top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (80 pages)
Disciplina 621.312424
Soggetto topico Storage batteries
Lithium ion batteries
ISBN 1-5044-7712-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910492126803321
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (80 pages)
Disciplina 621.312424
Soggetto topico Storage batteries
Lithium ion batteries
ISBN 1-5044-7712-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574883703316
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource (143 pages)
Disciplina 621.312424
Soggetto topico Lithium ion batteries
Lithium cells
ISBN 1-5044-8412-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910522580603321
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource (143 pages)
Disciplina 621.312424
Soggetto topico Lithium ion batteries
Lithium cells
ISBN 1-5044-8412-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574866903316
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Materials for Battery Separators
Advanced Materials for Battery Separators
Autore Thomas Sabu
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2024
Descrizione fisica 1 online resource (444 pages)
Disciplina 621.312423
Altri autori (Persone) RouxelDidier
KalarikkalNandakumar
KottathodiBicy
J MariaHanna
Soggetto topico Lithium ion batteries
Energy storage
ISBN 9780128175088
0128175087
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Advanced Materials for Battery Separators -- Advanced Materials for Battery Separators -- Copyright -- Contents -- Contributors -- Preface -- 1 - Battery energy storage systems: A methodical enabler of reliable power -- 1.1 Introduction -- 1.2 Performance characteristics -- 1.2.1 Overall expenditures -- 1.2.2 Potential parameters -- 1.2.2.1 Energy capacity and power rating -- 1.2.2.2 Volumetric and gravimetric energy and power density -- 1.2.2.3 Autonomy -- 1.2.2.4 Response time -- 1.2.2.5 Operating temperature -- 1.2.2.6 Self-discharge rate -- 1.2.2.7 Round-trip efficiency -- 1.2.2.8 Depth of discharge -- 1.2.2.9 Lifetime -- 1.2.2.10 Spatial requirement -- 1.2.2.11 Recharge time -- 1.2.2.12 Memory effect -- 1.2.2.13 Recyclability -- 1.2.2.14 Scalability and transportability -- 1.2.2.15 Technical maturity -- 1.2.2.16 Environmental impact -- 1.3 Potential applications -- 1.3.1 Mobile applications -- 1.3.2 Transportation applications -- 1.3.2.1 Conventional vehicles -- 1.3.2.2 Electric vehicles -- 1.3.2.3 Fuel cell vehicles -- 1.3.2.4 Hybrid vehicles -- 1.3.3 Stationary applications -- 1.4 Battery energy storage principles -- 1.4.1 Lead-acid -- 1.4.2 Alkaline -- 1.4.3 Metal-air -- 1.4.4 Sodium beta -- 1.4.5 Lithium-ion -- 1.5 Conclusions -- References -- 2 - Separators: An essential barrier between electrodes -- 2.1 Introduction -- 2.2 General principles -- 2.2.1 Permeability -- 2.2.2 Porosity -- 2.2.3 Pore size -- 2.2.4 Tortuosity -- 2.2.5 Thickness -- 2.2.6 Chemical stability -- 2.2.7 Thermal stability -- 2.2.8 Mechanical strength -- 2.3 Separators for lead-acid batteries -- 2.3.1 Flooded automotive batteries -- 2.3.1.1 Polyethylene separators -- 2.3.1.2 Sintered PVC separators -- 2.3.1.3 Cellulosic separators -- 2.3.1.4 Glass fiber leaf separators -- 2.3.1.5 Synthetic wood pulp/glass mat separators.
2.3.2 Absorptive glass mat separators for valve-regulated lead-acid automotive batteries -- 2.3.3 Flooded industrial batteries -- 2.3.3.1 Polyethylene separators -- 2.3.3.2 Rubber separators -- 2.3.3.3 Microporous PVC separators -- 2.3.3.4 Phenol-formaldehyde-resorcinol separators -- 2.3.4 VRLA industrial batteries -- 2.3.4.1 AGM separators -- 2.3.4.2 VRLA gel batteries -- 2.4 Separators for Li-ion batteries -- 2.4.1 Microporous polymer separators -- 2.4.2 Nonwoven fabric mat separators -- 2.4.3 Inorganic composite separators -- 2.5 Separators for nickel-metal hydride and nickel-cadmium batteries -- 2.6 Primary cells -- 2.7 Conclusions -- References -- I - Separators for non-aqueous batteries -- 3 - Introduction to separators for nonaqueous batteries -- 3.1 Introduction -- 3.1.1 Classification of nonaqueous electrolyte systems -- 3.2 Nonaqueous battery systems -- 3.2.1 Lithium-ion battery -- 3.2.2 Lithium-sulfur battery -- 3.2.2.1 Separators for lithium-sulfur batteries -- 3.2.3 Lithium-air battery -- 3.2.4 Solid-state electrolytes/membranes for lithium-air batteries -- 3.2.5 Designing ion transport pathways for lithium-ion battery separators -- 3.3 Conclusion -- Acknowledgments -- References -- 4 - Separators for lithium ion batteries -- 4.1 Introduction -- 4.2 Properties and characterization methods of separators -- 4.2.1 Fundamental physical evaluation -- 4.2.1.1 Thickness -- 4.2.1.2 Morphology -- 4.2.1.3 Pore size and pore distribution -- 4.2.1.4 Porosity -- 4.2.1.5 Permeability (Gurley value) -- 4.2.1.6 Mechanical properties -- 4.2.2 Thermal stability -- 4.2.2.1 Thermal shrinkage property -- 4.2.2.2 Thermal shutdown temperature -- 4.2.2.3 Melt fracture temperature -- 4.2.2.4 Decomposition temperature -- 4.2.3 Chemical characterization -- 4.2.3.1 Chemical stability -- 4.2.3.2 Wettability with liquid electrolyte and wetting rate.
4.2.3.3 Electrolyte uptake ability -- 4.2.3.4 Molecular weight -- 4.2.3.5 Structure and composition -- 4.2.4 Electrochemical characterization -- 4.2.4.1 Electrochemical stability window -- 4.2.4.2 Lithium ionic conductivity -- 4.2.4.3 Interfacial compatibility -- 4.2.4.4 Lithium ion transference number -- 4.2.4.5 Mac-Mullin number -- 4.2.4.6 Tortuosity -- 4.3 Preparation methods of separator -- 4.3.1 Dry process -- 4.3.2 Wet process -- 4.3.3 Solution casting technique -- 4.3.4 Phase inversion method -- 4.3.5 Electrospinning method -- 4.3.6 Dip coating/coating method -- 4.3.7 Other methods -- 4.4 Composition of separator materials -- 4.4.1 Polyolefin -- 4.4.2 Fluoropolymer -- 4.4.3 Polyimide -- 4.4.4 Polyetherimide -- 4.4.5 Polyethylene terephthalate -- 4.4.6 Polyaniline -- 4.4.7 Biomass cellulose -- 4.4.8 Polysulfonamide fiber -- 4.4.9 Poly(vinyl alcohol) -- 4.4.10 Other polymers -- 4.5 Separator types -- 4.5.1 Nongelled polymer separator -- 4.5.2 Gelled polymer separator -- 4.5.2.1 Microporous pure polymer separator -- Self-supported separator -- Supported separator -- 4.5.2.2 Polymer ceramic separator -- Self-supported polymer ceramic separator -- Supported polymer ceramic separator -- 4.5.2.3 Conventional ceramic separator -- 4.6 Critical discussion -- 4.7 Conclusion and outlook -- Acknowledgments -- References -- 5 - Advanced separators for lithium-sulfur batteries -- 5.1 Introduction to lithium-sulfur batteries -- 5.2 Mechanism of charge-discharge -- 5.3 Bottlenecks of Li-S cells -- 5.3.1 Positive electrode issues -- 5.3.2 Polysulfide shuttle and self-discharge -- 5.3.3 Poor interfacial properties with lithium metal anode -- 5.4 The polysulfide shuttle phenomenon -- 5.4.1 Chemistry of shuttling and self-discharge -- 5.4.2 Development and types -- 5.4.3 Mechanism of permselectivity -- 5.4.4 A glimpse of different types of permselective separators.
5.5 Performance evaluation of separators -- 5.5.1 Basic characterization -- 5.5.1.1 Electrolyte uptake and porosity -- 5.5.1.2 Shrinkage test -- 5.5.2 Evaluation of permselectivity -- 5.5.2.1 Visual crossover and zeta potential analysis -- 5.5.2.2 Postcycling analysis -- 5.5.3 Electrochemical impedance spectroscopy -- 5.5.4 Quantitative measurement of shuttle current -- 5.6 Future outlook -- 5.7 Conclusions -- References -- 6 - Lithium ion conducting membranes for lithium-air batteries -- 6.1 Introduction -- 6.2 Nonaqueous lithium-air battery -- 6.3 Aqueous lithium-air battery -- 6.4 Solid-state lithium-air batteries -- 6.5 Summary -- References -- 7 - Designing of ion transport pathways in separator for lithium-ion batteries -- 7.1 Introduction -- 7.2 Experimental and theoretical methods -- 7.2.1 Experimental method -- 7.2.2 Theoretical derivations of inherent dynamic values of ions -- 7.3 Evaluation of polyethylene separator membranes -- 7.3.1 Peak assignment for the species in separator membrane -- 7.3.2 Comparison of fundamental dynamic values of free electrolyte solutions -- 7.3.3 Comparison of dynamic values of solutions in PE separators -- 7.4 Evaluation of polypropylene separator membranes -- 7.4.1 Comparison of dynamic values of solution in PP separators -- 7.4.2 Effect of pathway tortuosity on dynamic values -- 7.5 Evaluation of specific restricted diffusion -- 7.6 Summary -- References -- II - Separators for aqueous batteries -- 8 - Introduction to separators for aqueous batteries -- 8.1 Introduction -- 8.2 Alkaline zinc manganese dioxide (Zn||MnO2) batteries -- 8.2.1 Separators for Zn||MnO2 batteries -- 8.3 Redox flow batteries -- 8.4 Conclusion -- Acknowledgments -- References -- 9 - Alkaline zinc-MnO2 battery separators -- 9.1 Introduction -- 9.1.1 Alkaline Zn/MnO2 battery -- 9.1.2 Electrode reactions -- 9.2 Separator properties.
9.2.1 Ionic transport through the separators -- 9.2.2 Blocking of zincate crossover -- 9.2.3 Improvement of OH− exchange -- 9.2.4 Dendrites prevention and resistance to perforation -- 9.3 Nonwoven separators -- 9.4 Gel polymer electrolytes as separators for alkaline batteries -- 9.4.1 Properties of gel polymer electrolytes -- 9.4.2 PVA and its derivatives -- 9.4.2.1 Cross-linking methods -- 9.4.3 PAA and its derivatives -- 9.4.4 PAM and its derivatives -- 9.4.5 PEO and its derivatives -- 9.4.6 Copolymerized GPEs -- 9.4.7 Biobased GPEs -- 9.4.7.1 Cellulose and its derivatives -- 9.4.7.2 Gelatin-based GPEs -- 9.4.7.3 Chitosan-based GPEs -- 9.5 Summary and perspectives -- References -- 10 - Redox flow batteries -- 10.1 Need for energy storage -- 10.2 Redox flow batteries overview -- 10.2.1 Advantages -- 10.2.2 Disadvantages -- 10.2.3 Operating principle of a redox flow battery -- 10.2.4 Present RFB technologies -- 10.2.4.1 Aqueous redox flow battery -- 10.2.4.2 Nonaqueous redox flow batteries -- 10.2.4.3 Membrane for redox flow batteries -- Membranes for aqueous-type RFBs -- Membranes for nonaqueous type RFBs -- 10.3 Future perspectives -- References -- III - Theoretical predictions and future challenges -- 11 - Theoretical simulations of lithium ion micro- and macrobatteries -- 11.1 Introduction -- 11.2 Theoretical models for lithium ion batteries -- 11.2.1 Computer simulations applied to lithium ion batteries -- 11.3 Lithium ion micro- and macrobatteries -- 11.3.1 Theoretical simulations of lithium ion micro- and macrobatteries -- 11.3.2 Experimental results on lithium ion microbatteries -- 11.4 Conclusions -- Nomenclature section -- flink1 -- flink2 -- flink3 -- Acknowledgments -- References -- 12 - New opportunities and challenges of battery separators -- 12.1 Introduction -- 12.2 Polymer-based separator for lithium ion batteries.
12.2.1 Thermal stability.
Record Nr. UNINA-9911045228303321
Thomas Sabu  
San Diego : , : Elsevier, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Alternative energy technologies [[electronic resource] ] : hearing before the Subcommittee on Technology, Innovation, and Competitiveness of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 14, 2006
Alternative energy technologies [[electronic resource] ] : hearing before the Subcommittee on Technology, Innovation, and Competitiveness of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 14, 2006
Pubbl/distr/stampa Washington : , : U.S. G.P.O., , 2011
Descrizione fisica 1 online resource (iii, 84 pages) : illustrations
Collana S. hrg.
Soggetto topico Renewable energy sources - United States
Lithium ion batteries
Solar energy
Alternative fuel vehicles
Energy policy - United States
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Alternative energy technologies
Record Nr. UNINA-9910703171803321
Washington : , : U.S. G.P.O., , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A circular economy for lithium-ion batteries used in mobile and stationary energy storage : drivers, barriers, enablers, and U.S. policy considerations / / Taylor L. Curtis [and three others]
A circular economy for lithium-ion batteries used in mobile and stationary energy storage : drivers, barriers, enablers, and U.S. policy considerations / / Taylor L. Curtis [and three others]
Autore Curtis Taylor L.
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , March 2021
Descrizione fisica 1 online resource (x, 56 pages) : color illustration, color map
Collana NREL/TP
Soggetto topico Lithium ion batteries - United States
Energy policy - United States
Energy policy
Lithium ion batteries
Soggetto genere / forma Technical reports.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Circular economy for lithium-ion batteries used in mobile and stationary energy storage
Record Nr. UNINA-9910716802303321
Curtis Taylor L.  
Golden, CO : , : National Renewable Energy Laboratory, , March 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Development of a novel test method for on-demand internal short circuit in a li-ion cell [[electronic resource] /] / Matt Keyser ... [and others]
Development of a novel test method for on-demand internal short circuit in a li-ion cell [[electronic resource] /] / Matt Keyser ... [and others]
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , [2011]
Descrizione fisica 1 online resource (26 unnumbered slides) : color illustrations
Altri autori (Persone) KeyserMatt
Collana NREL/PR
Soggetto topico Lithium ion batteries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Development of a Novel Test Method for On-Demand Internal Short Circuit in a Li-Ion Cell
Record Nr. UNINA-9910703292803321
Golden, CO : , : National Renewable Energy Laboratory, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals and applications of lithium-ion batteries in electric drive vehicles / / Jiuchun Jiang and Caiping Zhang
Fundamentals and applications of lithium-ion batteries in electric drive vehicles / / Jiuchun Jiang and Caiping Zhang
Autore Jiang Jiuchun
Edizione [1st edition]
Pubbl/distr/stampa Singapore : , : John Wiley & Sons Inc., , 2015
Descrizione fisica 1 online resource (299 p.)
Disciplina 629.25/02
Soggetto topico Electric vehicles - Batteries
Lithium ion batteries
ISBN 1-118-41481-0
1-118-41479-9
1-118-41480-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright; Contents; About the Authors; Foreword; Preface; Chapter 1 Introduction; 1.1 The Development of Batteries in Electric Drive Vehicles; 1.1.1 The Goals; 1.1.2 Trends in Development of the Batteries; 1.1.3 Application Issues of LIBs; 1.1.4 Significance of Battery Management Technology; 1.2 Development of Battery Management Technologies; 1.2.1 No Management; 1.2.2 Simple Management; 1.2.3 Comprehensive Management; 1.3 BMS Key Technologies; References; Chapter 2 Performance Modeling of Lithium-ion Batteries; 2.1 Reaction Mechanism of Lithium-ion Batteries
2.2 Testing the Characteristics of Lithium-ion Batteries 2.2.1 Rate Discharge Characteristics; 2.2.2 Charge and Discharge Characteristics Under Operating Conditions; 2.2.3 Impact of Temperature on Capacity; 2.2.4 Self-Discharge; 2.3 Battery Modeling Method; 2.3.1 Equivalent Circuit Model; 2.3.2 Electrochemical Model; 2.3.3 Neural Network Model; 2.4 Simulation and Comparison of Equivalent Circuit Models; 2.4.1 Model Parameters Identification Principle; 2.4.2 Implementation Steps of Parameter Identification; 2.4.3 Comparison of Simulation of Three Equivalent Circuit Models
2.5 Battery Modeling Method Based on a Battery Discharging Curve 2.6 Battery Pack Modeling; 2.6.1 Battery Pack Modeling; 2.6.2 Simulation of Battery Pack Model; References; Chapter 3 Battery State Estimation; 3.1 Definition of SOC; 3.1.1 The Maximum Available Capacity; 3.1.2 Definition of Single Cell SOC; 3.1.3 Definition of the SOC of Series Batteries; 3.2 Discussion on the Estimation of the SOC of a Battery; 3.2.1 Load Voltage Detection; 3.2.2 Electromotive Force Method; 3.2.3 Resistance Method; 3.2.4 Ampere-hour Counting Method; 3.2.5 Kalman Filter Method; 3.2.6 Neural Network Method
3.2.7 Adaptive Neuro-Fuzzy Inference System 3.2.8 Support Vector Machines; 3.3 Battery SOC Estimation Algorithm Application; 3.3.1 The SOC Estimation of a PEV Power Battery; 3.3.2 Power Battery SOC Estimation for Hybrid Vehicles; 3.4 Definition and Estimation of the Battery SOE; 3.4.1 Definition of the Single Battery SOE; 3.4.2 SOE Definition of the Battery Groups; 3.5 Method for Estimation of the Battery Group SOE and the Remaining Energy; 3.6 Method of Estimation of the Actual Available Energy of the Battery; References; Chapter 4 The Prediction of Battery Pack Peak Power
4.1 Definition of Peak Power 4.1.1 Peak Power Capability of Batteries; 4.1.2 Battery Power Density; 4.1.3 State of Function of Batteries; 4.2 Methods for Testing Peak Power; 4.2.1 Test Methods Developed by Americans; 4.2.2 The Test Method of Japan; 4.2.3 The Chinese Standard Test Method; 4.2.4 The Constant Power Test Method; 4.2.5 Comparison of the Above-Mentioned Testing Methods; 4.3 Peak Power; 4.3.1 The Relation between Peak Power and Temperature; 4.3.2 The Relation between Peak Power and SOC; 4.3.3 Relationship between Peak Power and Ohmic Internal Resistance
4.4 Available Power of the Battery Pack
Record Nr. UNINA-9910132273803321
Jiang Jiuchun  
Singapore : , : John Wiley & Sons Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Grain boundary conductivity in crystalline LiTi2(PO4)3 / / Jeff Wolfenstine
Grain boundary conductivity in crystalline LiTi2(PO4)3 / / Jeff Wolfenstine
Autore Wolfenstine Jeff
Pubbl/distr/stampa Adelphi, MD : , : Army Research Laboratory, , [2008]
Descrizione fisica 1 online resource (vi, 6 pages) : illustrations
Soggetto topico Electric conductivity
Lithium ion batteries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Grain boundary conductivity in crystalline LiTi2
Record Nr. UNINA-9910700937703321
Wolfenstine Jeff  
Adelphi, MD : , : Army Research Laboratory, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui