LinKnot [[electronic resource] ] : knot theory by computer / / Slavik Jablan, Radmila Sazdanović |
Autore | Jablan Slavik V |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (500 p.) |
Disciplina | 514.2242 |
Altri autori (Persone) | SazdanovićRadmila |
Collana | K & E series on knots and everything |
Soggetto topico |
Knot theory - Data processing
Link theory - Data processing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-91198-4
9786611911980 981-277-224-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Notation of Knots and Links; 1.1 Basic graph theory; 1.2 Shadows of KLs; 1.2.1 Gauss and Dowker code; 1.3 KL diagrams; 1.4 Reidemeister moves; 1.5 Conway notation; 1.6 Classification of KLs; 1.7 LinKnot functions and KL notation; 1.8 Rational world and KL invariants; 1.8.1 Chirality of rational KLs; 1.9 Unlinking number and unlinking gap; 1.10 Prime and composite KLs; 1.11 Non-invertible KLs; 1.11.1 Tangle types; 1.11.2 Non-invertible pretzel knots; 1.11.3 Non-invertible arborescent knots; 1.11.4 Non-invertible polyhedral knots; 1.12 Reduction of R-tangles
1.12.1 KLs with unlinking number one1.13 Braids; 1.13.1 KLs and braids; 1.14 Braid family representatives; 1.14.1 Applications of minimum braids and braid family representatives; 1.15 More KL invariants; 1.16 Borromean links; 2. Recognition and Generation of Knots and Links; 2.1 Recognition of KLs; 2.1.1 Group of KL; 2.2 Polynomial invariants; 2.3 Vassiliev invariants; 2.4 Experimenting with KLs; 2.5 Derivation and classification of KLs; 2.6 Basic polyhedra and polyhedral KLs; 2.7 Basic polyhedra and non-algebraic tangles; 2.7.1 Generalized tangles; 2.7.2 n-tangles and basic polyhedra 2.7.3 Non-algebraic tangle compositions and component algebra2.8 KL tables; 2.8.1 Non-alternating and almost alternating KLs; 2.9 Projections of KLs and chirality; 2.10 Families of undetectable KLs; 2.10.1 Detecting chirality of KLs by polynomial invariants; 2.11 A dream- new KL tables; 3. History of Knot Theory and Applications of Knots and Links; 3.1 History of knot theory; 3.2 Mirror curves; 3.2.1 Tamil treshold designs; 3.2.2 Tchokwe sand drawings; 3.2.3 Construction of mirror curves; 3.2.4 Enumeration of mirror curves; 3.2.5 Lunda designs; 3.2.6 Polyominoes 3.2.6.1 Lunda polyominoes and Lunda animals3.2.7 KLs and mirror curves; 3.2.8 Mirror curves on di erent surfaces; 3.2.9 Mirror curves in art; 3.2.10 KLs and self-avoiding curves; 3.3 KLs and fullerenes; 3.3.1 General fullerenes, graphs, symmetry and isomers; 3.3.2 5/6 fullerenes; 3.3.3 Knot theory and fullerenes; 3.3.4 Nanotubes, conical and biconical fullerenes and their symmetry; 3.3.5 Fullerenes on other surfaces; 3.4 KLs and logic; 3.5 Waveforms; 3.6 Knot automata; Bibliography; Index |
Record Nr. | UNINA-9910451067003321 |
Jablan Slavik V | ||
Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LinKnot [[electronic resource] ] : knot theory by computer / / Slavik Jablan, Radmila Sazdanović |
Autore | Jablan Slavik V |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (500 p.) |
Disciplina | 514.2242 |
Altri autori (Persone) | SazdanovićRadmila |
Collana | K & E series on knots and everything |
Soggetto topico |
Knot theory - Data processing
Link theory - Data processing |
ISBN |
1-281-91198-4
9786611911980 981-277-224-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Notation of Knots and Links; 1.1 Basic graph theory; 1.2 Shadows of KLs; 1.2.1 Gauss and Dowker code; 1.3 KL diagrams; 1.4 Reidemeister moves; 1.5 Conway notation; 1.6 Classification of KLs; 1.7 LinKnot functions and KL notation; 1.8 Rational world and KL invariants; 1.8.1 Chirality of rational KLs; 1.9 Unlinking number and unlinking gap; 1.10 Prime and composite KLs; 1.11 Non-invertible KLs; 1.11.1 Tangle types; 1.11.2 Non-invertible pretzel knots; 1.11.3 Non-invertible arborescent knots; 1.11.4 Non-invertible polyhedral knots; 1.12 Reduction of R-tangles
1.12.1 KLs with unlinking number one1.13 Braids; 1.13.1 KLs and braids; 1.14 Braid family representatives; 1.14.1 Applications of minimum braids and braid family representatives; 1.15 More KL invariants; 1.16 Borromean links; 2. Recognition and Generation of Knots and Links; 2.1 Recognition of KLs; 2.1.1 Group of KL; 2.2 Polynomial invariants; 2.3 Vassiliev invariants; 2.4 Experimenting with KLs; 2.5 Derivation and classification of KLs; 2.6 Basic polyhedra and polyhedral KLs; 2.7 Basic polyhedra and non-algebraic tangles; 2.7.1 Generalized tangles; 2.7.2 n-tangles and basic polyhedra 2.7.3 Non-algebraic tangle compositions and component algebra2.8 KL tables; 2.8.1 Non-alternating and almost alternating KLs; 2.9 Projections of KLs and chirality; 2.10 Families of undetectable KLs; 2.10.1 Detecting chirality of KLs by polynomial invariants; 2.11 A dream- new KL tables; 3. History of Knot Theory and Applications of Knots and Links; 3.1 History of knot theory; 3.2 Mirror curves; 3.2.1 Tamil treshold designs; 3.2.2 Tchokwe sand drawings; 3.2.3 Construction of mirror curves; 3.2.4 Enumeration of mirror curves; 3.2.5 Lunda designs; 3.2.6 Polyominoes 3.2.6.1 Lunda polyominoes and Lunda animals3.2.7 KLs and mirror curves; 3.2.8 Mirror curves on di erent surfaces; 3.2.9 Mirror curves in art; 3.2.10 KLs and self-avoiding curves; 3.3 KLs and fullerenes; 3.3.1 General fullerenes, graphs, symmetry and isomers; 3.3.2 5/6 fullerenes; 3.3.3 Knot theory and fullerenes; 3.3.4 Nanotubes, conical and biconical fullerenes and their symmetry; 3.3.5 Fullerenes on other surfaces; 3.4 KLs and logic; 3.5 Waveforms; 3.6 Knot automata; Bibliography; Index |
Record Nr. | UNINA-9910784824003321 |
Jablan Slavik V | ||
Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LinKnot : knot theory by computer / / Slavik Jablan, Radmila Sazdanovic |
Autore | Jablan Slavik V |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (500 p.) |
Disciplina | 514.2242 |
Altri autori (Persone) | SazdanovicRadmila |
Collana | K & E series on knots and everything |
Soggetto topico |
Knot theory - Data processing
Link theory - Data processing |
ISBN |
1-281-91198-4
9786611911980 981-277-224-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Notation of Knots and Links; 1.1 Basic graph theory; 1.2 Shadows of KLs; 1.2.1 Gauss and Dowker code; 1.3 KL diagrams; 1.4 Reidemeister moves; 1.5 Conway notation; 1.6 Classification of KLs; 1.7 LinKnot functions and KL notation; 1.8 Rational world and KL invariants; 1.8.1 Chirality of rational KLs; 1.9 Unlinking number and unlinking gap; 1.10 Prime and composite KLs; 1.11 Non-invertible KLs; 1.11.1 Tangle types; 1.11.2 Non-invertible pretzel knots; 1.11.3 Non-invertible arborescent knots; 1.11.4 Non-invertible polyhedral knots; 1.12 Reduction of R-tangles
1.12.1 KLs with unlinking number one1.13 Braids; 1.13.1 KLs and braids; 1.14 Braid family representatives; 1.14.1 Applications of minimum braids and braid family representatives; 1.15 More KL invariants; 1.16 Borromean links; 2. Recognition and Generation of Knots and Links; 2.1 Recognition of KLs; 2.1.1 Group of KL; 2.2 Polynomial invariants; 2.3 Vassiliev invariants; 2.4 Experimenting with KLs; 2.5 Derivation and classification of KLs; 2.6 Basic polyhedra and polyhedral KLs; 2.7 Basic polyhedra and non-algebraic tangles; 2.7.1 Generalized tangles; 2.7.2 n-tangles and basic polyhedra 2.7.3 Non-algebraic tangle compositions and component algebra2.8 KL tables; 2.8.1 Non-alternating and almost alternating KLs; 2.9 Projections of KLs and chirality; 2.10 Families of undetectable KLs; 2.10.1 Detecting chirality of KLs by polynomial invariants; 2.11 A dream- new KL tables; 3. History of Knot Theory and Applications of Knots and Links; 3.1 History of knot theory; 3.2 Mirror curves; 3.2.1 Tamil treshold designs; 3.2.2 Tchokwe sand drawings; 3.2.3 Construction of mirror curves; 3.2.4 Enumeration of mirror curves; 3.2.5 Lunda designs; 3.2.6 Polyominoes 3.2.6.1 Lunda polyominoes and Lunda animals3.2.7 KLs and mirror curves; 3.2.8 Mirror curves on di erent surfaces; 3.2.9 Mirror curves in art; 3.2.10 KLs and self-avoiding curves; 3.3 KLs and fullerenes; 3.3.1 General fullerenes, graphs, symmetry and isomers; 3.3.2 5/6 fullerenes; 3.3.3 Knot theory and fullerenes; 3.3.4 Nanotubes, conical and biconical fullerenes and their symmetry; 3.3.5 Fullerenes on other surfaces; 3.4 KLs and logic; 3.5 Waveforms; 3.6 Knot automata; Bibliography; Index |
Record Nr. | UNINA-9910819145203321 |
Jablan Slavik V | ||
Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|