top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biophotonic Manipulation / / edited by Baojun Li, Yuchao Li, Hongbao Xin
Biophotonic Manipulation / / edited by Baojun Li, Yuchao Li, Hongbao Xin
Autore Li Baojun
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (445 pages)
Disciplina 621.365
Altri autori (Persone) LiYuchao
XinHongbao
Collana Advances in Optics and Optoelectronics
Soggetto topico Nanophotonics
Plasmonics
Optoelectronic devices
Optics
Photonics
Optical engineering
Optical materials
Nanophotonics and Plasmonics
Optoelectronic Devices
Light-Matter Interaction
Applied Optics
Photonics and Optical Engineering
Optical Materials
ISBN 981-9649-82-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Surface Plasmon Optical Tweezers for Biomanipulation -- 2. Optothermal Tweezers -- 3. Optical Micromanipulation with Structured Light Beams -- 4. Opto-Hydrodynamic Manipulation -- 5. Optical Biomanipulation using Optofluidic Techniques.
Record Nr. UNINA-9911015632503321
Li Baojun  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals / / by Changhua Bao
Electronic Band Structure Engineering and Ultrafast Dynamics of Dirac Semimetals / / by Changhua Bao
Autore Bao Changhua
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (91 pages)
Disciplina 530.411
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Condensed matter
Semiconductors
Optics
Optical materials
Photonics
Materials science - Data processing
Electronic structure
Quantum chemistry - Computer programs
Condensed Matter Physics
Light-Matter Interaction
Optical Materials
Ultrafast Photonics
Electronic Structure Calculations
ISBN 981-9953-25-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Experimental Techniques -- Development of Novel Trarpes With Tunable Probe Photon Energy for 3D Quantum Materials -- Chiral Symmetry Breaking in Kekulé-ordered Graphene -- Coexistence of Flat Band and Kekulé Order.
Record Nr. UNINA-9910767510203321
Bao Changhua  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High Throughput Imaging Technology / / edited by Zhengjun Liu, Yutong Li
High Throughput Imaging Technology / / edited by Zhengjun Liu, Yutong Li
Autore Liu Zhengjun
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (641 pages)
Disciplina 502.82
Altri autori (Persone) LiYutong
Collana Advances in Optics and Optoelectronics
Soggetto topico Microscopy
Materials - Analysis
Imaging systems
Biophysics
Optics
Image processing - Digital techniques
Computer vision
Optical Microscopy
Imaging Techniques
Bioanalysis and Bioimaging
Light-Matter Interaction
Computer Imaging, Vision, Pattern Recognition and Graphics
Applied Optics
ISBN 9789819619290
9819619297
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Fourier Ptychography Imaging -- 3. Structured Illumination Imaging -- 4. High-throughput Screening Methods -- 5. Digital Holography.
Record Nr. UNINA-9910986144303321
Liu Zhengjun  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
How to Build a Lab-on/in-Fiber / / edited by Libo Yuan
How to Build a Lab-on/in-Fiber / / edited by Libo Yuan
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (VI, 626 p. 432 illus., 403 illus. in color.)
Disciplina 621.3692
Soggetto topico Fiber optics
Optics
Optical materials
Materials
Detectors
Fibre Optics
Light-Matter Interaction
Optical Materials
Sensors and biosensors
ISBN 9789819798698
9819798698
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto In-fiber Integrated Optics Laboratory -- Fiber Discrete Optics Laboratory -- Laboratory for Nanophotonic Structures and Integrated Devices on Fiber End facets -- Microfluidic fiber and its sensing laboratory -- Miniature Function-Integrated Devices based on Optical Microfibers -- Lab in Microstructured Optical Fiber -- Fiber-integrated Optofluidic Laser Laboratory -- Fiber Optic Surface Plasmon Resonance (FO-SPR) Sensing Laboratory -- Tilted fiber Bragg grating sensors -- Tapered optical fiber sensing laboratory -- Sensing Lab based on Fiber Bubble Microcavity.
Record Nr. UNINA-9910992780103321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information-Powered Engines / / by Tushar Kanti Saha
Information-Powered Engines / / by Tushar Kanti Saha
Autore Saha Tushar Kanti
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (146 pages)
Disciplina 332.04101
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Thermodynamics
Coding theory
Information theory
Optics
Statistical physics
Biophysics
Biomolecules
Coding and Information Theory
Light-Matter Interaction
Statistical Physics
Molecular Biophysics
ISBN 3-031-49121-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Theory background -- Chapter 3. Experimental Apparatus -- Chapter 4. High-performance information engine -- Chapter 5. Trajectory control using an information engine -- Chapter 6. Bayesian information engine -- Chapter 7. Information engine in a nonequilibrium bath -- Chapter 8. Identifying information engines -- Chapter 9. Conclusion.
Record Nr. UNINA-9910831008403321
Saha Tushar Kanti  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to Photoelectron Angular Distributions : Theory and Applications / / by V. T. Davis
Introduction to Photoelectron Angular Distributions : Theory and Applications / / by V. T. Davis
Autore Davis V. T.
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (338 pages)
Disciplina 537.54
539.7
Collana Springer Tracts in Modern Physics
Soggetto topico Optics
Quantum optics
Atomic structure
Molecular structure
Optical spectroscopy
Angular momentum
Light-Matter Interaction
Quantum Optics
Atomic and Molecular Structure and Properties
Optical Spectroscopy
Angular momentum of light
ISBN 9783031080272
9783031080265
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Angular Momentum in Quantum Mechanics -- Chapter 3. Classical Model of Photoelectron Angular Distributions -- Chapter 4. Quantum Treatment of Photoelectron Angular Distributions (Dipole Approximation) -- Chapter 5. Higher-order Multipole Terms in Photoelectron Angular Distributions -- Chapter 6. Relativistic Theory of Photoelectron Angular Distributions -- Chapter 7. Angular Momentum Transfer Theory -- Chapter 8. Molecular Photoelectron Angular Distributions -- Chapter 9. Measuring Photoelectron Angular Distributions in the Laboratory -- Chapter 10. Applications of Photoelectron Angular Distribution Measurements.
Record Nr. UNINA-9910633915303321
Davis V. T.  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Nature of X-Rays and Their Interactions with Matter / / by Joachim Stöhr
The Nature of X-Rays and Their Interactions with Matter / / by Joachim Stöhr
Autore Stöhr Joachim
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (933 pages)
Disciplina 539.7222
Collana Springer Tracts in Modern Physics
Soggetto topico Synchrotrons
Optics
X-ray spectroscopy
Atoms
Molecules
Quantum optics
Condensed matter
Synchrotron Techniques
Light-Matter Interaction
X-Ray Spectroscopy
Atomic, Molecular and Chemical Physics
Quantum Optics
Condensed Matter Physics
ISBN 3-031-20744-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction and Overview -- Production of X-Rays: From Virtual to Real Photons -- From Electromagnetic Waves to Photons -- Brightness and Coherence -- The Complete Description of Light: Higher Order Coherence -- Semi-Classical Response of Atoms to Electromagnetic Fields.
Record Nr. UNINA-9910729894403321
Stöhr Joachim  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
On the Wave Nature of Matter : A New Approach to Reconciling Quantum Mechanics and Relativity / / by Donald C. Chang
On the Wave Nature of Matter : A New Approach to Reconciling Quantum Mechanics and Relativity / / by Donald C. Chang
Autore Chang Donald C. (HKUST.)
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (341 pages)
Disciplina 530.12
Soggetto topico Quantum theory
General relativity (Physics)
Electrodynamics
Optics
Particles (Nuclear physics)
Quantum field theory
Fundamental concepts and interpretations of QM
General Relativity
Classical Electrodynamics
Light-Matter Interaction
Elementary Particles, Quantum Field Theory
ISBN 9783031487774
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction: The Particle World Versus the Wave World -- 1.1 The Current Quantum Theory is a Particle Theory -- 1.2 What is the Problem with the Current View of Quantum Physics? Why Do We Need a Paradigm Shift? -- 1.2.1 Lack of Understanding on the Physical Basis of Quantum Mechanics -- 1.2.2 Fundamental Conflict Between Quantum Mechanics and Relativity -- 1.2.3 Important Questions that the Current Quantum Theory Cannot Resolve -- 1.2.4 The Particle Physics Establishment Had Given up Hopes to Resolve the Fundamental Issues -- 1.3 The Basic Idea of the Quantum Wave Model -- 1.3.1 Justification for the Hypotheses of the Quantum Wave Model -- 1.4 How Can the Quantum Wave Model Help to Resolve the Problems Encountered in the Current Quantum Theory? -- References -- Part I The Physical Basis of Wave-Particle Duality -- 2 The Birth of Quantum Mechanics: Arriving of the Photon Concept -- 2.1 Is Light a Wave or a Particle? How Do We Know that Light is a Wave? -- 2.1.1 The Double-Slit Experiment -- 2.1.2 The Bragg Diffraction Experiment -- 2.1.3 Maxwell and Hertz Showed that Light is a Kind of Electromagnetic Wave -- 2.2 The Discovery of Light Wave Behaving like a Particle -- 2.2.1 Quantization of Light -- 2.3 How Did Planck Derive the Planck's Relation? -- 2.4 Further Evidence Supporting the Idea of Photon -- 2.4.1 The Photo-Electric Effect -- 2.4.2 The Compton Scattering -- 2.5 Chapter Summary -- References -- 3 Derivation of the Planck's Relation, the de Broglie Relation, and Heisenberg's Uncertainty Principle Based on the Maxwell Theory -- 3.1 Why is Light Quantized? What is the Physical Meaning of the Planck's Constant? -- 3.1.1 Planck Was not Satisfied with His Original Derivation -- 3.2 Derivation of the Planck's Relation Based on the Maxwell Theory -- 3.2.1 Energy and Momentum of the Electromagnetic Wave.
3.3 Calculating the Energy Contained Within a Wave Packet Based on Fourier Transform -- 3.3.1 Determination of the Planck's Constant -- 3.4 Derivation of the de Broglie Relation: Total Momentum Carried in a Wave Packet -- 3.5 Derivation of Heisenberg's Uncertainty Principle -- 3.6 The Principle of All-Or-None: Physical Meaning of the Planck's Constant as Derived from the Maxwell Theory -- 3.7 Chapter Summary -- References -- 4 The Merging of the Particle and Wave Concepts: Evidence Suggesting that the Sub-atomic Particle is a Quantized Excitation Wave -- 4.1 The Discovery of Massive Particle Behaving Like a Wave -- 4.1.1 The Revolutionary Idea of de Broglie -- 4.1.2 Confirmation of the de Broglie Relation Using Bragg's Diffraction Experiments -- 4.1.3 Double-Slit Experiment for a Single Electron -- 4.2 How to Explain Wave-Particle Duality? The Statistical Interpretation of the Copenhagen School -- 4.2.1 Debates on the Probabilistic Interpretations -- 4.3 Evidence Suggesting that the Electron is a Physical Wave -- 4.3.1 Why Do We Think Elementary Particles Are Waves? -- 4.4 Hints from the Collider Experiments: How Can Particles Be Created from Nowhere? -- 4.5 The Idea of Solitons -- 4.6 Chapter Summary -- References -- Part II Wave Excitation in the Vacuum: What are the Physical Properties of Matter Wave? -- 5 The Mechanism of Wave Excitation and the Physical Nature of the Vacuum Medium -- 5.1 Useful Analogy: Wave Propagation in a Classical Mechanical System -- 5.1.1 Wave in a Harmonic Oscillator -- 5.1.2 Wave Propagation in a One-Dimensional String -- 5.2 Wave Propagation in a 3-Dimensional Elastic Solid -- 5.2.1 Application of the Helmholtz Decomposition Theorem on the Wave Motion of an Elastic Solid -- 5.3 Mechanism of Wave Excitation in the Vacuum Medium -- 5.3.1 How does Wave Propagate in the Vacuum?.
5.4 What is the Physical Nature of the Vacuum? The Aether Hypothesis -- 5.5 Evidence Indicating that the Vacuum is Not an Empty Space -- 5.6 Chapter Summary -- References -- 6 The Vacuum is a Dielectric Medium According to the Maxwell Theory -- Its Basic Field is the Electric Vector Potential Z -- 6.1 Physical Nature of the Vacuum: Implications from the Maxwell Theory -- 6.1.1 Implication of Maxwell's Introduction of the Electric Displacement Concept -- 6.1.2 Maxwell's Theory of Light Propagation Implied That the Vacuum is a Dielectric Medium -- 6.2 Structure of the Vacuum Medium According to Maxwell's Hypothesis -- 6.3 What is the Basic Field of the Vacuum Excitation Wave? -- 6.3.1 What is Its Basic Field of the Photon? -- 6.3.2 Origin of the Concept of Vector Potential: The Theorem of Helmholtz Decomposition -- 6.4 The Excitation Wave of the Vacuum is Characterized by the Variation of the Electric Vector Potential Z -- 6.4.1 Mechanism of Wave Propagation in the Vacuum as Driven by Z -- 6.5 Comparison Between Wave Excitations in the Mechanical System and the Vacuum Medium -- 6.6 Chapter Summary -- References -- Part III Derivation of the Quantum Wave Equations and the Physical Meaning of the Quantum Wave Function -- 7 Derivation of the Quantum Wave Equations Based on Wave Excitation in the Vacuum -- 7.1 The Wave Equation of the Quantum Vacuum -- 7.1.1 Identifying Z as the Wave Function of the Excitation Wave in the Vacuum -- 7.1.2 Connecting Z with the Quantum Wave Function of a Particle -- 7.2 The Wave Equation of a Photon Based on the Dynamic Change of Z -- 7.3 Deriving the Wave Equation of a Massive Particle -- 7.3.1 Physical Nature of the Wave Function Representing a Massive Particle -- 7.4 Identifying the Physical Meaning of Parameters Within the Wave Function -- 7.5 Derivation of the Klein-Gordon Equation from the Wave Equation of the Vacuum.
7.6 Chapter Summary -- References -- 8 Derivation of the Dirac Equation from the Wave Equation of the Vacuum -- 8.1 Derivation of the Quantum Wave Equation for an Electron -- 8.1.1 How did Dirac Derive his Equation Originally? -- 8.2 Derivation of the Dirac Equation Based on the Quantum Wave Model -- 8.2.1 To Derive the Dirac Equation by Factorizing the Klein-Gordon Equation -- 8.3 Physical Meaning of the Dirac Wave Function -- 8.4 Dirac's "Hole Theory" and the Prediction of Anti-Particle -- 8.5 Chapter Summary -- References -- 9 Derivation of the Schrödinger Equation: What is the Physical Meaning of Its Wave Function? -- 9.1 Derivation of the Schrödinger Equation Based on the Quantum Wave Model -- 9.1.1 Development of the Correspondence Rules -- 9.1.2 Construction of the Schrödinger Equation Based on the Klein-Gordon Equation -- 9.2 Physical Meaning of the Quantum Wave Function of the Schrödinger Equation -- 9.2.1 All Quantum Wave Equations Can Be Traced to the Wave Equation of the Vacuum -- 9.3 Transition from Classical Physics to Quantum Mechanics: The Mechanical View Versus the Wave View -- 9.4 Chapter Summary -- References -- 10 A New Understanding on Wave-Particle Duality: Comparing the Quantum Wave Model with the Copenhagen Interpretation and Other Alternative Models -- 10.1 Bohr's Statistical Interpretation Can Be Explained by the Quantum Wave Model -- 10.1.1 Why Can a Physical Wave Function Give the Probability of Detecting the Quantum Particle During Its Measurement? A Case Study Using the Photon as an Example -- 10.1.2 Similarly, the Probability of Detecting an Electron at a Particular Location Is also Related to the Amplitude of the Electron's Wave Function -- 10.2 The Statistical Interpretation Does Not Work for the Electron Wave Function Inside an Atom -- 10.3 Controversy About the Different Interpretations of Quantum Mechanics.
10.3.1 Skepticism About the Copenhagen Interpretation -- 10.3.2 The Many-World Interpretation of QM -- 10.3.3 The Pilot Wave Theory -- 10.4 How Did These Different Theories Explain the Double-Slit Experiment for Electrons? -- 10.4.1 The Double-Slit Experiment -- 10.5 Conclusion: Only the Quantum Wave Model Can Fully Explain the Quantum Phenomenon of Wave-Particle Duality -- 10.6 Chapter Summary -- References -- Part IV The Physical Meaning of Mass and Energy From a Wave Perspective -- 11 Why Can Mass and Energy Be Converted Between Each Other? Energy, Momentum, and Mass Have Geometrical Meanings in the Wave View -- 11.1 The Discovery of Energy-Mass Equivalence Was Not Based on Special Relativity -- 11.2 Why Mass and Energy Are Convertible? It is a Quantum Wave Effect -- 11.2.1 The Relation of Mass-Energy Equivalence for Photon is Clearly a Quantum Effect -- 11.3 The Physical Meaning of Mass: Mass Should Be Treated on the Same Footing as Energy and Momentum -- 11.3.1 Where Does Mass Come From? The Physical Meaning of Mass According to Newton -- 11.4 How Can a Wave Have Mass? -- 11.4.1 The Meaning of Mass in the Wave View -- 11.5 Origin of the Energy-Momentum Relation of a Quantum Particle -- 11.5.1 In the Teaching of Relativity, the Rest Mass is Simply an Integration Constant for Deriving the Energy-Momentum Relation -- 11.5.2 In the Quantum Wave Model, the Energy-Momentum Relation of a Particle Is Originated from the Dispersion Relation of the Quantum Wave Function -- 11.6 Energy, Momentum, and Mass Are All Related to the Curvature of Bending the Vacuum Medium -- 11.6.1 The Resting Energy and the Kinetic Energy of a Single Particle Appear to Form a Two-Dimensional Hilbert Space -- 11.7 How Can an Excitation Wave Behave Like a Particle? -- 11.7.1 The "Quantum" Phenomenon is Just a Manifestation of the "Principle of All-or-None".
11.7.2 There is a One-to-One Correspondence Between the Particle Properties and the Wave Properties.
Record Nr. UNINA-9910841856603321
Chang Donald C. (HKUST.)  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optically Trapped Microspheres as Sensors of Mass and Sound : Brownian Motion as Both Signal and Noise / / by Logan Edward Hillberry
Optically Trapped Microspheres as Sensors of Mass and Sound : Brownian Motion as Both Signal and Noise / / by Logan Edward Hillberry
Autore Hillberry Logan Edward
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (124 pages)
Disciplina 539
530.8
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Atoms
Metrology
Optics
Measurement
Measuring instruments
Acoustics
Statistical physics
Metrology and Fundamental Constants
Light-Matter Interaction
Measurement Science and Instrumentation
Statistical Physics
ISBN 3-031-44332-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Technical Background -- Chapter 3. Experimental set-up -- Chapter 4. Results -- Chapter 5. Conclusions.
Record Nr. UNINA-9910765483303321
Hillberry Logan Edward  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radiative Transfer : An Introduction to Exact and Asymptotic Methods / / by Hélène Frisch
Radiative Transfer : An Introduction to Exact and Asymptotic Methods / / by Hélène Frisch
Autore Frisch H (Hélène)
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (611 pages)
Disciplina 530.138
523.0192
Soggetto topico Mathematical physics
Astrophysics
Thermodynamics
Heat engineering
Heat - Transmission
Mass transfer
Optics
Mathematical Methods in Physics
Engineering Thermodynamics, Heat and Mass Transfer
Light-Matter Interaction
ISBN 9783030952471
9783030952464
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. An Overview of the Content -- Part I: Scalar Radiative Transfer Equations -- 2. Radiative Transfer Equations -- 3. Exact Methods of Solution: A Brief Survey -- 4. Singular Integral Equations -- 5. The Scattering Kernel and Associated Auxiliary Functions -- 6. The Surface Green Function and the Resolvent Function -- 7. The Emergent Intensity and the Source Function -- 8. Spectral Line with Continuous Absorption -- 9. Conservative Scattering: The Milne Problem -- 10. The Case Eigenfunction Expansion Method -- 11. The √ɛ-law and the Nonlinear H-Equation -- 12. The Wiener–Hopf Method -- Part II: Scattering Polarization -- 13. The Scattering of Polarized Radiation -- 14. Polarized Radiative Transfer Equations -- 15. The √ɛ-law, the Nonlinear H-Equation, and Matrix Singular Integral Equations. 16. Conservative Rayleigh Scattering: Exact Solutions -- 17. Scattering Problems with No Exact Solution I: The Auxiliary Matrices -- 18. Scattering Problems with No Exact Solution II: The Resolvent Matrix, the H-Matrix, and the I-Matrix -- Part III: Asymptotic Properties of Multiple Scattering -- 19. Asymptotic Properties of the Scattering Kernel K(τ) -- 20. Large Scale Radiative Transfer Equations -- 21. The Photon Random Walk -- 22. Asymptotic Behavior of the Resolvent Function -- 23. The Asymptotics of the Diffusion Approximation -- 24. The Diffusion Approximation for Rayleigh Scattering -- 25. Anomalous Diffusion for Spectral Lines -- 26. Asymptotic Results for Partial Frequency Redistribution.
Record Nr. UNINA-9910574087803321
Frisch H (Hélène)  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui