top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Effect of LWR water environments on the fatigue life of reactor materials : final report / / prepared by Omesh Chopra and Gary L. Stevens
Effect of LWR water environments on the fatigue life of reactor materials : final report / / prepared by Omesh Chopra and Gary L. Stevens
Autore Chopra O. K.
Edizione [Rev. 1.]
Pubbl/distr/stampa [Washington, D.C.] : , : United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, , May 2018
Descrizione fisica 1 online resource (various pagings) : illustrations (chiefly color)
Soggetto topico Light water reactors - Materials - Deterioration
Nuclear engineering - Materials
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Effect of LWR water environments on the fatigue life of reactor materials
Record Nr. UNINA-9910709872803321
Chopra O. K.  
[Washington, D.C.] : , : United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, , May 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials ageing in light-water reactors : handbook of destructive assays / / François Cattant
Materials ageing in light-water reactors : handbook of destructive assays / / François Cattant
Autore Cattant François
Edizione [2nd edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (2448 pages)
Disciplina 621.4833
Soggetto topico Light water reactors - Materials - Deterioration
Nuclear engineering - Materials
ISBN 9783030856007
9783030855994
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- 2010 Foreword -- 2020 Foreword -- For a Better Next Decade -- Acknowledgments -- Goal of the 2020 Revision -- Contents -- About the Author -- Acronyms -- Part I Fundamentals, Degradation Mechanisms, Failures of Nickel Alloys, Heat Exchangers and Cold Worked Stainless Steels -- 1 Introduction -- 2 Fundamentals of Light Water Reactors -- 2.1 Background -- 2.2 Basics of Pressurized Water Reactors -- 2.3 Basics of Boiling Water Reactors -- 3 Failure and Ageing Mechanisms -- 3.1 Background -- 3.2 Corrosion -- 3.2.1 Aqueous Corrosion -- 3.2.2 Atmospheric Corrosion -- 3.2.3 Hot Oxidation -- 3.3 Cavitation Erosion -- 3.3.1 Mechanism Identification -- 3.3.2 Application Domain -- 3.3.3 Mechanism Description -- 3.3.4 Mechanism Impact -- 3.3.5 Influencing Conditions -- 3.3.6 Components Susceptible to Cavitation Erosion -- 3.3.7 Preventing Cavitation Erosion -- 3.4 Fatigue -- 3.4.1 Mechanism Identification -- 3.4.2 Application Domain -- 3.4.3 Mechanism Description -- 3.4.4 Understanding and Keeping Fatigue Under Control -- 3.4.5 Mechanism Impacts -- 3.4.6 Initiation Parameters List -- 3.4.7 Potentially Susceptible Components -- 3.4.8 Preventing Fatigue -- 3.5 Vibration Fatigue -- 3.5.1 Foreword -- 3.5.2 Definitions -- 3.5.3 Mechanism Identification -- 3.5.4 Application Domain -- 3.5.5 Mechanism Description -- 3.5.6 Mechanism Consequences -- 3.5.7 Influent Parameters -- 3.5.8 Potentially Concerned Components -- 3.5.9 Preventing Vibration Fatigue -- 3.6 Environmentally Assisted Fatigue -- 3.6.1 Mechanism Identification -- 3.6.2 Mechanism Description -- 3.6.3 Mechanism Consequences -- 3.6.4 Influent Parameters -- 3.6.5 Potentially Susceptible Components -- 3.6.6 Preventing Primary Water Assisted Fatigue -- 3.6.7 Corrosion Fatigue -- 3.7 Excessive Deformation and Plastic Instability -- 3.7.1 Definitions -- 3.7.2 Materials and Components of Concern.
3.8 Elastic or Plastic Instability-Buckling -- 3.8.1 Definitions -- 3.8.2 Materials and Components of Concern -- 3.9 Progressive Deformation -- 3.9.1 Definition -- 3.9.2 Materials and Components of Concern -- 3.10 Fast Fracture in the Ductile Regime -- 3.10.1 Definition -- 3.10.2 Materials and Components of Concern -- 3.11 Fast Fracture in the Brittle Regime and in the Fragile/Ductile Region -- 3.11.1 Definition -- 3.11.2 Background -- 3.11.3 Metallurgical and Mechanical Aspects of Cleavage Fracture -- 3.11.4 Main Materials and Components of Concern -- 3.11.5 Materials Mechanical Characterization -- 3.11.6 Fracture in the Brittle-Ductile Transition Domain -- 3.11.7 Intergranular Fracture -- 3.12 Austenitic Stainless Steels Irradiation Embrittlement -- 3.12.1 Mechanism Identification -- 3.12.2 Application Domain -- 3.12.3 Mechanism Description -- 3.12.4 List of Influent Parameters -- 3.12.5 Components of Potential Concern -- 3.12.6 Preventing Austenitic SSs Irradiation Embrittlement -- 3.13 Austenitic Stainless Steels Irradiation Creep -- 3.13.1 Foreword -- 3.13.2 Mechanism Identification -- 3.13.3 Application Domain -- 3.13.4 Mechanism Description -- 3.13.5 Mechanism Impacts -- 3.13.6 List of Influent Parameters -- 3.13.7 Potentially Affected Components -- 3.13.8 Preventing Austenitic Stainless Steels Irradiation Creep -- 3.14 Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels -- 3.14.1 Mechanism Identification -- 3.14.2 Application Domain -- 3.14.3 Mechanism Description -- 3.14.4 Various IASCC Mechanisms -- 3.14.5 List of Influent Parameters -- 3.14.6 Potentially Affected Components -- 3.14.7 Preventing IASCC -- 3.15 RPV Steels Neutron Irradiation Embrittlement -- 3.15.1 Description of the 2 Embrittlement Classes (Hardening and not Hardening) -- 3.15.2 Mechanism Identification -- 3.15.3 Application Field.
3.15.4 Mechanism Description -- 3.15.5 Mechanism Impact -- 3.15.6 List of Influent Parameters -- 3.15.7 How to Mitigate RPV Steels Neutron Irradiation Embrittlement -- 3.16 Swelling Under Irradiation -- 3.16.1 Mechanism Identification -- 3.16.2 Application Domain -- 3.16.3 Mechanism Description -- 3.16.4 Preventing Swelling -- 3.17 Cast Stainless Steels Thermal Ageing -- 3.17.1 Mechanism Identification -- 3.17.2 Application Domain -- 3.17.3 Mechanism Description -- 3.17.4 Mechanism Consequences -- 3.17.5 List of Influent Parameters -- 3.17.6 Potentially Concerned Components -- 3.17.7 How to Prevent and Mitigate Cast SSs Thermal Ageing -- 3.18 α′ Precipitation Ageing of Martensitic Stainless Steels -- 3.18.1 Mechanism Identification -- 3.18.2 Application Domains -- 3.18.3 Mechanism Description -- 3.18.4 Mechanism Effects -- 3.18.5 Influent Parameters List -- 3.18.6 Potentially Affected Components -- 3.18.7 How to Prevent and Mitigate α′ Precipitation Ageing -- 3.19 Low Alloy Steels and Carbon Steels Thermal Ageing or Temper Embrittlement -- 3.19.1 Foreword -- 3.19.2 Mechanism Identification -- 3.19.3 Domains of Relevance -- 3.19.4 Phenomenon Description -- 3.19.5 Mechanism Consequences -- 3.19.6 List of Influent Parameters -- 3.19.7 Susceptible Components -- 3.19.8 Preventing and Mitigating Temper Embrittlement -- 3.20 Thermal Ageing of 30% Chromium Nickel Base Alloys, Ordering -- 3.20.1 Mechanism Description -- 3.20.2 Preventing SRO and LRO -- 3.21 Wear -- 3.21.1 General Description -- 3.21.2 Ashby Maps: Wear Mechanisms -- 3.21.3 Influence of Particles -- 3.21.4 Wear Consequences -- 3.21.5 Influent Parameters -- 3.21.6 Preventing Wear -- References -- 4 Materials Properties -- 4.1 Austenitic Stainless Steels -- 4.2 Ni Alloys -- 4.3 High Strength Alloys -- 4.4 Carbon and Low Alloy Steels -- 4.5 Hard-Facing Alloys -- 4.6 Copper Alloys.
4.7 Titanium Alloys -- 4.8 Materials Forbidden in the Containment Building -- 4.8.1 Materials in the Containment Building Atmosphere -- 4.8.2 Polluting Materials -- 5 Nickel Base Alloys -- 5.1 Background -- 5.2 Destructive Examinations Related to Reactor Pressure Vessel Issues-Results and Remediation -- 5.2.1 Reactor Pressure Vessel Outlet Nozzle Cracking -- 5.2.2 Reactor Pressure Vessel Outlet Nozzle Repair Cracking -- 5.2.3 Reactor Pressure Vessel Outlet Nozzle Dissimilar Weld Cracking -- 5.2.4 Reactor Pressure Vessel Outlet Nozzle Leak -- 5.2.5 Destructive Examination of a Boat Sample Removed From a Leaking Bottom Mounted Instrumentation Nozzle at a W Plant -- 5.2.6 Laboratory Analysis of a Boat Sample Removed From a Leaking Bottom Mounted Instrumentation Nozzle at a CE Plant (Hyres 2015) -- 5.2.7 Laboratory Analysis of a Bottom Mounted Instrumentation Nozzle at an Areva Plant (Derniaux 2018) -- 5.2.8 Synthesis of the Destructive Examinations Carried Out on EDF Reactor Pressure Vessel Head Penetrations -- 5.2.9 Destructive Examination of a Boat Sample Harvested From a Leaking Penetration of a B& -- W Unit -- 5.2.10 Replica of a Leaking Control Rod Drive Mechanism Penetration From an MHI Unit -- 5.2.11 Destructive Examination of a Boat Sample Harvested From a Penetration of a W Unit -- 5.2.12 Destructive Examination of a Retired Reactor Pressure Vessel Head -- 5.2.13 Destructive Examination of a Control Element Drive Mechanism Repaired with A52 -- 5.2.14 Leak of a Reactor Pressure Vessel Head Vent Nozzle at a KHIC-CE Unit ([PRI-10-02, 2010]) -- 5.3 X-750 Field Experience -- 5.3.1 Destructive Examinations of X-750 Split Pins-Results and Remediation -- 5.3.2 Destructive Examination of X-750 Clevis Bolts (Hyres 2014) -- 5.4 Destructive Examinations Related to Pressurizer Issues-Results and Remediation.
5.4.1 Destructive Examination of an Instrumentation Nozzle Leaking at First Outage -- 5.4.2 Destructive Examination of a Leaking Instrumentation Nozzle -- 5.4.3 Laboratory Analysis of a Pressurizer Safety Nozzle -- 5.5 Destructive Examinations Related to Steam Generator Issues-Results and Remediation -- 5.5.1 Destructive Examination of a Leaking SG Blowdown Nozzle of a Framatome Unit -- 5.5.2 Destructive Examinations of Leaking SG Blowdown Nozzles of KHIC-CE Units (Chung 2007 (Hwang et al. 2008) [PRI-07-10] [PRI-08-06]) -- 5.5.3 Synthesis of the Steam Generator Channel Heads Destructive Examinations -- 5.5.4 Destructive Examination of a Steam Generator Inlet Nozzle Dissimilar Metal Weld -- References -- 6 Steam Generator Tubes, Plugs, Sleeves and Heat Exchangers -- 6.1 Background -- 6.2 Materials Properties -- 6.3 Steam Generator Tubes Examinations-Results and Remediation -- 6.3.1 Tubes with Primary Water Stress Corrosion Cracking -- 6.3.2 Tubes with OD Initiated Corrosion (IGSCC, IGA, TGSCC) -- 6.3.3 Tubes with ID and OD Initiated Corrosion -- 6.3.4 Tubes with Wear -- 6.3.5 Tube with Defects in the Tubesheet -- 6.3.6 Tubes with Bulging Above the Tubesheet -- 6.3.7 Fatigue Cracking of U-bends (Boccanfuso et al. 2014b -- Duisabeau et al. 2014) -- 6.4 Steam Generator Tubes Plugs-Destructive Examination Results and Remediation -- 6.5 Steam Generator Tubes Sleeves-Destructive Examination of a Welded Sleeve -- 6.6 Steam Generators Blowdown Heat Exchangers Degradations in Operation (Praud et al. 2014) -- References -- 7 Stress Corrosion Cracking of Cold Worked Stainless Steels -- 7.1 Background -- 7.2 Destructive Examinations-Results and Remediation -- 7.2.1 Destructive Examination of 2 Thermocouple Clamping Devices (Staples) -- 7.2.2 Destructive Examination of a Cracked Alloy A-286 Vent Valve Jackscrew (Fyfitch et al. 2014).
7.2.3 Stress Corrosion Cracking of A286 Reactor Coolant Pump Turning Vane Bolts (Ickes and Ruminski 2019).
Record Nr. UNINA-9910585779203321
Cattant François  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui