implicit time discretization -- 77.1 Model problem and space discretization -- 77.1.1 Model problem -- 77.1.2 Setting for the space discretization -- 77.2 Implicit Euler scheme -- 77.2.1 Time discrete setting and algebraic realization -- 77.2.2 Stability -- 77.3 Error analysis -- 77.3.1 Approximation in space -- 77.3.2 Error estimate in the L-norm -- 77.3.3 Error estimate in the graph norm -- 78 Explicit time discretization -- 78.1 Explicit Runge-Kutta (ERK) schemes -- 78.1.1 Butcher tableau -- 78.1.2 Examples -- 78.1.3 Order conditions -- 78.2 Explicit Euler scheme -- 78.3 Second-order two-stage ERK schemes -- 78.4 Third-order three-stage ERK schemes.
Part XVI Nonlinear hyperbolic PDEs -- 79 Scalar conservation equations -- 79.1 Weak and entropy solutions -- 79.1.1 The model problem -- 79.1.2 Short-time existence and loss of smoothness -- 79.1.3 Weak solutions -- 79.1.4 Existence and uniqueness -- 79.2 Riemann problem -- 79.2.1 One-dimensional Riemann problem -- 79.2.2 Convex or concave flux -- 79.2.3 General case -- 79.2.4 Riemann cone and averages -- 79.2.5 Multidimensional flux -- 80 Hyperbolic systems -- 80.1 Weak solutions and examples -- 80.1.1 First-order quasilinear hyperbolic systems -- 80.1.2 Hyperbolic systems in conservative form -- 80.1.3 Examples -- 80.2 Riemann problem -- 80.2.1 Expansion wave, contact discontinuity, and shock -- 80.2.2 Maximum speed and averages -- 80.2.3 Invariant sets -- 81 First-order approximation -- 81.1 Scalar conservation equations -- 81.1.1 The finite element space -- 81.1.2 The scheme -- 81.1.3 Maximum principle -- 81.1.4 Entropy inequalities -- 81.2 Hyperbolic systems -- 81.2.1 The finite element space -- 81.2.2 The scheme -- 81.2.3 Upper bounds on λmax -- 82 Higher-order approximation -- 82.1 Higher order in time -- 82.1.1 Key ideas -- 82.1.2 Examples -- 82.1.3 Butcher tableau versus (α-β) representation -- 82.2 Higher order in space for scalar equations -- 82.2.1 Heuristic motivation and preliminary result -- 82.2.2 Smoothness-based graph viscosity -- 82.2.3 Greedy graph viscosity -- 83 Higher-order approximation and limiting -- 83.1 Higher-order techniques -- 83.1.1 Diminishing the graph viscosity -- 83.1.2 Dispersion correction: consistent mass matrix -- 83.2 Limiting -- 83.2.1 Key principles -- 83.2.2 Conservative algebraic formulation -- 83.2.3 Boris-Book-Zalesak's limiting for scalar equations -- 83.2.4 Convex limiting for hyperbolic systems -- References -- Index.
Altri titoli varianti Finite elements 3
Finite elements three
Record Nr. UNINA-9910484910903321
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Autore Deteix Jean
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (119 pages)
Disciplina 620.00151535
Collana Lecture Notes in Mathematics
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 2 Mixed Problems -- 2.1 Some Reminders About Mixed Problems -- 2.1.1 The Saddle Point Formulation -- 2.1.2 Existence of a Solution -- 2.1.3 Dual Problem -- 2.1.4 A More General Case: A Regular Perturbation -- 2.1.5 The Case -- 2.2 The Discrete Problem -- 2.2.1 Error Estimates -- 2.2.2 The Matricial Form of the Discrete Problem -- 2.2.3 The Discrete Dual Problem: The Schur Complement -- 2.3 Augmented Lagrangian -- 2.3.1 Augmented or Regularised Lagrangians -- 2.3.2 Discrete Augmented Lagrangian in Matrix Form -- 2.3.3 Augmented Lagrangian and the Condition Number of the Dual Problem -- 2.3.4 Augmented Lagrangian: An Iterated Penalty -- 3 Iterative Solvers for Mixed Problems -- 3.1 Classical Iterative Methods -- 3.1.1 Some General Points -- Linear Algebra and Optimisation -- Norms -- Krylov Subspace -- Preconditioning -- 3.1.2 The Preconditioned Conjugate Gradient Method -- 3.1.3 Constrained Problems: Projected Gradient and Variants -- Equality Constraints: The Projected Gradient Method -- Inequality Constraints -- Positivity Constraints -- Convex Constraints -- 3.1.4 Hierarchical Basis and Multigrid Preconditioning -- 3.1.5 Conjugate Residuals, Minres, Gmres and the Generalised Conjugate Residual Algorithm -- The Generalised Conjugate Residual Method -- The Left Preconditioning -- The Right Preconditioning -- The Gram-Schmidt Algorithm -- GCR for Mixed Problems -- 3.2 Preconditioners for the Mixed Problem -- 3.2.1 Factorisation of the System -- Solving Using the Factorisation -- 3.2.2 Approximate Solvers for the Schur Complement and the Uzawa Algorithm -- The Uzawa Algorithm -- 3.2.3 The General Preconditioned Algorithm -- 3.2.4 Augmented Lagrangian as a Perturbed Problem -- 4 Numerical Results: Cases Where Q= Q -- 4.1 Mixed Laplacian Problem -- 4.1.1 Formulation of the Problem.
4.1.2 Discrete Problem and Classic Numerical Methods -- The Augmented Lagrangian Formulation -- 4.1.3 A Numerical Example -- 4.2 Application to Incompressible Elasticity -- 4.2.1 Nearly Incompressible Linear Elasticity -- 4.2.2 Neo-Hookean and Mooney-Rivlin Materials -- Mixed Formulation for Mooney-Rivlin Materials -- 4.2.3 Numerical Results for the Linear Elasticity Problem -- 4.2.4 The Mixed-GMP-GCR Method -- Approximate Solver in u -- 4.2.5 The Test Case -- Number of Iterations and Mesh Size -- Comparison of the Preconditioners of Sect.3.2 -- Effect of the Solver in u -- 4.2.6 Large Deformation Problems -- Neo-Hookean Material -- Mooney-Rivlin Material -- 4.3 Navier-Stokes Equations -- 4.3.1 A Direct Iteration: Regularising the Problem -- 4.3.2 A Toy Problem -- 5 Contact Problems: A Case Where Q≠Q -- 5.1 Imposing Dirichlet's Condition Through a Multiplier -- 5.1.1 and Its Dual -- 5.1.2 A Steklov-Poincaré operator -- Using This as a Solver -- 5.1.3 Discrete Problems -- The Matrix Form and the Discrete Schur Complement -- 5.1.4 A Discrete Steklov-Poincaré Operator -- 5.1.5 Computational Issues, Approximate Scalar Product -- Simplified Forms of the ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper S script upper P Subscript h) /StPNE pdfmark [/StBMC pdfmarkSPhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark Operator and Preconditioning -- 5.1.6 The Formulation -- The Choice of h -- 5.1.7 A Toy Model for the Contact Problem -- The Discrete Formulation -- The Active Set Strategy -- 5.2 Sliding Contact -- 5.2.1 The Discrete Contact Problem -- Contact Status -- 5.2.2 The Algorithm for Sliding Contact -- A Newton Method -- The Active Set Strategy -- 5.2.3 A Numerical Example of Contact Problem -- 6 Solving Problems with More Than One Constraint -- 6.1 A Model Problem -- 6.2 Interlaced Method -- 6.3 Preconditioners Based on Factorisation.
6.3.1 The Sequential Method -- 6.4 An Alternating Procedure -- 7 Conclusion -- Bibliography -- Index.
Record Nr. UNINA-9910595041303321
Deteix Jean  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Numerical methods for mixed finite element problems : applications to incompressible materials and contact problems / / Jean Deteix, Thierno Diop and Michel Fortin
Autore Deteix Jean
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (119 pages)
Disciplina 620.00151535
Collana Lecture Notes in Mathematics
Soggetto topico Finite element method
Mètode dels elements finits
Soggetto genere / forma Llibres electrònics
ISBN 3-031-12616-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 2 Mixed Problems -- 2.1 Some Reminders About Mixed Problems -- 2.1.1 The Saddle Point Formulation -- 2.1.2 Existence of a Solution -- 2.1.3 Dual Problem -- 2.1.4 A More General Case: A Regular Perturbation -- 2.1.5 The Case -- 2.2 The Discrete Problem -- 2.2.1 Error Estimates -- 2.2.2 The Matricial Form of the Discrete Problem -- 2.2.3 The Discrete Dual Problem: The Schur Complement -- 2.3 Augmented Lagrangian -- 2.3.1 Augmented or Regularised Lagrangians -- 2.3.2 Discrete Augmented Lagrangian in Matrix Form -- 2.3.3 Augmented Lagrangian and the Condition Number of the Dual Problem -- 2.3.4 Augmented Lagrangian: An Iterated Penalty -- 3 Iterative Solvers for Mixed Problems -- 3.1 Classical Iterative Methods -- 3.1.1 Some General Points -- Linear Algebra and Optimisation -- Norms -- Krylov Subspace -- Preconditioning -- 3.1.2 The Preconditioned Conjugate Gradient Method -- 3.1.3 Constrained Problems: Projected Gradient and Variants -- Equality Constraints: The Projected Gradient Method -- Inequality Constraints -- Positivity Constraints -- Convex Constraints -- 3.1.4 Hierarchical Basis and Multigrid Preconditioning -- 3.1.5 Conjugate Residuals, Minres, Gmres and the Generalised Conjugate Residual Algorithm -- The Generalised Conjugate Residual Method -- The Left Preconditioning -- The Right Preconditioning -- The Gram-Schmidt Algorithm -- GCR for Mixed Problems -- 3.2 Preconditioners for the Mixed Problem -- 3.2.1 Factorisation of the System -- Solving Using the Factorisation -- 3.2.2 Approximate Solvers for the Schur Complement and the Uzawa Algorithm -- The Uzawa Algorithm -- 3.2.3 The General Preconditioned Algorithm -- 3.2.4 Augmented Lagrangian as a Perturbed Problem -- 4 Numerical Results: Cases Where Q= Q -- 4.1 Mixed Laplacian Problem -- 4.1.1 Formulation of the Problem.
4.1.2 Discrete Problem and Classic Numerical Methods -- The Augmented Lagrangian Formulation -- 4.1.3 A Numerical Example -- 4.2 Application to Incompressible Elasticity -- 4.2.1 Nearly Incompressible Linear Elasticity -- 4.2.2 Neo-Hookean and Mooney-Rivlin Materials -- Mixed Formulation for Mooney-Rivlin Materials -- 4.2.3 Numerical Results for the Linear Elasticity Problem -- 4.2.4 The Mixed-GMP-GCR Method -- Approximate Solver in u -- 4.2.5 The Test Case -- Number of Iterations and Mesh Size -- Comparison of the Preconditioners of Sect.3.2 -- Effect of the Solver in u -- 4.2.6 Large Deformation Problems -- Neo-Hookean Material -- Mooney-Rivlin Material -- 4.3 Navier-Stokes Equations -- 4.3.1 A Direct Iteration: Regularising the Problem -- 4.3.2 A Toy Problem -- 5 Contact Problems: A Case Where Q≠Q -- 5.1 Imposing Dirichlet's Condition Through a Multiplier -- 5.1.1 and Its Dual -- 5.1.2 A Steklov-Poincaré operator -- Using This as a Solver -- 5.1.3 Discrete Problems -- The Matrix Form and the Discrete Schur Complement -- 5.1.4 A Discrete Steklov-Poincaré Operator -- 5.1.5 Computational Issues, Approximate Scalar Product -- Simplified Forms of the ps: [/EMC pdfmark [/Subtype /Span /ActualText (script upper S script upper P Subscript h) /StPNE pdfmark [/StBMC pdfmarkSPhps: [/EMC pdfmark [/StPop pdfmark [/StBMC pdfmark Operator and Preconditioning -- 5.1.6 The Formulation -- The Choice of h -- 5.1.7 A Toy Model for the Contact Problem -- The Discrete Formulation -- The Active Set Strategy -- 5.2 Sliding Contact -- 5.2.1 The Discrete Contact Problem -- Contact Status -- 5.2.2 The Algorithm for Sliding Contact -- A Newton Method -- The Active Set Strategy -- 5.2.3 A Numerical Example of Contact Problem -- 6 Solving Problems with More Than One Constraint -- 6.1 A Model Problem -- 6.2 Interlaced Method -- 6.3 Preconditioners Based on Factorisation.
6.3.1 The Sequential Method -- 6.4 An Alternating Procedure -- 7 Conclusion -- Bibliography -- Index.
Record Nr. UNISA-996490271503316
Deteix Jean  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...