top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson
Autore Parker Jeffrey S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (437 p.)
Disciplina 629.4/11
Collana JPL Deep-Space Communications and Navigation Series
Soggetto topico Lunar probes - Trajectories
Space flight to the moon - Cost control
ISBN 1-118-85531-0
1-118-85506-X
1-118-85497-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; CONTENTS; Foreword; Preface; Acknowledgments; Authors; 1 Introduction and Executive Summary; 1.1 Purpose; 1.2 Organization; 1.3 Executive Summary; 1.3.1 Direct, Conventional Transfers; 1.3.2 Low-Energy Transfers; 1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits; 1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits; 1.3.5 Summary: Low-Energy Transfers to the Lunar Surface; 1.4 Background; 1.5 The Lunar Transfer Problem; 1.6 Historical Missions; 1.6.1 Missions Implementing Direct Lunar Transfers
1.6.2 Low-Energy Missions to the Sun-Earth Lagrange Points1.6.3 Missions Implementing Low-Energy Lunar Transfers; 1.7 Low-Energy Lunar Transfers; 2 Methodology; 2.1 Methodology Introduction; 2.2 Physical Data; 2.3 Time Systems; 2.3.1 Dynamical Time, ET; 2.3.2 International Atomic Time, TAI; 2.3.3 Universal Time, UT; 2.3.4 Coordinated Universal Time, UTC; 2.3.5 Lunar Time; 2.3.6 Local True Solar Time, LTST; 2.3.7 Orbit Local Solar Time, OLST; 2.4 Coordinate Frames; 2.4.1 EME2000; 2.4.2 EMO2000; 2.4.3 Principal Axis Frame; 2.4.4 IAU Frames; 2.4.5 Synodic Frames; 2.5 Models; 2.5.1 CRTBP
2.5.2 Patched Three-Body Model2.5.3 JPL Ephemeris; 2.6 Low-Energy Mission Design; 2.6.1 Dynamical Systems Theory; 2.6.2 Solutions to the CRTBP; 2.6.3 Poincaré Maps; 2.6.4 The State Transition and Monodromy Matrices; 2.6.5 Differential Correction; 2.6.6 Constructing Periodic Orbits; 2.6.7 The Continuation Method; 2.6.8 Orbit Stability; 2.6.9 Examples of Practical Three-Body Orbits; 2.6.10 Invariant Manifolds; 2.6.11 Orbit Transfers; 2.6.12 Building Complex Orbit Chains; 2.6.13 Discussion; 2.7 Tools; 2.7.1 Numerical Integrators; 2.7.2 Optimizers; 2.7.3 Software
3 Transfers to Lunar Libration Orbits3.1 Executive Summary; 3.2 Introduction; 3.3 Direct Transfers Between Earth and Lunar Libration Orbits; 3.3.1 Methodology; 3.3.2 The Perigee-Point Scenario; 3.3.3 The Open-Point Scenario; 3.3.4 Surveying Direct Lunar Halo Orbit Transfers; 3.3.5 Discussion of Results; 3.3.6 Reducing the ΔV Cost; 3.3.7 Conclusions; 3.4 Low-Energy Transfers Between Earth and Lunar Libration Orbits; 3.4.1 Modeling a Low-Energy Transfer using Dynamical Systems Theory; 3.4.2 Energy Analysis of a Low-Energy Transfer
3.4.3 Constructing a Low-Energy Transfer in the Patched Three-Body Model3.4.4 Constructing a Low-Energy Transfer in the Ephemeris Model of the Solar System; 3.4.5 Families of Low-Energy Transfers; 3.4.6 Monthly Variations in Low-Energy Transfers; 3.4.7 Transfers to Other Three-Body Orbits; 3.5 Three-Body Orbit Transfers; 3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit; 4 Transfers to Low Lunar Orbits; 4.1 Executive Summary; 4.2 Introduction; 4.3 Direct Transfers Between Earth and Low Lunar Orbit; 4.4 Low-Energy Transfers Between Earth and Low Lunar Orbit; 4.4.1 Methodology
4.4.2 Example Survey
Record Nr. UNINA-9910132336603321
Parker Jeffrey S.  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson
Low-energy lunar trajectory design / / Jeffrey S. Parker and Rodney L. Anderson
Autore Parker Jeffrey S.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2014
Descrizione fisica 1 online resource (437 p.)
Disciplina 629.4/11
Collana JPL Deep-Space Communications and Navigation Series
Soggetto topico Lunar probes - Trajectories
Space flight to the moon - Cost control
ISBN 1-118-85531-0
1-118-85506-X
1-118-85497-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; CONTENTS; Foreword; Preface; Acknowledgments; Authors; 1 Introduction and Executive Summary; 1.1 Purpose; 1.2 Organization; 1.3 Executive Summary; 1.3.1 Direct, Conventional Transfers; 1.3.2 Low-Energy Transfers; 1.3.3 Summary: Low-Energy Transfers to Lunar Libration Orbits; 1.3.4 Summary: Low-Energy Transfers to Low Lunar Orbits; 1.3.5 Summary: Low-Energy Transfers to the Lunar Surface; 1.4 Background; 1.5 The Lunar Transfer Problem; 1.6 Historical Missions; 1.6.1 Missions Implementing Direct Lunar Transfers
1.6.2 Low-Energy Missions to the Sun-Earth Lagrange Points1.6.3 Missions Implementing Low-Energy Lunar Transfers; 1.7 Low-Energy Lunar Transfers; 2 Methodology; 2.1 Methodology Introduction; 2.2 Physical Data; 2.3 Time Systems; 2.3.1 Dynamical Time, ET; 2.3.2 International Atomic Time, TAI; 2.3.3 Universal Time, UT; 2.3.4 Coordinated Universal Time, UTC; 2.3.5 Lunar Time; 2.3.6 Local True Solar Time, LTST; 2.3.7 Orbit Local Solar Time, OLST; 2.4 Coordinate Frames; 2.4.1 EME2000; 2.4.2 EMO2000; 2.4.3 Principal Axis Frame; 2.4.4 IAU Frames; 2.4.5 Synodic Frames; 2.5 Models; 2.5.1 CRTBP
2.5.2 Patched Three-Body Model2.5.3 JPL Ephemeris; 2.6 Low-Energy Mission Design; 2.6.1 Dynamical Systems Theory; 2.6.2 Solutions to the CRTBP; 2.6.3 Poincaré Maps; 2.6.4 The State Transition and Monodromy Matrices; 2.6.5 Differential Correction; 2.6.6 Constructing Periodic Orbits; 2.6.7 The Continuation Method; 2.6.8 Orbit Stability; 2.6.9 Examples of Practical Three-Body Orbits; 2.6.10 Invariant Manifolds; 2.6.11 Orbit Transfers; 2.6.12 Building Complex Orbit Chains; 2.6.13 Discussion; 2.7 Tools; 2.7.1 Numerical Integrators; 2.7.2 Optimizers; 2.7.3 Software
3 Transfers to Lunar Libration Orbits3.1 Executive Summary; 3.2 Introduction; 3.3 Direct Transfers Between Earth and Lunar Libration Orbits; 3.3.1 Methodology; 3.3.2 The Perigee-Point Scenario; 3.3.3 The Open-Point Scenario; 3.3.4 Surveying Direct Lunar Halo Orbit Transfers; 3.3.5 Discussion of Results; 3.3.6 Reducing the ΔV Cost; 3.3.7 Conclusions; 3.4 Low-Energy Transfers Between Earth and Lunar Libration Orbits; 3.4.1 Modeling a Low-Energy Transfer using Dynamical Systems Theory; 3.4.2 Energy Analysis of a Low-Energy Transfer
3.4.3 Constructing a Low-Energy Transfer in the Patched Three-Body Model3.4.4 Constructing a Low-Energy Transfer in the Ephemeris Model of the Solar System; 3.4.5 Families of Low-Energy Transfers; 3.4.6 Monthly Variations in Low-Energy Transfers; 3.4.7 Transfers to Other Three-Body Orbits; 3.5 Three-Body Orbit Transfers; 3.5.1 Transfers from an LL2 Halo Orbit to a Low Lunar Orbit; 4 Transfers to Low Lunar Orbits; 4.1 Executive Summary; 4.2 Introduction; 4.3 Direct Transfers Between Earth and Low Lunar Orbit; 4.4 Low-Energy Transfers Between Earth and Low Lunar Orbit; 4.4.1 Methodology
4.4.2 Example Survey
Record Nr. UNINA-9910808679703321
Parker Jeffrey S.  
Hoboken, New Jersey : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui