top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Alcune considerazioni sui metodi iterativi per la risoluzione di sistemi lineari. Tesi di laurea / laureanda M. R. Cagnazzo ; relat. L. Guercia
Alcune considerazioni sui metodi iterativi per la risoluzione di sistemi lineari. Tesi di laurea / laureanda M. R. Cagnazzo ; relat. L. Guercia
Autore Cagnazzo, Maria Rosaria
Pubbl/distr/stampa Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1991-92
Altri autori (Persone) Guercia, Liana
Soggetto topico Iterative methods
Linear systems
Classificazione AMS 65F10
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991000649189707536
Cagnazzo, Maria Rosaria  
Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1991-92
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Assessment of data by a second-order transfer function / / D. G. Camell
Assessment of data by a second-order transfer function / / D. G. Camell
Autore Camell Dennis G
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1994
Descrizione fisica 1 online resource
Altri autori (Persone) CamellDennis G
Collana NIST technical note
Soggetto topico Electromagnetic pulse
Linear systems
Transfer functions
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711209103321
Camell Dennis G  
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes linear statistics [[electronic resource] ] : theory and methods / / Michael Goldstein and David Wooff
Bayes linear statistics [[electronic resource] ] : theory and methods / / Michael Goldstein and David Wooff
Autore Goldstein Michael <1949->
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Descrizione fisica 1 online resource (538 p.)
Disciplina 519.5
519.542
Altri autori (Persone) WooffDavid
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Linear systems
Computational complexity
Soggetto genere / forma Electronic books.
ISBN 1-280-85495-2
9786610854950
0-470-06566-4
0-470-06567-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayes Linear Statistics; Contents; Preface; 1 The Bayes linear approach; 1.1 Combining beliefs with data; 1.2 The Bayesian approach; 1.3 Features of the Bayes linear approach; 1.4 Example; 1.4.1 Expectation, variance, and standardization; 1.4.2 Prior inputs; 1.4.3 Adjusted expectations; 1.4.4 Adjusted versions; 1.4.5 Adjusted variances; 1.4.6 Checking data inputs; 1.4.7 Observed adjusted expectations; 1.4.8 Diagnostics for adjusted beliefs; 1.4.9 Further diagnostics for the adjusted versions; 1.4.10 Summary of basic adjustment; 1.4.11 Diagnostics for collections
1.4.12 Exploring collections of beliefs via canonical structure1.4.13 Modifying the original specifications; 1.4.14 Repeating the analysis for the revised model; 1.4.15 Global analysis of collections of observations; 1.4.16 Partial adjustments; 1.4.17 Partial diagnostics; 1.4.18 Summary; 1.5 Overview; 2 Expectation; 2.1 Expectation as a primitive; 2.2 Discussion: expectation as a primitive; 2.3 Quantifying collections of uncertainties; 2.4 Specifying prior beliefs; 2.4.1 Example: oral glucose tolerance test; 2.5 Qualitative and quantitative prior specification
2.6 Example: qualitative representation of uncertainty2.6.1 Identifying the quantities of interest; 2.6.2 Identifying relevant prior information; 2.6.3 Sources of variation; 2.6.4 Representing population variation; 2.6.5 The qualitative representation; 2.6.6 Graphical models; 2.7 Example: quantifying uncertainty; 2.7.1 Prior expectations; 2.7.2 Prior variances; 2.7.3 Prior covariances; 2.7.4 Summary of belief specifications; 2.8 Discussion: on the various methods for assigning expectations; 3 Adjusting beliefs; 3.1 Adjusted expectation; 3.2 Properties of adjusted expectation
3.3 Adjusted variance3.4 Interpretations of belief adjustment; 3.5 Foundational issues concerning belief adjustment; 3.6 Example: one-dimensional problem; 3.7 Collections of adjusted beliefs; 3.8 Examples; 3.8.1 Algebraic example; 3.8.2 Oral glucose tolerance test; 3.8.3 Many oral glucose tolerance tests; 3.9 Canonical analysis for a belief adjustment; 3.9.1 Canonical directions for the adjustment; 3.9.2 The resolution transform; 3.9.3 Partitioning the resolution; 3.9.4 The reverse adjustment; 3.9.5 Minimal linear sufficiency; 3.9.6 The adjusted belief transform matrix
3.10 The geometric interpretation of belief adjustment3.11 Examples; 3.11.1 Simple one-dimensional problem; 3.11.2 Algebraic example; 3.11.3 Oral glucose tolerance test; 3.12 Further reading; 4 The observed adjustment; 4.1 Discrepancy; 4.1.1 Discrepancy for a collection; 4.1.2 Evaluating discrepancy over a basis; 4.1.3 Discrepancy for quantities with variance zero; 4.2 Properties of discrepancy measures; 4.2.1 Evaluating the discrepancy vector over a basis; 4.3 Examples; 4.3.1 Simple one-dimensional problem; 4.3.2 Detecting degeneracy; 4.3.3 Oral glucose tolerance test
4.4 The observed adjustment
Record Nr. UNINA-9910143714703321
Goldstein Michael <1949->  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes linear statistics [[electronic resource] ] : theory and methods / / Michael Goldstein and David Wooff
Bayes linear statistics [[electronic resource] ] : theory and methods / / Michael Goldstein and David Wooff
Autore Goldstein Michael <1949->
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Descrizione fisica 1 online resource (538 p.)
Disciplina 519.5
519.542
Altri autori (Persone) WooffDavid
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Linear systems
Computational complexity
ISBN 1-280-85495-2
9786610854950
0-470-06566-4
0-470-06567-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayes Linear Statistics; Contents; Preface; 1 The Bayes linear approach; 1.1 Combining beliefs with data; 1.2 The Bayesian approach; 1.3 Features of the Bayes linear approach; 1.4 Example; 1.4.1 Expectation, variance, and standardization; 1.4.2 Prior inputs; 1.4.3 Adjusted expectations; 1.4.4 Adjusted versions; 1.4.5 Adjusted variances; 1.4.6 Checking data inputs; 1.4.7 Observed adjusted expectations; 1.4.8 Diagnostics for adjusted beliefs; 1.4.9 Further diagnostics for the adjusted versions; 1.4.10 Summary of basic adjustment; 1.4.11 Diagnostics for collections
1.4.12 Exploring collections of beliefs via canonical structure1.4.13 Modifying the original specifications; 1.4.14 Repeating the analysis for the revised model; 1.4.15 Global analysis of collections of observations; 1.4.16 Partial adjustments; 1.4.17 Partial diagnostics; 1.4.18 Summary; 1.5 Overview; 2 Expectation; 2.1 Expectation as a primitive; 2.2 Discussion: expectation as a primitive; 2.3 Quantifying collections of uncertainties; 2.4 Specifying prior beliefs; 2.4.1 Example: oral glucose tolerance test; 2.5 Qualitative and quantitative prior specification
2.6 Example: qualitative representation of uncertainty2.6.1 Identifying the quantities of interest; 2.6.2 Identifying relevant prior information; 2.6.3 Sources of variation; 2.6.4 Representing population variation; 2.6.5 The qualitative representation; 2.6.6 Graphical models; 2.7 Example: quantifying uncertainty; 2.7.1 Prior expectations; 2.7.2 Prior variances; 2.7.3 Prior covariances; 2.7.4 Summary of belief specifications; 2.8 Discussion: on the various methods for assigning expectations; 3 Adjusting beliefs; 3.1 Adjusted expectation; 3.2 Properties of adjusted expectation
3.3 Adjusted variance3.4 Interpretations of belief adjustment; 3.5 Foundational issues concerning belief adjustment; 3.6 Example: one-dimensional problem; 3.7 Collections of adjusted beliefs; 3.8 Examples; 3.8.1 Algebraic example; 3.8.2 Oral glucose tolerance test; 3.8.3 Many oral glucose tolerance tests; 3.9 Canonical analysis for a belief adjustment; 3.9.1 Canonical directions for the adjustment; 3.9.2 The resolution transform; 3.9.3 Partitioning the resolution; 3.9.4 The reverse adjustment; 3.9.5 Minimal linear sufficiency; 3.9.6 The adjusted belief transform matrix
3.10 The geometric interpretation of belief adjustment3.11 Examples; 3.11.1 Simple one-dimensional problem; 3.11.2 Algebraic example; 3.11.3 Oral glucose tolerance test; 3.12 Further reading; 4 The observed adjustment; 4.1 Discrepancy; 4.1.1 Discrepancy for a collection; 4.1.2 Evaluating discrepancy over a basis; 4.1.3 Discrepancy for quantities with variance zero; 4.2 Properties of discrepancy measures; 4.2.1 Evaluating the discrepancy vector over a basis; 4.3 Examples; 4.3.1 Simple one-dimensional problem; 4.3.2 Detecting degeneracy; 4.3.3 Oral glucose tolerance test
4.4 The observed adjustment
Record Nr. UNINA-9910830430903321
Goldstein Michael <1949->  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayes linear statistics : theory and methods / / Michael Goldstein and David Wooff
Bayes linear statistics : theory and methods / / Michael Goldstein and David Wooff
Autore Goldstein Michael <1949->
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Descrizione fisica 1 online resource (538 p.)
Disciplina 519.5/42
Altri autori (Persone) WooffDavid
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Linear systems
Computational complexity
ISBN 9786610854950
9781280854958
1280854952
9780470065662
0470065664
9780470065679
0470065672
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayes Linear Statistics; Contents; Preface; 1 The Bayes linear approach; 1.1 Combining beliefs with data; 1.2 The Bayesian approach; 1.3 Features of the Bayes linear approach; 1.4 Example; 1.4.1 Expectation, variance, and standardization; 1.4.2 Prior inputs; 1.4.3 Adjusted expectations; 1.4.4 Adjusted versions; 1.4.5 Adjusted variances; 1.4.6 Checking data inputs; 1.4.7 Observed adjusted expectations; 1.4.8 Diagnostics for adjusted beliefs; 1.4.9 Further diagnostics for the adjusted versions; 1.4.10 Summary of basic adjustment; 1.4.11 Diagnostics for collections
1.4.12 Exploring collections of beliefs via canonical structure1.4.13 Modifying the original specifications; 1.4.14 Repeating the analysis for the revised model; 1.4.15 Global analysis of collections of observations; 1.4.16 Partial adjustments; 1.4.17 Partial diagnostics; 1.4.18 Summary; 1.5 Overview; 2 Expectation; 2.1 Expectation as a primitive; 2.2 Discussion: expectation as a primitive; 2.3 Quantifying collections of uncertainties; 2.4 Specifying prior beliefs; 2.4.1 Example: oral glucose tolerance test; 2.5 Qualitative and quantitative prior specification
2.6 Example: qualitative representation of uncertainty2.6.1 Identifying the quantities of interest; 2.6.2 Identifying relevant prior information; 2.6.3 Sources of variation; 2.6.4 Representing population variation; 2.6.5 The qualitative representation; 2.6.6 Graphical models; 2.7 Example: quantifying uncertainty; 2.7.1 Prior expectations; 2.7.2 Prior variances; 2.7.3 Prior covariances; 2.7.4 Summary of belief specifications; 2.8 Discussion: on the various methods for assigning expectations; 3 Adjusting beliefs; 3.1 Adjusted expectation; 3.2 Properties of adjusted expectation
3.3 Adjusted variance3.4 Interpretations of belief adjustment; 3.5 Foundational issues concerning belief adjustment; 3.6 Example: one-dimensional problem; 3.7 Collections of adjusted beliefs; 3.8 Examples; 3.8.1 Algebraic example; 3.8.2 Oral glucose tolerance test; 3.8.3 Many oral glucose tolerance tests; 3.9 Canonical analysis for a belief adjustment; 3.9.1 Canonical directions for the adjustment; 3.9.2 The resolution transform; 3.9.3 Partitioning the resolution; 3.9.4 The reverse adjustment; 3.9.5 Minimal linear sufficiency; 3.9.6 The adjusted belief transform matrix
3.10 The geometric interpretation of belief adjustment3.11 Examples; 3.11.1 Simple one-dimensional problem; 3.11.2 Algebraic example; 3.11.3 Oral glucose tolerance test; 3.12 Further reading; 4 The observed adjustment; 4.1 Discrepancy; 4.1.1 Discrepancy for a collection; 4.1.2 Evaluating discrepancy over a basis; 4.1.3 Discrepancy for quantities with variance zero; 4.2 Properties of discrepancy measures; 4.2.1 Evaluating the discrepancy vector over a basis; 4.3 Examples; 4.3.1 Simple one-dimensional problem; 4.3.2 Detecting degeneracy; 4.3.3 Oral glucose tolerance test
4.4 The observed adjustment
Record Nr. UNINA-9911019679603321
Goldstein Michael <1949->  
Chichester, England ; ; Hoboken, NJ, : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Continuous-time Markov jump linear systems / / Oswaldo L.V. Costa, Marcelo D. Fragoso, Marcos G. Todorov
Continuous-time Markov jump linear systems / / Oswaldo L.V. Costa, Marcelo D. Fragoso, Marcos G. Todorov
Autore Costa Oswaldo L. V
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, 2013
Descrizione fisica 1 online resource (294 p.)
Disciplina 003.76
Altri autori (Persone) FragosoMarcelo D
TodorovMarcos G
Collana Probability and its applications
Soggetto topico Stochastic control theory
Stochastic systems
Linear systems
Control theory
Markov processes
ISBN 1-283-94496-0
3-642-34100-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.Introduction -- 2.A Few Tools and Notations -- 3.Mean Square Stability -- 4.Quadratic Optimal Control with Complete Observations -- 5.H2 Optimal Control With Complete Observations -- 6.Quadratic and H2 Optimal Control with Partial Observations -- 7.Best Linear Filter with Unknown (x(t), θ(t)) -- 8.H_$infty$ Control -- 9.Design Techniques -- 10.Some Numerical Examples -- A. Coupled Differential and Algebraic Riccati Equations -- B. The Adjoint Operator and Some Auxiliary Results -- References. - Notation and Conventions -- Index.
Record Nr. UNINA-9910437866903321
Costa Oswaldo L. V  
New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNISA-996466544903316
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Controllability of singularly perturbed linear time delay systems / / Valery Y. Glizer
Autore Glizer Valery Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (429 pages)
Disciplina 003.74
Collana Systems and Control: Foundations and Applications
Soggetto topico Linear systems
Control theory
Sistemes lineals
Teoria de control
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Real-Life Models -- 1.1.1 Neurosystem Model -- 1.1.2 Sunflower Equation -- 1.1.3 Model of Nuclear Reactor Dynamics -- 1.1.4 Model of Controlled Coupled-Core Nuclear Reactor -- 1.1.5 Car-Following Model: Lane as a Simple Open Curve -- 1.1.6 Car-Following Model: Lane as a Simple Closed Curve -- References -- 2 Singularly Perturbed Linear Time Delay Systems -- 2.1 Introduction -- 2.2 Singularly Perturbed Systems with Small Delays -- 2.2.1 Original System -- 2.2.2 Slow-Fast Decomposition of the Original System -- 2.2.3 Fundamental Matrix Solution -- 2.2.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Small Delays -- 2.2.5 Example 1 -- 2.2.6 Example 2: Tracking Model with Delay -- 2.2.7 Example 3: Analysis of Neurosystem Model -- 2.2.8 Example 4: Analysis of Sunflower Equation -- 2.2.9 Proof of Lemma 2.2 -- 2.2.10 Proof of Theorem 2.1 -- 2.2.10.1 Technical Proposition -- 2.2.10.2 Main Part of the Proof -- 2.3 Singularly Perturbed Systems with Delays of Two Scales -- 2.3.1 Original System -- 2.3.2 Slow-Fast Decomposition of the Original System -- 2.3.3 Fundamental Matrix Solution -- 2.3.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Delays of Two Scales -- 2.3.5 Example 5 -- 2.3.6 Example 6: Dynamics of Nuclear Reactor -- 2.3.7 Example 7: Analysis of Car-Following Model in a Simple Closed Lane -- 2.3.8 Proof of Theorem 2.2 -- 2.4 One Class of Singularly Perturbed Systems with NonsmallDelays -- 2.4.1 Original System -- 2.4.2 Slow-Fast Decomposition of the Original System -- 2.4.3 Fundamental Matrix Solution -- 2.4.4 Estimates of Solutions to Singularly Perturbed Matrix Differential Systems with Nonsmall Delays -- 2.4.5 Example 8 -- 2.4.6 Proof of Lemma 2.4 -- 2.4.7 Proof of Theorem 2.4 -- 2.5 Concluding Remarks and Literature Review.
References -- 3 Euclidean Space Output Controllability of Linear Systems with State Delays -- 3.1 Introduction -- 3.2 Systems with Small Delays: Main Notions and Definitions -- 3.2.1 Original System -- 3.2.2 Asymptotic Decomposition of the Original System -- 3.3 Auxiliary Results -- 3.3.1 Output Controllability of a System with State Delays: Necessary and Sufficient Conditions -- 3.3.2 Linear Control Transformation in Systems with Small Delays -- 3.3.2.1 Control Transformation in the Original System -- 3.3.2.2 Asymptotic Decomposition of the Transformed System (3.30)-(3.31), (3.3) -- 3.3.3 Hybrid Set of Riccati-Type Matrix Equations -- 3.3.4 Proof of Lemma 3.1 -- 3.3.4.1 Sufficiency -- 3.3.4.2 Necessity -- 3.3.5 Proof of Lemma 3.5 -- 3.3.6 Proof of Lemma 3.7 -- 3.3.7 Proof of Lemma 3.8 -- 3.3.8 Proof of Lemma 3.9 -- 3.4 Parameter-Free Controllability Conditions for Systems with Small Delays -- 3.4.1 Case of the Standard System (3.1)-(3.2) -- 3.4.2 Case of the Nonstandard System (3.1)-(3.2) -- 3.4.3 Proofs of Theorems 3.1, 3.2, and 3.3 -- 3.4.3.1 Proof of Theorem 3.1 -- 3.4.3.2 Proof of Theorem 3.2 -- 3.4.3.3 Proof of Theorem 3.3 -- 3.5 Special Cases of Controllability for Systems with Small Delays -- 3.5.1 Complete Euclidean Space Controllability -- 3.5.2 Controllability with Respect to x(t) -- 3.5.3 Controllability with Respect to y(t) -- 3.6 Examples: Systems with Small Delays -- 3.6.1 Example 1 -- 3.6.2 Example 2 -- 3.6.3 Example 3 -- 3.6.4 Example 4 -- 3.6.5 Example 5 -- 3.6.6 Example 6: Pursuit-Evasion Engagement with Constant Speeds of Participants -- 3.6.7 Example 7: Pursuit-Evasion Engagement with Variable Speeds of Participants -- 3.6.8 Example 8: Analysis of Controlled Coupled-Core Nuclear Reactor Model -- 3.7 Systems with Delays of Two Scales: Main Notionsand Definitions -- 3.7.1 Original System.
3.7.2 Asymptotic Decomposition of the Original System -- 3.8 Linear Control Transformation in Systems with Delays of Two Scales -- 3.8.1 Control Transformation in the Original System -- 3.8.2 Asymptotic Decomposition of the Transformed System (3.196)-(3.197), (3.187) -- 3.9 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 3.9.1 Case of the Validity of the Assumption (AIII) -- 3.9.2 Case of the Validity of the Assumption (AIV) -- 3.9.3 Special Cases of Controllability -- 3.9.3.1 Complete Euclidean Space Controllability -- 3.9.3.2 Controllability with Respect to x(t) -- 3.9.3.3 Controllability with Respect to y(t) -- 3.9.4 Example 9 -- 3.9.5 Example 10 -- 3.9.6 Example 11: Controlled Car-Following Model in a Simple Open Lane -- 3.10 Concluding Remarks and Literature Review -- References -- 4 Complete Euclidean Space Controllability of Linear Systems with State and Control Delays -- 4.1 Introduction -- 4.2 System with Small State Delays: Main Notions and Definitions -- 4.2.1 Original System -- 4.2.2 Asymptotic Decomposition of the Original System -- 4.3 Preliminary Results -- 4.3.1 Auxiliary System with Small State Delays and Delay-Free Control -- 4.3.2 Output Controllability of the Auxiliary System and Its Slow and Fast Subsystems: Necessary and Sufficient Conditions -- 4.3.2.1 Equivalent Forms of the Auxiliary System -- 4.3.2.2 Output Controllability of the Auxiliary System -- 4.3.2.3 Output Controllability of the Slow and Fast Subsystems Associated with the Auxiliary System -- 4.3.3 Linear Control Transformation in the Original System with Small State Delays -- 4.3.4 Stabilizability of a Parameter-Dependent System with State and Control Delays by a Memory-Less Feedback Control -- 4.3.5 Proof of Lemma 4.8 -- 4.4 Parameter-Free Controllability Conditions for Systems with Small State Delays.
4.4.1 Case of the Standard System (4.1)-(4.2) -- 4.4.2 Case of the Nonstandard System (4.1)-(4.2) -- 4.4.3 Proof of Main Lemma (Lemma 4.9) -- 4.4.3.1 Auxiliary Propositions -- 4.4.3.2 Main Part of the Proof -- 4.4.4 Alternative Approach to Controllability Analysis of the Nonstandard System (4.1)-(4.2) -- 4.4.4.1 Linear Control Transformation in the Auxiliary System (4.40)-(4.42) -- 4.4.4.2 Proof of Lemma 4.10 -- 4.4.4.3 Hybrid Set of Riccati-Type Matrix Equations -- 4.4.4.4 Parameter-Free Controllability Conditions of the Nonstandard System (4.1)-(4.2) -- 4.5 Examples: Systems with Small State and Control Delays -- 4.5.1 Example 1 -- 4.5.2 Example 2 -- 4.5.3 Example 3 -- 4.6 Systems with State Delays of Two Scales: Main Notions and Definitions -- 4.6.1 Original System -- 4.6.2 Asymptotic Decomposition of the Original System -- 4.7 Auxiliary System with State Delays of Two Scales and Delay-Free Control -- 4.7.1 Description of the Auxiliary System and Some of Its Properties -- 4.7.2 Asymptotic Decomposition of the Auxiliary System (4.180)-(4.181) -- 4.7.3 Linear Control Transformation in the Auxiliary System (4.180)-(4.181) -- 4.8 Parameter-Free Controllability Conditions for Systems with Delays of Two Scales -- 4.8.1 Case of the Validity of the Assumption (AV) -- 4.8.2 Case of the Validity of the Assumption (AVI) -- 4.8.3 Example 4 -- 4.8.4 Example 5 -- 4.8.5 Example 6: Analysis of Car-Following Model with State and Control Delays -- 4.9 Concluding Remarks and Literature Review -- References -- 5 First-Order Euclidean Space Controllability Conditions for Linear Systems with Small State Delays -- 5.1 Introduction -- 5.2 Singularly Perturbed System: Main Notions and Definitions -- 5.2.1 Original System -- 5.2.2 Asymptotic Decomposition of the Original System -- 5.3 Auxiliary Results.
5.3.1 Estimates of Solutions to Some Singularly Perturbed Linear Time Delay Matrix Differential Equations -- 5.3.2 Proof of Lemma 5.1 -- 5.3.2.1 Technical Proposition -- 5.3.2.2 Main Part of the Proof -- 5.3.3 Complete Controllability of the Original System and Its Slow Subsystem: Necessary and SufficientConditions -- 5.4 Parameter-Free Controllability Conditions -- 5.4.1 Formulation of Main Assertions -- 5.4.2 Proof of Theorem 5.1 -- 5.4.3 Proof of Lemma 5.2 -- 5.4.4 Proof of Theorem 5.2 -- 5.4.4.1 Euclidean Space Controllability of a Pure Fast System -- 5.4.4.2 Main Part of the Proof -- 5.5 Examples -- 5.5.1 Example 1 -- 5.5.2 Example 2 -- 5.5.3 Example 3 -- 5.5.4 Example 4 -- 5.5.5 Example 5 -- 5.5.6 Example 6 -- 5.5.7 Example 7: Analysis of Controlled Car-Following Model in a Simple Open Lane -- 5.6 Concluding Remarks and Literature Review -- References -- 6 Miscellanies -- 6.1 Introduction -- 6.2 Euclidean Space Controllability of Linear Time Delay Systems with High Gain Control -- 6.2.1 High Gain Control System: Main Notionsand Definitions -- 6.2.1.1 Initial System -- 6.2.1.2 Transformation of the System (6.1) -- 6.2.2 High Dimension Controllability Condition for the System (6.5) -- 6.2.3 Asymptotic Decomposition of the System (6.5) -- 6.2.4 Auxiliary Results -- 6.2.4.1 Linear Control Transformation in the System (6.13)-(6.14) and Some of its Properties -- 6.2.4.2 Asymptotic Decomposition of the Transformed System (6.13), (6.21) -- 6.2.4.3 Block-Wise Estimate of the Solution to the Terminal-Value Problem (6.23) -- 6.2.5 Lower Dimension Parameter-Free Controllability Condition for the System (6.5) -- 6.2.6 Example -- 6.3 Euclidean Space Controllability of Linear Systems with Nonsmall Input Delay -- 6.3.1 Original System -- 6.3.2 Discussion on the Slow-Fast Decomposition of the Original System -- 6.3.3 Auxiliary Results.
6.3.3.1 Necessary and Sufficient Controllability Conditions of the Original System.
Record Nr. UNINA-9910483576203321
Glizer Valery Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Countable systems of differential equations / A. M. Samoilenko and Yu. V. Teplinskii
Countable systems of differential equations / A. M. Samoilenko and Yu. V. Teplinskii
Autore Samoilenko, Anatolii Mikhailovich
Pubbl/distr/stampa Utrecht ; Boston : VSP, 2003
Descrizione fisica viii, 287 p. ; 25 cm
Disciplina 515.35
Altri autori (Persone) Teplinskii, Yu. V.
Soggetto topico Differential equations
Linear systems
Invariant manifolds
ISBN 9067643939
Classificazione AMS 34G
LC QA372.S1615
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000765729707536
Samoilenko, Anatolii Mikhailovich  
Utrecht ; Boston : VSP, 2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Development of a linear Stirling system model with varying heat inputs [[electronic resource] /] / Timothy F. Regan and Edward J. Lewandowski ; prepared for the Fifth International Energy Conversion Engineering Conference and Exhibit (IECEC) sponsored by the American Institute of Aeronautics and Astronautics St. Louis, Missouri, June 25-27, 2007
Development of a linear Stirling system model with varying heat inputs [[electronic resource] /] / Timothy F. Regan and Edward J. Lewandowski ; prepared for the Fifth International Energy Conversion Engineering Conference and Exhibit (IECEC) sponsored by the American Institute of Aeronautics and Astronautics St. Louis, Missouri, June 25-27, 2007
Autore Regan Timothy F
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2007]
Descrizione fisica 1 online resource (11 pages) : illustrations
Altri autori (Persone) LewandowskiEdward J
Collana NASA/CR-
Soggetto topico Stirling cycle
Mathematical models
Nonlinear systems
Heat transmission
Linear systems
Heat sources
Dynamic models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910699551803321
Regan Timothy F  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui