1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
| 1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | New York, NY, USA : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource (80 pages) |
| Disciplina | 621.312424 |
| Soggetto topico |
Storage batteries
Lithium ion batteries |
| ISBN | 1-5044-7712-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910492126803321 |
| New York, NY, USA : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers
| 1725-2021 : IEEE Standard for Rechargeable Batteries for Mobile Phones / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | New York, NY, USA : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource (80 pages) |
| Disciplina | 621.312424 |
| Soggetto topico |
Storage batteries
Lithium ion batteries |
| ISBN | 1-5044-7712-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996574883703316 |
| New York, NY, USA : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
| 1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource (143 pages) |
| Disciplina | 621.312424 |
| Soggetto topico |
Lithium ion batteries
Lithium cells |
| ISBN | 1-5044-8412-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910522580603321 |
| [Place of publication not identified] : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers
| 1725-2021 - IEEE Standard for Rechargeable Batteries for Mobile Phones - Redline / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource (143 pages) |
| Disciplina | 621.312424 |
| Soggetto topico |
Lithium ion batteries
Lithium cells |
| ISBN | 1-5044-8412-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996574866903316 |
| [Place of publication not identified] : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced Materials for Battery Separators
| Advanced Materials for Battery Separators |
| Autore | Thomas Sabu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2024 |
| Descrizione fisica | 1 online resource (444 pages) |
| Disciplina | 621.312423 |
| Altri autori (Persone) |
RouxelDidier
KalarikkalNandakumar KottathodiBicy J MariaHanna |
| Soggetto topico |
Lithium ion batteries
Energy storage |
| ISBN |
9780128175088
0128175087 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover -- Advanced Materials for Battery Separators -- Advanced Materials for Battery Separators -- Copyright -- Contents -- Contributors -- Preface -- 1 - Battery energy storage systems: A methodical enabler of reliable power -- 1.1 Introduction -- 1.2 Performance characteristics -- 1.2.1 Overall expenditures -- 1.2.2 Potential parameters -- 1.2.2.1 Energy capacity and power rating -- 1.2.2.2 Volumetric and gravimetric energy and power density -- 1.2.2.3 Autonomy -- 1.2.2.4 Response time -- 1.2.2.5 Operating temperature -- 1.2.2.6 Self-discharge rate -- 1.2.2.7 Round-trip efficiency -- 1.2.2.8 Depth of discharge -- 1.2.2.9 Lifetime -- 1.2.2.10 Spatial requirement -- 1.2.2.11 Recharge time -- 1.2.2.12 Memory effect -- 1.2.2.13 Recyclability -- 1.2.2.14 Scalability and transportability -- 1.2.2.15 Technical maturity -- 1.2.2.16 Environmental impact -- 1.3 Potential applications -- 1.3.1 Mobile applications -- 1.3.2 Transportation applications -- 1.3.2.1 Conventional vehicles -- 1.3.2.2 Electric vehicles -- 1.3.2.3 Fuel cell vehicles -- 1.3.2.4 Hybrid vehicles -- 1.3.3 Stationary applications -- 1.4 Battery energy storage principles -- 1.4.1 Lead-acid -- 1.4.2 Alkaline -- 1.4.3 Metal-air -- 1.4.4 Sodium beta -- 1.4.5 Lithium-ion -- 1.5 Conclusions -- References -- 2 - Separators: An essential barrier between electrodes -- 2.1 Introduction -- 2.2 General principles -- 2.2.1 Permeability -- 2.2.2 Porosity -- 2.2.3 Pore size -- 2.2.4 Tortuosity -- 2.2.5 Thickness -- 2.2.6 Chemical stability -- 2.2.7 Thermal stability -- 2.2.8 Mechanical strength -- 2.3 Separators for lead-acid batteries -- 2.3.1 Flooded automotive batteries -- 2.3.1.1 Polyethylene separators -- 2.3.1.2 Sintered PVC separators -- 2.3.1.3 Cellulosic separators -- 2.3.1.4 Glass fiber leaf separators -- 2.3.1.5 Synthetic wood pulp/glass mat separators.
2.3.2 Absorptive glass mat separators for valve-regulated lead-acid automotive batteries -- 2.3.3 Flooded industrial batteries -- 2.3.3.1 Polyethylene separators -- 2.3.3.2 Rubber separators -- 2.3.3.3 Microporous PVC separators -- 2.3.3.4 Phenol-formaldehyde-resorcinol separators -- 2.3.4 VRLA industrial batteries -- 2.3.4.1 AGM separators -- 2.3.4.2 VRLA gel batteries -- 2.4 Separators for Li-ion batteries -- 2.4.1 Microporous polymer separators -- 2.4.2 Nonwoven fabric mat separators -- 2.4.3 Inorganic composite separators -- 2.5 Separators for nickel-metal hydride and nickel-cadmium batteries -- 2.6 Primary cells -- 2.7 Conclusions -- References -- I - Separators for non-aqueous batteries -- 3 - Introduction to separators for nonaqueous batteries -- 3.1 Introduction -- 3.1.1 Classification of nonaqueous electrolyte systems -- 3.2 Nonaqueous battery systems -- 3.2.1 Lithium-ion battery -- 3.2.2 Lithium-sulfur battery -- 3.2.2.1 Separators for lithium-sulfur batteries -- 3.2.3 Lithium-air battery -- 3.2.4 Solid-state electrolytes/membranes for lithium-air batteries -- 3.2.5 Designing ion transport pathways for lithium-ion battery separators -- 3.3 Conclusion -- Acknowledgments -- References -- 4 - Separators for lithium ion batteries -- 4.1 Introduction -- 4.2 Properties and characterization methods of separators -- 4.2.1 Fundamental physical evaluation -- 4.2.1.1 Thickness -- 4.2.1.2 Morphology -- 4.2.1.3 Pore size and pore distribution -- 4.2.1.4 Porosity -- 4.2.1.5 Permeability (Gurley value) -- 4.2.1.6 Mechanical properties -- 4.2.2 Thermal stability -- 4.2.2.1 Thermal shrinkage property -- 4.2.2.2 Thermal shutdown temperature -- 4.2.2.3 Melt fracture temperature -- 4.2.2.4 Decomposition temperature -- 4.2.3 Chemical characterization -- 4.2.3.1 Chemical stability -- 4.2.3.2 Wettability with liquid electrolyte and wetting rate. 4.2.3.3 Electrolyte uptake ability -- 4.2.3.4 Molecular weight -- 4.2.3.5 Structure and composition -- 4.2.4 Electrochemical characterization -- 4.2.4.1 Electrochemical stability window -- 4.2.4.2 Lithium ionic conductivity -- 4.2.4.3 Interfacial compatibility -- 4.2.4.4 Lithium ion transference number -- 4.2.4.5 Mac-Mullin number -- 4.2.4.6 Tortuosity -- 4.3 Preparation methods of separator -- 4.3.1 Dry process -- 4.3.2 Wet process -- 4.3.3 Solution casting technique -- 4.3.4 Phase inversion method -- 4.3.5 Electrospinning method -- 4.3.6 Dip coating/coating method -- 4.3.7 Other methods -- 4.4 Composition of separator materials -- 4.4.1 Polyolefin -- 4.4.2 Fluoropolymer -- 4.4.3 Polyimide -- 4.4.4 Polyetherimide -- 4.4.5 Polyethylene terephthalate -- 4.4.6 Polyaniline -- 4.4.7 Biomass cellulose -- 4.4.8 Polysulfonamide fiber -- 4.4.9 Poly(vinyl alcohol) -- 4.4.10 Other polymers -- 4.5 Separator types -- 4.5.1 Nongelled polymer separator -- 4.5.2 Gelled polymer separator -- 4.5.2.1 Microporous pure polymer separator -- Self-supported separator -- Supported separator -- 4.5.2.2 Polymer ceramic separator -- Self-supported polymer ceramic separator -- Supported polymer ceramic separator -- 4.5.2.3 Conventional ceramic separator -- 4.6 Critical discussion -- 4.7 Conclusion and outlook -- Acknowledgments -- References -- 5 - Advanced separators for lithium-sulfur batteries -- 5.1 Introduction to lithium-sulfur batteries -- 5.2 Mechanism of charge-discharge -- 5.3 Bottlenecks of Li-S cells -- 5.3.1 Positive electrode issues -- 5.3.2 Polysulfide shuttle and self-discharge -- 5.3.3 Poor interfacial properties with lithium metal anode -- 5.4 The polysulfide shuttle phenomenon -- 5.4.1 Chemistry of shuttling and self-discharge -- 5.4.2 Development and types -- 5.4.3 Mechanism of permselectivity -- 5.4.4 A glimpse of different types of permselective separators. 5.5 Performance evaluation of separators -- 5.5.1 Basic characterization -- 5.5.1.1 Electrolyte uptake and porosity -- 5.5.1.2 Shrinkage test -- 5.5.2 Evaluation of permselectivity -- 5.5.2.1 Visual crossover and zeta potential analysis -- 5.5.2.2 Postcycling analysis -- 5.5.3 Electrochemical impedance spectroscopy -- 5.5.4 Quantitative measurement of shuttle current -- 5.6 Future outlook -- 5.7 Conclusions -- References -- 6 - Lithium ion conducting membranes for lithium-air batteries -- 6.1 Introduction -- 6.2 Nonaqueous lithium-air battery -- 6.3 Aqueous lithium-air battery -- 6.4 Solid-state lithium-air batteries -- 6.5 Summary -- References -- 7 - Designing of ion transport pathways in separator for lithium-ion batteries -- 7.1 Introduction -- 7.2 Experimental and theoretical methods -- 7.2.1 Experimental method -- 7.2.2 Theoretical derivations of inherent dynamic values of ions -- 7.3 Evaluation of polyethylene separator membranes -- 7.3.1 Peak assignment for the species in separator membrane -- 7.3.2 Comparison of fundamental dynamic values of free electrolyte solutions -- 7.3.3 Comparison of dynamic values of solutions in PE separators -- 7.4 Evaluation of polypropylene separator membranes -- 7.4.1 Comparison of dynamic values of solution in PP separators -- 7.4.2 Effect of pathway tortuosity on dynamic values -- 7.5 Evaluation of specific restricted diffusion -- 7.6 Summary -- References -- II - Separators for aqueous batteries -- 8 - Introduction to separators for aqueous batteries -- 8.1 Introduction -- 8.2 Alkaline zinc manganese dioxide (Zn||MnO2) batteries -- 8.2.1 Separators for Zn||MnO2 batteries -- 8.3 Redox flow batteries -- 8.4 Conclusion -- Acknowledgments -- References -- 9 - Alkaline zinc-MnO2 battery separators -- 9.1 Introduction -- 9.1.1 Alkaline Zn/MnO2 battery -- 9.1.2 Electrode reactions -- 9.2 Separator properties. 9.2.1 Ionic transport through the separators -- 9.2.2 Blocking of zincate crossover -- 9.2.3 Improvement of OH− exchange -- 9.2.4 Dendrites prevention and resistance to perforation -- 9.3 Nonwoven separators -- 9.4 Gel polymer electrolytes as separators for alkaline batteries -- 9.4.1 Properties of gel polymer electrolytes -- 9.4.2 PVA and its derivatives -- 9.4.2.1 Cross-linking methods -- 9.4.3 PAA and its derivatives -- 9.4.4 PAM and its derivatives -- 9.4.5 PEO and its derivatives -- 9.4.6 Copolymerized GPEs -- 9.4.7 Biobased GPEs -- 9.4.7.1 Cellulose and its derivatives -- 9.4.7.2 Gelatin-based GPEs -- 9.4.7.3 Chitosan-based GPEs -- 9.5 Summary and perspectives -- References -- 10 - Redox flow batteries -- 10.1 Need for energy storage -- 10.2 Redox flow batteries overview -- 10.2.1 Advantages -- 10.2.2 Disadvantages -- 10.2.3 Operating principle of a redox flow battery -- 10.2.4 Present RFB technologies -- 10.2.4.1 Aqueous redox flow battery -- 10.2.4.2 Nonaqueous redox flow batteries -- 10.2.4.3 Membrane for redox flow batteries -- Membranes for aqueous-type RFBs -- Membranes for nonaqueous type RFBs -- 10.3 Future perspectives -- References -- III - Theoretical predictions and future challenges -- 11 - Theoretical simulations of lithium ion micro- and macrobatteries -- 11.1 Introduction -- 11.2 Theoretical models for lithium ion batteries -- 11.2.1 Computer simulations applied to lithium ion batteries -- 11.3 Lithium ion micro- and macrobatteries -- 11.3.1 Theoretical simulations of lithium ion micro- and macrobatteries -- 11.3.2 Experimental results on lithium ion microbatteries -- 11.4 Conclusions -- Nomenclature section -- flink1 -- flink2 -- flink3 -- Acknowledgments -- References -- 12 - New opportunities and challenges of battery separators -- 12.1 Introduction -- 12.2 Polymer-based separator for lithium ion batteries. 12.2.1 Thermal stability. |
| Record Nr. | UNINA-9911045228303321 |
Thomas Sabu
|
||
| San Diego : , : Elsevier, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Alternative energy technologies [[electronic resource] ] : hearing before the Subcommittee on Technology, Innovation, and Competitiveness of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 14, 2006
| Alternative energy technologies [[electronic resource] ] : hearing before the Subcommittee on Technology, Innovation, and Competitiveness of the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Ninth Congress, second session, June 14, 2006 |
| Pubbl/distr/stampa | Washington : , : U.S. G.P.O., , 2011 |
| Descrizione fisica | 1 online resource (iii, 84 pages) : illustrations |
| Collana | S. hrg. |
| Soggetto topico |
Renewable energy sources - United States
Lithium ion batteries Solar energy Alternative fuel vehicles Energy policy - United States |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Alternative energy technologies |
| Record Nr. | UNINA-9910703171803321 |
| Washington : , : U.S. G.P.O., , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A circular economy for lithium-ion batteries used in mobile and stationary energy storage : drivers, barriers, enablers, and U.S. policy considerations / / Taylor L. Curtis [and three others]
| A circular economy for lithium-ion batteries used in mobile and stationary energy storage : drivers, barriers, enablers, and U.S. policy considerations / / Taylor L. Curtis [and three others] |
| Autore | Curtis Taylor L. |
| Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, , March 2021 |
| Descrizione fisica | 1 online resource (x, 56 pages) : color illustration, color map |
| Collana | NREL/TP |
| Soggetto topico |
Lithium ion batteries - United States
Energy policy - United States Energy policy Lithium ion batteries |
| Soggetto genere / forma | Technical reports. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Circular economy for lithium-ion batteries used in mobile and stationary energy storage |
| Record Nr. | UNINA-9910716802303321 |
Curtis Taylor L.
|
||
| Golden, CO : , : National Renewable Energy Laboratory, , March 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Development of a novel test method for on-demand internal short circuit in a li-ion cell [[electronic resource] /] / Matt Keyser ... [and others]
| Development of a novel test method for on-demand internal short circuit in a li-ion cell [[electronic resource] /] / Matt Keyser ... [and others] |
| Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, , [2011] |
| Descrizione fisica | 1 online resource (26 unnumbered slides) : color illustrations |
| Altri autori (Persone) | KeyserMatt |
| Collana | NREL/PR |
| Soggetto topico | Lithium ion batteries |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Development of a Novel Test Method for On-Demand Internal Short Circuit in a Li-Ion Cell |
| Record Nr. | UNINA-9910703292803321 |
| Golden, CO : , : National Renewable Energy Laboratory, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals and applications of lithium-ion batteries in electric drive vehicles / / Jiuchun Jiang and Caiping Zhang
| Fundamentals and applications of lithium-ion batteries in electric drive vehicles / / Jiuchun Jiang and Caiping Zhang |
| Autore | Jiang Jiuchun |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Singapore : , : John Wiley & Sons Inc., , 2015 |
| Descrizione fisica | 1 online resource (299 p.) |
| Disciplina | 629.25/02 |
| Soggetto topico |
Electric vehicles - Batteries
Lithium ion batteries |
| ISBN |
1-118-41481-0
1-118-41479-9 1-118-41480-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Copyright; Contents; About the Authors; Foreword; Preface; Chapter 1 Introduction; 1.1 The Development of Batteries in Electric Drive Vehicles; 1.1.1 The Goals; 1.1.2 Trends in Development of the Batteries; 1.1.3 Application Issues of LIBs; 1.1.4 Significance of Battery Management Technology; 1.2 Development of Battery Management Technologies; 1.2.1 No Management; 1.2.2 Simple Management; 1.2.3 Comprehensive Management; 1.3 BMS Key Technologies; References; Chapter 2 Performance Modeling of Lithium-ion Batteries; 2.1 Reaction Mechanism of Lithium-ion Batteries
2.2 Testing the Characteristics of Lithium-ion Batteries 2.2.1 Rate Discharge Characteristics; 2.2.2 Charge and Discharge Characteristics Under Operating Conditions; 2.2.3 Impact of Temperature on Capacity; 2.2.4 Self-Discharge; 2.3 Battery Modeling Method; 2.3.1 Equivalent Circuit Model; 2.3.2 Electrochemical Model; 2.3.3 Neural Network Model; 2.4 Simulation and Comparison of Equivalent Circuit Models; 2.4.1 Model Parameters Identification Principle; 2.4.2 Implementation Steps of Parameter Identification; 2.4.3 Comparison of Simulation of Three Equivalent Circuit Models 2.5 Battery Modeling Method Based on a Battery Discharging Curve 2.6 Battery Pack Modeling; 2.6.1 Battery Pack Modeling; 2.6.2 Simulation of Battery Pack Model; References; Chapter 3 Battery State Estimation; 3.1 Definition of SOC; 3.1.1 The Maximum Available Capacity; 3.1.2 Definition of Single Cell SOC; 3.1.3 Definition of the SOC of Series Batteries; 3.2 Discussion on the Estimation of the SOC of a Battery; 3.2.1 Load Voltage Detection; 3.2.2 Electromotive Force Method; 3.2.3 Resistance Method; 3.2.4 Ampere-hour Counting Method; 3.2.5 Kalman Filter Method; 3.2.6 Neural Network Method 3.2.7 Adaptive Neuro-Fuzzy Inference System 3.2.8 Support Vector Machines; 3.3 Battery SOC Estimation Algorithm Application; 3.3.1 The SOC Estimation of a PEV Power Battery; 3.3.2 Power Battery SOC Estimation for Hybrid Vehicles; 3.4 Definition and Estimation of the Battery SOE; 3.4.1 Definition of the Single Battery SOE; 3.4.2 SOE Definition of the Battery Groups; 3.5 Method for Estimation of the Battery Group SOE and the Remaining Energy; 3.6 Method of Estimation of the Actual Available Energy of the Battery; References; Chapter 4 The Prediction of Battery Pack Peak Power 4.1 Definition of Peak Power 4.1.1 Peak Power Capability of Batteries; 4.1.2 Battery Power Density; 4.1.3 State of Function of Batteries; 4.2 Methods for Testing Peak Power; 4.2.1 Test Methods Developed by Americans; 4.2.2 The Test Method of Japan; 4.2.3 The Chinese Standard Test Method; 4.2.4 The Constant Power Test Method; 4.2.5 Comparison of the Above-Mentioned Testing Methods; 4.3 Peak Power; 4.3.1 The Relation between Peak Power and Temperature; 4.3.2 The Relation between Peak Power and SOC; 4.3.3 Relationship between Peak Power and Ohmic Internal Resistance 4.4 Available Power of the Battery Pack |
| Record Nr. | UNINA-9910132273803321 |
Jiang Jiuchun
|
||
| Singapore : , : John Wiley & Sons Inc., , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Grain boundary conductivity in crystalline LiTi2(PO4)3 / / Jeff Wolfenstine
| Grain boundary conductivity in crystalline LiTi2(PO4)3 / / Jeff Wolfenstine |
| Autore | Wolfenstine Jeff |
| Pubbl/distr/stampa | Adelphi, MD : , : Army Research Laboratory, , [2008] |
| Descrizione fisica | 1 online resource (vi, 6 pages) : illustrations |
| Soggetto topico |
Electric conductivity
Lithium ion batteries |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Grain boundary conductivity in crystalline LiTi2 |
| Record Nr. | UNINA-9910700937703321 |
Wolfenstine Jeff
|
||
| Adelphi, MD : , : Army Research Laboratory, , [2008] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||