Advanced linear modeling : multivariate, time series, and spatial data; nonparametric regression and response surface maximization / Ronald Christensen |
Autore | Christensen, Ronald, 1951- |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | New York : Springer, c2001 |
Descrizione fisica | xiii, 398 p. : ill. ; 24 cm. |
Disciplina | 519.535 |
Altri autori (Persone) | Christensen, Ronald, 1951-author |
Collana | Springer texts in statistics |
Soggetto topico | Linear models (Statistics) |
ISBN | 0387952969 (alk. paper) |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001534099707536 |
Christensen, Ronald, 1951- | ||
New York : Springer, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Advances in growth curve models : topics from the Indian Statistical Institute / / Ratan Dasgupta, editor |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | New York, : Springer, 2013 |
Descrizione fisica | 1 online resource (278 p.) |
Disciplina | 519.53 |
Altri autori (Persone) | DasguptaRatan |
Collana | Springer Proceedings in Mathematics & Statistics |
Soggetto topico |
Biometry
Linear models (Statistics) |
ISBN | 1-4614-6862-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Yam Growth Experiment and Above-ground Biomass as Possible Predictor -- Some Statistical Perspectives of Growth Models in Health Care Plans -- Testing of Growth Curves with Cubic Smoothing Splines -- Non uniform Rates of Convergence to Normality for Two sample U-statistics in Non IID Case with Applications -- Correlated Bivariate Linear Growth Models: Optimal Designs for Slope Parameter Estimation -- Optimal-Time Harvest of Elephant Foot Yam and Related Theoretical Issues -- Evolution of Scour and velocity fluctuation due to turbulence around cylinders -- South Pole Ozone Profile and Lower Tolerance Limit -- Population Distribution of Human Growth Curve Parameters Through a Combination of Longitudinal and Cross-sectional Data -- Tuber Crop Growth and Pareto Model -- Effect of past demographic events on the mtDNA mismatch distribution among the Adi tribe of Arunachal Pradesh, India -- Growth Curve Model in Relation to Extremal Processes based on Stationary Random Variables -- A Method of Population Projection by Using Leslie Matrix in Indian Context -- Indian Statistical Institute and Tata Motors Pune: Growth curve for cumulative defects -- Growth and Nutritional Status of Pre-school Children: A Comparative Study of Jharkhand, Bihar and West Bengal. . |
Record Nr. | UNINA-9910438144003321 |
New York, : Springer, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis of generalized linear mixed models in the agricultural and natural resources sciences |
Autore | Gbur, Edward E |
Pubbl/distr/stampa | [Place of publication not identified], : American Society of Agronomy, 2012 |
Disciplina | 519.5/38 |
Soggetto topico |
Agriculture - Statistical methods - Research
Analysis of variance Linear models (Statistics) Agriculture Earth & Environmental Sciences Agriculture - General |
ISBN | 0-89118-183-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555192203321 |
Gbur, Edward E | ||
[Place of publication not identified], : American Society of Agronomy, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis of generalized linear mixed models in the agricultural and natural resources sciences |
Autore | Gbur, Edward E |
Pubbl/distr/stampa | [Place of publication not identified], : American Society of Agronomy, 2012 |
Disciplina | 519.5/38 |
Soggetto topico |
Agriculture - Statistical methods - Research
Analysis of variance Linear models (Statistics) Agriculture Earth & Environmental Sciences Agriculture - General |
ISBN | 0-89118-183-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830706703321 |
Gbur, Edward E | ||
[Place of publication not identified], : American Society of Agronomy, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis of generalized linear mixed models in the agricultural and natural resources sciences |
Autore | Gbur, Edward E |
Pubbl/distr/stampa | [Place of publication not identified], : American Society of Agronomy, 2012 |
Disciplina | 519.5/38 |
Soggetto topico |
Agriculture - Statistical methods - Research
Analysis of variance Linear models (Statistics) Agriculture Earth & Environmental Sciences Agriculture - General |
ISBN | 0-89118-183-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910877630203321 |
Gbur, Edward E | ||
[Place of publication not identified], : American Society of Agronomy, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
ANOVA and ANCOVA [[electronic resource] ] : a GLM approach / / Andrew Rutherford |
Autore | Rutherford Andrew <1958-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2011 |
Descrizione fisica | 1 online resource (360 p.) |
Disciplina | 519.538 |
Soggetto topico |
Analysis of variance
Analysis of covariance Linear models (Statistics) |
ISBN |
1-118-49168-8
1-283-59290-8 9786613905352 1-118-49171-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ANOVA and ANCOVA A GLM Approach; Contents; Acknowledgments; 1 An Introduction to General Linear Models: Regression, Analysis of Variance, and Analysis of Covariance; 1.1 Regression, Analysis of Variance, and Analysis of Covariance; 1.2 A Pocket History of Regression, ANOVA, and ANCOVA; 1.3 An Outline of General Linear Models (GLMs); 1.3.1 Regression; 1.3.2 Analysis of Variance; 1.3.3 Analysis of Covariance; 1.4 The ""General"" in GLM; 1.5 The ""Linear"" in GLM; 1.6 Least Squares Estimates; 1.7 Fixed, Random, and Mixed Effects Analyses; 1.8 The Benefits of a GLM Approach to ANOVA and ANCOVA
1.9 The GLM Presentation 1.10 Statistical Packages for Computers; 2 Traditional and GLM Approaches to Independent Measures Single Factor ANOVA Designs; 2.1 Independent Measures Designs; 2.2 Balanced Data Designs; 2.3 Factors and Independent Variables; 2.4 An Outline of Traditional ANOVA for Single Factor Designs; 2.5 Variance; 2.6 Traditional ANOVA Calculations for Single Factor Designs; 2.7 Confidence Intervals; 2.8 GLM Approaches to Single Factor ANOVA; 2.8.1 Experimental Design GLMs; 2.8.2 Estimating Effects by Comparing Full and Reduced Experimental Design GLMs; 2.8.3 Regression GLMs 2.8.4 Schemes for Coding Experimental Conditions 2.8.4.1 Dummy Coding; 2.8.4.2 Why Only (p - 1) Variables Are Used to Represent All Experimental Conditions?; 2.8.4.3 Effect Coding; 2.8.5 Coding Scheme Solutions to the Overparameterization Problem; 2.8.6 Cell Mean GLMs; 2.8.7 Experimental Design Regression and Cell Mean GLMs; 3 Comparing Experimental Condition Means, Multiple Hypothesis Testing, Type 1 Error, and a Basic Data Analysis Strategy; 3.1 Introduction; 3.2 Comparisons Between Experimental Condition Means; 3.3 Linear Contrasts; 3.4 Comparison Sum of Squares; 3.5 Orthogonal Contrasts 3.6 Testing Multiple Hypotheses 3.6.1 Type 1 and Type 2 Errors; 3.6.2 Type 1 Error Rate Inflation with Multiple Hypothesis Testing; 3.6.3 Type 1 Error Rate Control and Analysis Power; 3.6.4 Different Conceptions of Type 1 Error Rate; 3.6.4.1 Test wise Type 1 Error Rate; 3.6.4.2 Family wise Type 1 Error Rate; 3.6.4.3 Experiment wise Type 1 Error Rate; 3.6.4.4 False Discovery Rate; 3.6.5 Identifying the ""Family"" in Family wise Type 1 Error Rate Control; 3.6.6 Logical and Empirical Relations; 3.6.6.1 Logical Relations; 3.6.6.2 Empirical Relations; 3.7 Planned and Unplanned Comparisons 3.7.1 Direct Assessment of Planned Comparisons 3.7.2 Contradictory Results with ANOVA Omnibus F-tests and Direct Planned Comparisons; 3.8 A Basic Data Analysis Strategy; 3.8.1 ANOVA First?; 3.8.2 Strong and Weak Type 1 Error Control; 3.8.3 Step wise Tests; 3.8.4 Test Power; 3.9 The Three Basic Stages of Data Analysis; 3.9.1 Stage 1; 3.9.2 Stage 2; 3.9.2.1 Rom's Test; 3.9.2.2 Shaffer's R Test; 3.9.2.3 Applying Shaffer's R Test After a Significant F-test; 3.9.3 Stage 3; 3.10 The Role of the Omnibus F-Test; 4 Measures of Effect Size and Strength of Association, Power, and Sample Size 4.1 Introduction |
Record Nr. | UNINA-9910141423003321 |
Rutherford Andrew <1958-> | ||
Hoboken, NJ, : Wiley, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
ANOVA and ANCOVA : a GLM approach / / Andrew Rutherford |
Autore | Rutherford Andrew <1958-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2011 |
Descrizione fisica | 1 online resource (360 p.) |
Disciplina | 519.538 |
Soggetto topico |
Analysis of variance
Analysis of covariance Linear models (Statistics) |
ISBN |
1-118-49168-8
1-283-59290-8 9786613905352 1-118-49171-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
ANOVA and ANCOVA A GLM Approach; Contents; Acknowledgments; 1 An Introduction to General Linear Models: Regression, Analysis of Variance, and Analysis of Covariance; 1.1 Regression, Analysis of Variance, and Analysis of Covariance; 1.2 A Pocket History of Regression, ANOVA, and ANCOVA; 1.3 An Outline of General Linear Models (GLMs); 1.3.1 Regression; 1.3.2 Analysis of Variance; 1.3.3 Analysis of Covariance; 1.4 The ""General"" in GLM; 1.5 The ""Linear"" in GLM; 1.6 Least Squares Estimates; 1.7 Fixed, Random, and Mixed Effects Analyses; 1.8 The Benefits of a GLM Approach to ANOVA and ANCOVA
1.9 The GLM Presentation 1.10 Statistical Packages for Computers; 2 Traditional and GLM Approaches to Independent Measures Single Factor ANOVA Designs; 2.1 Independent Measures Designs; 2.2 Balanced Data Designs; 2.3 Factors and Independent Variables; 2.4 An Outline of Traditional ANOVA for Single Factor Designs; 2.5 Variance; 2.6 Traditional ANOVA Calculations for Single Factor Designs; 2.7 Confidence Intervals; 2.8 GLM Approaches to Single Factor ANOVA; 2.8.1 Experimental Design GLMs; 2.8.2 Estimating Effects by Comparing Full and Reduced Experimental Design GLMs; 2.8.3 Regression GLMs 2.8.4 Schemes for Coding Experimental Conditions 2.8.4.1 Dummy Coding; 2.8.4.2 Why Only (p - 1) Variables Are Used to Represent All Experimental Conditions?; 2.8.4.3 Effect Coding; 2.8.5 Coding Scheme Solutions to the Overparameterization Problem; 2.8.6 Cell Mean GLMs; 2.8.7 Experimental Design Regression and Cell Mean GLMs; 3 Comparing Experimental Condition Means, Multiple Hypothesis Testing, Type 1 Error, and a Basic Data Analysis Strategy; 3.1 Introduction; 3.2 Comparisons Between Experimental Condition Means; 3.3 Linear Contrasts; 3.4 Comparison Sum of Squares; 3.5 Orthogonal Contrasts 3.6 Testing Multiple Hypotheses 3.6.1 Type 1 and Type 2 Errors; 3.6.2 Type 1 Error Rate Inflation with Multiple Hypothesis Testing; 3.6.3 Type 1 Error Rate Control and Analysis Power; 3.6.4 Different Conceptions of Type 1 Error Rate; 3.6.4.1 Test wise Type 1 Error Rate; 3.6.4.2 Family wise Type 1 Error Rate; 3.6.4.3 Experiment wise Type 1 Error Rate; 3.6.4.4 False Discovery Rate; 3.6.5 Identifying the ""Family"" in Family wise Type 1 Error Rate Control; 3.6.6 Logical and Empirical Relations; 3.6.6.1 Logical Relations; 3.6.6.2 Empirical Relations; 3.7 Planned and Unplanned Comparisons 3.7.1 Direct Assessment of Planned Comparisons 3.7.2 Contradictory Results with ANOVA Omnibus F-tests and Direct Planned Comparisons; 3.8 A Basic Data Analysis Strategy; 3.8.1 ANOVA First?; 3.8.2 Strong and Weak Type 1 Error Control; 3.8.3 Step wise Tests; 3.8.4 Test Power; 3.9 The Three Basic Stages of Data Analysis; 3.9.1 Stage 1; 3.9.2 Stage 2; 3.9.2.1 Rom's Test; 3.9.2.2 Shaffer's R Test; 3.9.2.3 Applying Shaffer's R Test After a Significant F-test; 3.9.3 Stage 3; 3.10 The Role of the Omnibus F-Test; 4 Measures of Effect Size and Strength of Association, Power, and Sample Size 4.1 Introduction |
Altri titoli varianti | Analysis of variance and analysis of covariance : a general linear model approach |
Record Nr. | UNINA-9910826581903321 |
Rutherford Andrew <1958-> | ||
Hoboken, NJ, : Wiley, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of linear and nonlinear models : fixed effects, random effects, and total least squares / / Joseph L. Awange, Erik W. Grafarend, Silvelyn Zwanzig |
Autore | Awange Joseph L. <1969-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (1127 pages) |
Disciplina | 550 |
Collana | Springer geophysics |
Soggetto topico |
Geophysics
Linear models (Statistics) Mathematical models Geofísica Models lineals (Estadística) Models matemàtics |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-94598-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 The First Problem of Algebraic Regression -- 1-1 Introduction -- 1-11 The Front Page Example -- 1-12 The Front Page Example: Matrix Algebra -- 1-13 The Front Page Example: MINOS, Horizontal Rank Partitioning -- 1-14 The Range R(f) and the Kernel N(f) -- 1-15 The Interpretation of MINOS -- 1-2 Minimum Norm Solution (MINOS) -- 1-21 A Discussion of the Metric of the Parameter Space X -- 1-22 An Alternative Choice of the Metric of the Parameter Space X -- 1-23 Gx-MINOS and Its Generalized Inverse -- 1-24 Eigenvalue Decomposition of Gx-MINOS: Canonical MINOS -- 1-3 Case Study -- 1-31 Fourier Series -- 1-32 Fourier-Legendre Series -- 1-33 Nyquist Frequency for Spherical Data -- 1-4 Special Nonlinear Models -- 1-41 Taylor Polynomials, Generalized Newton Iteration -- 1-42 Linearized Models with Datum Defect -- 1-5 Notes -- Chapter 2 The First Problem of Probabilistic Regression: The Bias Problem -- 2-1 Linear Uniformly Minimum Bias Estimator (LUMBE) -- 2-2 The Equivalence Theorem of Gx-MINOS and S-LUMBE -- 2-3 Example -- Chapter 3 The Second Problem of Algebraic Regression -- 3-1 Introduction -- 3-11 The Front Page Example -- 3-12 The Front Page Example in Matrix Algebra -- 3-13 Least Squares Solution of the Front Page Example by Means of Vertical Rank Partitioning -- 3-14 The RangeR(f) and the Kernel N(f), Interpretation of "LESS" by Three Partitionings -- 3-2 The Least Squares Solution: "LESS" -- 3-21 A Discussion of the Metric of the Parameter Space X -- 3-22 Alternative Choices of the Metric of the Observation Y -- 3-23 Gx-LESS and Its Generalized Inverse -- 3-24 Eigenvalue Decomposition of Gy-LESS: Canonical LESS -- 3-3 Case Study -- 3-31 Canonical Analysis of the Hat Matrix, Partial Redundancies, High Leverage Points.
3-32 Multilinear Algebra, "Join" and "Meet", the Hodge Star Operator -- 3-33 From A to B: Latent Restrictions, Grassmann Coordinates, Plücker Coordinates -- 3-34 From B to A: Latent Parametric Equations, Dual Grassmann Coordinates, Dual Plücker Coordinates -- 3-35 Break Points -- 3-4 Special Linear and Nonlinear Models: A Family of Means for Direct Observations -- 3-5 A Historical Note on C.F. Gauss and A.M. Legendre -- Chapter 4 The Second Problem of Probabilistic Regression -- 4-1 Introduction -- 4-11 The Front Page Example -- 4-12 Estimators of Type BLUUE and BIQUUE of the Front Page Example -- 4-13 BLUUE and BIQUUE of the Front Page Example, Sample Median, Median Absolute Deviation -- 4-14 Alternative Estimation Maximum Likelihood (MALE) -- 4-2 Setup of the Best Linear Uniformly Unbiased Estimator -- 4-21 The Best Linear Uniformly Unbiased Estimation ^ξ of ξ : Σy-BLUUE -- 4-22 The Equivalence Theorem of Gy-LESS and Σy-BLUUE -- 4-3 Setup of the Best Invariant Quadratic Uniformly Unbiased Estimator -- 4-31 Block Partitioning of the Dispersion Matrix and Linear Space Generated by Variance-Covariance Components -- 4-32 Invariant Quadratic Estimation of Variance-Covariance Components of Type IQE -- 4-33 Invariant Quadratic Uniformly Unbiased Estimations of Variance-Covariance Components of Type IQUUE -- 4-34 Invariant Quadratic Uniformly Unbiased Estimationsof One Variance Component (IQUUE) from Σy-BLUUE: HIQUUE -- 4-35 Invariant Quadratic Uniformly Unbiased Estimators of Variance Covariance Components of Helmert Type: HIQUUE Versus HIQE -- 4-36 Best Quadratic Uniformly Unbiased Estimations of One Variance Component: BIQUUE -- 4-37 Simultaneous Determination of First Moment and the Second Central Moment, Inhomogeneous Multilinear Estimation, the E - D Correspondence, Bayes Designwith Moment Estimations. Chapter 5 The Third Problem of Algebraic Regression -- 5-1 Introduction -- 5-11 The Front Page Example -- 5-12 The Front Page Example in Matrix Algebra -- 5-13 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Additive Rank Partitioning -- 5-14 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Multiplicative Rank Partitioning -- 5-15 The Range R(f) and the Kernel N(f) Interpretation of "MINOLESS" by Three Partitionings -- 5-2 MINOLESS and Related Solutions Like Weighted Minimum Norm-Weighted Least Squares Solutions -- 5-21 The Minimum Norm-Least Squares Solution: "MINOLESS" -- 5-22 (Gx, Gy)-MINOS and Its Generalized Inverse -- 5-23 Eigenvalue Decomposition of (Gx, Gy)-MINOLESS -- 5-24 Notes -- 5-3 The Hybrid Approximation Solution: α-HAPS and Tykhonov-Phillips Regularization -- Chapter 6 The Third Problem of Probabilistic Regression -- 6-1 Setup of the Best Linear Minimum Bias Estimator of Type BLUMBE -- 6-11 Definitions, Lemmas and Theorems -- 6-12 The First Example: BLUMBE Versus BLE, BIQUUE Versus BIQE, Triangular Leveling Network -- 6-2 Setup of the Best Linear Estimators of Type hom BLE, hom S-BLE and hom a-BLE for Fixed Effects -- 6-3 Continuous Networks -- 6-31 Continuous Networks of Second Derivatives Type -- Chapter 7 Overdetermined System of Nonlinear Equations on Curved Manifolds -- 7-1 Introduction -- 7-2 Minimal Geodesic Distance: MINGEODISC -- 7-3 Special Models: From the Circular Normal Distribution to the Oblique Normal Distribution -- 7-31 A Historical Note of the von Mises Distribution -- 7-32 Oblique Map Projection -- 7-33 A Note on the Angular Metric -- 7-4 Case Study -- References -- Chapter 8 The Fourth Problem of Probabilistic Regression -- 8-1 The Random Effect Model -- 8-2 Examples. Chapter 9 The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and Inhomogeneous Equations: {By = Bi versus -c + By = Bi} -- 9-1 Gy-LESS of a System of a Inconsistent Homogeneous Conditional Equations -- 9-2 Solving a System of Inconsistent Inhomogeneous Conditional Equations -- 9-3 Examples -- Chapter 10 The Fifth Problem of Probabilistic Regression -- 10-1 Inhomogeneous General Linear Gauss-Markov Model (Fixed Effects and Random Effects) -- 10-2 Explicit Representations of Errors in the General Gauss-Markov Model with Mixed Effects -- 10-3 An Example for Collocation -- 10-4 Comments -- Chapter 11 The sixth problem of probabilistic regression -- 11-1 Introduction -- 11-2 The Errors-in-Variables Model and its Symmetry -- 11-3 Least Squares in Linear Errors-in-Variables Models -- 11-31 Naive Least Squares -- 11-32 Total Least Squares TLS -- 11-4 SIMEX and SYMEX -- 11-41 SIMEX -- 11-42 SYMEX -- 11-5 Datum Transformation -- 11-6 Nonlinear Errors-in-Variables Models -- Chapter 12 The Nonlinear Problem of the 3d Datum Transformation and the Procrustes Algorithm -- 12-1 The 3d Datum Transformation and the Procrustes Algorithm -- 12-2 The Variance: Covariance Matrix of the Error Matrix E -- 12-3 References -- Chapter 13 The Sixth Problem of Generalized Algebraic Regression -- 13-1 Variance-Covariance-Component Estimation in the Linear Model Ax + ε = y, y ∉ R(A) -- 13-2 Variance-Covariance-Component Estimation in the Linear Model Bε = By -c, By ∉ R(A) + c -- 13-3 Variance-Covariance-Component Estimation in theLinear Model Ax + ε + Bε = By -c, By ∉ R(A) + c -- 13-4 The Block Structure of Dispersion Matrix D{y} -- Chapter 14 Special Problems of Algebraic Regression and Stochastic Estimation -- 14-1 The Multivariate Gauss-Markov Model: A Special Problem of Probabilistic Regression -- 14-2 n-Way Classification Models. 14-21 A First Example: 1-Way Classification -- 14-22 A Second Example: 2-Way Classification Without Interaction -- 14-23 A Third Example: 2-Way Classification with Interaction -- 14-24 Higher Classifications with Interaction -- 14-3 Dynamical Systems -- Chapter 15 Systems of equations: Hybrid algebraic-numeric solutions -- 15-1 Algebraic, numeric, and hybrid algebraic-numeric -- 15-2 Algebraic solutions: Background -- 15-3 Nonlinear systems of equations: Algebraic methods -- 15-31 Nonlinear Gauss-Markov model: Algebraic solution -- 15-32 Adjustment of the combinatorial subsets -- 15-4 Examples -- 15-5 Hybrid algebraic-numeric methods -- 15-6 Notes -- Chapter 16 Integer Least Squares -- 16-1 Introductory remarks -- 16-2 Model for Positioning -- 16-3 Mixed Integer Linear Model -- 16-4 Integer Least Squares -- 16-41 Simple Rounding Solution -- 16-42 Main Steps -- 16-43 The Closest Vector Problem (CVP) -- 16-44 Reduction -- 16-45 Gram-Schmidt Method -- 16-46 The LLL Algorithm -- 16-47 Babai's Rounding Technique -- Chapter 17 Bayesian Inference -- 17-1 Introduction -- 17-2 Principle of Bayesian Analysis -- 17-21 Sequential Analysis -- 17-22 Hierarchical Bayes Models -- 17-23 Choice of Prior -- 17-24 Bayesian Inference -- 17-3 Univariate Linear Model -- 17-31 Model Assumptions -- 17-32 Normal-inverse-gamma Distribution -- 17-33 Noninformative Prior -- 17-34 Conjugate Prior -- 17-35 Regularized Estimators -- 17-4 Mixed Model -- 17-41 Prior Distribution -- 17-42 Posterior Distribution -- 17-5 Multivariate Linear Model -- 17-51 Normal-inverse-Wishart Distribution -- 17-52 Noninformative Prior -- 17-53 Informative Prior -- 17-6 Computer Intensive Methods -- 17-61 Independent Monte Carlo (MC) -- 17-62 Importance Sampling -- 17-63 Markov Chain Monte Carlo -- 17-64 Gibbs Sampling -- 17-65 Rejection Algorithm -- 17-66 Approximative Bayesian Computation (ABC). Appendix A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra. |
Record Nr. | UNISA-996495171203316 |
Awange Joseph L. <1969-> | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applications of linear and nonlinear models : fixed effects, random effects, and total least squares / / Joseph L. Awange, Erik W. Grafarend, Silvelyn Zwanzig |
Autore | Awange Joseph L. <1969-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (1127 pages) |
Disciplina | 550 |
Collana | Springer geophysics |
Soggetto topico |
Geophysics
Linear models (Statistics) Mathematical models Geofísica Models lineals (Estadística) Models matemàtics |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-94598-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 The First Problem of Algebraic Regression -- 1-1 Introduction -- 1-11 The Front Page Example -- 1-12 The Front Page Example: Matrix Algebra -- 1-13 The Front Page Example: MINOS, Horizontal Rank Partitioning -- 1-14 The Range R(f) and the Kernel N(f) -- 1-15 The Interpretation of MINOS -- 1-2 Minimum Norm Solution (MINOS) -- 1-21 A Discussion of the Metric of the Parameter Space X -- 1-22 An Alternative Choice of the Metric of the Parameter Space X -- 1-23 Gx-MINOS and Its Generalized Inverse -- 1-24 Eigenvalue Decomposition of Gx-MINOS: Canonical MINOS -- 1-3 Case Study -- 1-31 Fourier Series -- 1-32 Fourier-Legendre Series -- 1-33 Nyquist Frequency for Spherical Data -- 1-4 Special Nonlinear Models -- 1-41 Taylor Polynomials, Generalized Newton Iteration -- 1-42 Linearized Models with Datum Defect -- 1-5 Notes -- Chapter 2 The First Problem of Probabilistic Regression: The Bias Problem -- 2-1 Linear Uniformly Minimum Bias Estimator (LUMBE) -- 2-2 The Equivalence Theorem of Gx-MINOS and S-LUMBE -- 2-3 Example -- Chapter 3 The Second Problem of Algebraic Regression -- 3-1 Introduction -- 3-11 The Front Page Example -- 3-12 The Front Page Example in Matrix Algebra -- 3-13 Least Squares Solution of the Front Page Example by Means of Vertical Rank Partitioning -- 3-14 The RangeR(f) and the Kernel N(f), Interpretation of "LESS" by Three Partitionings -- 3-2 The Least Squares Solution: "LESS" -- 3-21 A Discussion of the Metric of the Parameter Space X -- 3-22 Alternative Choices of the Metric of the Observation Y -- 3-23 Gx-LESS and Its Generalized Inverse -- 3-24 Eigenvalue Decomposition of Gy-LESS: Canonical LESS -- 3-3 Case Study -- 3-31 Canonical Analysis of the Hat Matrix, Partial Redundancies, High Leverage Points.
3-32 Multilinear Algebra, "Join" and "Meet", the Hodge Star Operator -- 3-33 From A to B: Latent Restrictions, Grassmann Coordinates, Plücker Coordinates -- 3-34 From B to A: Latent Parametric Equations, Dual Grassmann Coordinates, Dual Plücker Coordinates -- 3-35 Break Points -- 3-4 Special Linear and Nonlinear Models: A Family of Means for Direct Observations -- 3-5 A Historical Note on C.F. Gauss and A.M. Legendre -- Chapter 4 The Second Problem of Probabilistic Regression -- 4-1 Introduction -- 4-11 The Front Page Example -- 4-12 Estimators of Type BLUUE and BIQUUE of the Front Page Example -- 4-13 BLUUE and BIQUUE of the Front Page Example, Sample Median, Median Absolute Deviation -- 4-14 Alternative Estimation Maximum Likelihood (MALE) -- 4-2 Setup of the Best Linear Uniformly Unbiased Estimator -- 4-21 The Best Linear Uniformly Unbiased Estimation ^ξ of ξ : Σy-BLUUE -- 4-22 The Equivalence Theorem of Gy-LESS and Σy-BLUUE -- 4-3 Setup of the Best Invariant Quadratic Uniformly Unbiased Estimator -- 4-31 Block Partitioning of the Dispersion Matrix and Linear Space Generated by Variance-Covariance Components -- 4-32 Invariant Quadratic Estimation of Variance-Covariance Components of Type IQE -- 4-33 Invariant Quadratic Uniformly Unbiased Estimations of Variance-Covariance Components of Type IQUUE -- 4-34 Invariant Quadratic Uniformly Unbiased Estimationsof One Variance Component (IQUUE) from Σy-BLUUE: HIQUUE -- 4-35 Invariant Quadratic Uniformly Unbiased Estimators of Variance Covariance Components of Helmert Type: HIQUUE Versus HIQE -- 4-36 Best Quadratic Uniformly Unbiased Estimations of One Variance Component: BIQUUE -- 4-37 Simultaneous Determination of First Moment and the Second Central Moment, Inhomogeneous Multilinear Estimation, the E - D Correspondence, Bayes Designwith Moment Estimations. Chapter 5 The Third Problem of Algebraic Regression -- 5-1 Introduction -- 5-11 The Front Page Example -- 5-12 The Front Page Example in Matrix Algebra -- 5-13 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Additive Rank Partitioning -- 5-14 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Multiplicative Rank Partitioning -- 5-15 The Range R(f) and the Kernel N(f) Interpretation of "MINOLESS" by Three Partitionings -- 5-2 MINOLESS and Related Solutions Like Weighted Minimum Norm-Weighted Least Squares Solutions -- 5-21 The Minimum Norm-Least Squares Solution: "MINOLESS" -- 5-22 (Gx, Gy)-MINOS and Its Generalized Inverse -- 5-23 Eigenvalue Decomposition of (Gx, Gy)-MINOLESS -- 5-24 Notes -- 5-3 The Hybrid Approximation Solution: α-HAPS and Tykhonov-Phillips Regularization -- Chapter 6 The Third Problem of Probabilistic Regression -- 6-1 Setup of the Best Linear Minimum Bias Estimator of Type BLUMBE -- 6-11 Definitions, Lemmas and Theorems -- 6-12 The First Example: BLUMBE Versus BLE, BIQUUE Versus BIQE, Triangular Leveling Network -- 6-2 Setup of the Best Linear Estimators of Type hom BLE, hom S-BLE and hom a-BLE for Fixed Effects -- 6-3 Continuous Networks -- 6-31 Continuous Networks of Second Derivatives Type -- Chapter 7 Overdetermined System of Nonlinear Equations on Curved Manifolds -- 7-1 Introduction -- 7-2 Minimal Geodesic Distance: MINGEODISC -- 7-3 Special Models: From the Circular Normal Distribution to the Oblique Normal Distribution -- 7-31 A Historical Note of the von Mises Distribution -- 7-32 Oblique Map Projection -- 7-33 A Note on the Angular Metric -- 7-4 Case Study -- References -- Chapter 8 The Fourth Problem of Probabilistic Regression -- 8-1 The Random Effect Model -- 8-2 Examples. Chapter 9 The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and Inhomogeneous Equations: {By = Bi versus -c + By = Bi} -- 9-1 Gy-LESS of a System of a Inconsistent Homogeneous Conditional Equations -- 9-2 Solving a System of Inconsistent Inhomogeneous Conditional Equations -- 9-3 Examples -- Chapter 10 The Fifth Problem of Probabilistic Regression -- 10-1 Inhomogeneous General Linear Gauss-Markov Model (Fixed Effects and Random Effects) -- 10-2 Explicit Representations of Errors in the General Gauss-Markov Model with Mixed Effects -- 10-3 An Example for Collocation -- 10-4 Comments -- Chapter 11 The sixth problem of probabilistic regression -- 11-1 Introduction -- 11-2 The Errors-in-Variables Model and its Symmetry -- 11-3 Least Squares in Linear Errors-in-Variables Models -- 11-31 Naive Least Squares -- 11-32 Total Least Squares TLS -- 11-4 SIMEX and SYMEX -- 11-41 SIMEX -- 11-42 SYMEX -- 11-5 Datum Transformation -- 11-6 Nonlinear Errors-in-Variables Models -- Chapter 12 The Nonlinear Problem of the 3d Datum Transformation and the Procrustes Algorithm -- 12-1 The 3d Datum Transformation and the Procrustes Algorithm -- 12-2 The Variance: Covariance Matrix of the Error Matrix E -- 12-3 References -- Chapter 13 The Sixth Problem of Generalized Algebraic Regression -- 13-1 Variance-Covariance-Component Estimation in the Linear Model Ax + ε = y, y ∉ R(A) -- 13-2 Variance-Covariance-Component Estimation in the Linear Model Bε = By -c, By ∉ R(A) + c -- 13-3 Variance-Covariance-Component Estimation in theLinear Model Ax + ε + Bε = By -c, By ∉ R(A) + c -- 13-4 The Block Structure of Dispersion Matrix D{y} -- Chapter 14 Special Problems of Algebraic Regression and Stochastic Estimation -- 14-1 The Multivariate Gauss-Markov Model: A Special Problem of Probabilistic Regression -- 14-2 n-Way Classification Models. 14-21 A First Example: 1-Way Classification -- 14-22 A Second Example: 2-Way Classification Without Interaction -- 14-23 A Third Example: 2-Way Classification with Interaction -- 14-24 Higher Classifications with Interaction -- 14-3 Dynamical Systems -- Chapter 15 Systems of equations: Hybrid algebraic-numeric solutions -- 15-1 Algebraic, numeric, and hybrid algebraic-numeric -- 15-2 Algebraic solutions: Background -- 15-3 Nonlinear systems of equations: Algebraic methods -- 15-31 Nonlinear Gauss-Markov model: Algebraic solution -- 15-32 Adjustment of the combinatorial subsets -- 15-4 Examples -- 15-5 Hybrid algebraic-numeric methods -- 15-6 Notes -- Chapter 16 Integer Least Squares -- 16-1 Introductory remarks -- 16-2 Model for Positioning -- 16-3 Mixed Integer Linear Model -- 16-4 Integer Least Squares -- 16-41 Simple Rounding Solution -- 16-42 Main Steps -- 16-43 The Closest Vector Problem (CVP) -- 16-44 Reduction -- 16-45 Gram-Schmidt Method -- 16-46 The LLL Algorithm -- 16-47 Babai's Rounding Technique -- Chapter 17 Bayesian Inference -- 17-1 Introduction -- 17-2 Principle of Bayesian Analysis -- 17-21 Sequential Analysis -- 17-22 Hierarchical Bayes Models -- 17-23 Choice of Prior -- 17-24 Bayesian Inference -- 17-3 Univariate Linear Model -- 17-31 Model Assumptions -- 17-32 Normal-inverse-gamma Distribution -- 17-33 Noninformative Prior -- 17-34 Conjugate Prior -- 17-35 Regularized Estimators -- 17-4 Mixed Model -- 17-41 Prior Distribution -- 17-42 Posterior Distribution -- 17-5 Multivariate Linear Model -- 17-51 Normal-inverse-Wishart Distribution -- 17-52 Noninformative Prior -- 17-53 Informative Prior -- 17-6 Computer Intensive Methods -- 17-61 Independent Monte Carlo (MC) -- 17-62 Importance Sampling -- 17-63 Markov Chain Monte Carlo -- 17-64 Gibbs Sampling -- 17-65 Rejection Algorithm -- 17-66 Approximative Bayesian Computation (ABC). Appendix A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra. |
Record Nr. | UNINA-9910616381603321 |
Awange Joseph L. <1969-> | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied linear regression [[electronic resource] /] / Sanford Weisberg |
Autore | Weisberg Sanford <1947-> |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2014 |
Descrizione fisica | 1 online resource (xvii, 340 p.) : ill |
Disciplina | 519.536 |
Collana | Wiley series in probability and statistics |
Soggetto topico |
Regression analysis
Linear models (Statistics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-78955-5
1-118-59485-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Scatterplots -- 2 Simple Linear Regression -- 3 Multiple Regression -- 4 Interpretation of Main Effects -- 5 Complex Regressors -- 6 Testing and Analysis of Variance -- 7 Variances -- 8 Transformations -- 9 Regression Diagnostics -- 10 Variable Selection -- 11 Nonlinear Regression -- 12 Binomial and Poisson Regression -- A Appendix -- Bibliography -- Index. |
Record Nr. | UNINA-9910462981403321 |
Weisberg Sanford <1947-> | ||
Hoboken, N.J., : Wiley, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|