top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analysis of Variance for High-Dimensional Data : Applications in Life, Food, and Chemical Sciences
Analysis of Variance for High-Dimensional Data : Applications in Life, Food, and Chemical Sciences
Autore Smilde Age K
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (339 pages)
Disciplina 570.285
Altri autori (Persone) MariniFederico
WesterhuisJohan A
LilandKristian Hovde
Soggetto topico Life sciences - Data processing
Food science - Data processing
Chemistry - Data processing
Experimental design
ISBN 1-394-21124-4
1-394-21122-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- Chapter 1 Introduction -- 1.1 Types of Data -- 1.2 Statistical Design of Experiments -- 1.3 High‐Dimensional Data -- 1.4 Examples -- 1.4.1 Metabolomics -- 1.4.2 Genomics -- 1.4.3 Microbiome -- 1.4.4 Proteomics -- 1.4.5 Food Science -- 1.4.6 Sensory Science -- 1.4.7 Chemistry -- 1.5 Complexities -- 1.5.1 Normalization -- 1.5.2 Different Measurement Scales -- 1.5.3 Different Distributions -- 1.5.4 Heteroscedastic Error -- 1.5.5 Comparability -- 1.5.6 Sparseness, Non‐detects, and Missing Values -- 1.5.7 Unbalancedness -- 1.6 Direct Versus Indirect Methods -- 1.7 Some History -- 1.A.1 Types of Measurements -- 1.A.2 Notation and Terminology -- 1.A.3 Some Definitions -- 1.A.4 Abbreviations -- Chapter 2 Basic Theory and Concepts -- 2.1 Mathematical Background -- 2.1.1 Vector Spaces and Subspaces -- 2.1.2 Matrix Decompositions -- 2.1.3 Inverses and Generalized Inverses -- 2.1.4 Distances and Projections -- 2.1.4.1 Formal Description of Distances -- 2.1.4.2 Projections -- 2.1.5 Principal Component Analysis -- 2.2 Statistical Background -- 2.2.1 Estimation Methods -- 2.2.1.1 Least Squares -- 2.2.1.2 Maximum Likelihood -- 2.2.2 Regression Methods -- 2.2.2.1 Multiple Linear Regression: Full Rank Case -- 2.2.2.2 Multiple Linear Regression Using Dummy Variables -- 2.2.2.3 Multiple Linear Regression: Rank Deficient Case -- 2.2.2.4 Penalized Regression -- 2.2.2.5 Principal Component Regression -- 2.2.2.6 Partial Least Squares -- 2.2.2.7 Redundancy Analysis -- 2.2.3 Significance Tests -- 2.2.3.1 Classical Tests -- 2.2.3.2 Permutation Tests -- 2.2.3.3 Likelihood Ratio Tests -- 2.3 Association Measures -- 2.3.1 Pearson and Spearman Correlation Coefficients -- 2.3.2 Problems with Correlations -- Chapter 3 Linear Models -- 3.1 Introduction -- 3.2 Simple ANOVA Models.
3.2.1 One‐Way ANOVA -- 3.2.2 Two‐Way ANOVA -- 3.2.2.1 Crossed Designs -- 3.2.2.2 Nested Designs -- 3.2.3 Unbalanced Designs -- 3.2.3.1 One‐Way ANOVA -- 3.2.3.2 Two‐Way ANOVA for Crossed Designs -- 3.2.3.3 Nested ANOVA -- 3.3 Regression Formulation, Estimability, and Contrasts -- 3.4 Coding Schemes -- 3.4.1 Codings for Balanced Designs -- 3.4.1.1 One‐Way Layout -- 3.4.1.2 Two‐Way Crossed Designs -- 3.4.1.3 Two‐Way Nested Designs -- 3.4.2 Codings for Unbalanced Designs -- 3.5 Advanced Models -- 3.5.1 Variance Component Models -- 3.5.2 Linear Mixed Models -- 3.5.2.1 General Idea -- 3.5.2.2 Estimation of Model Parameters -- 3.5.2.3 Repeated Measures ANOVA -- 3.5.2.4 Cross‐over Designs and Models -- 3.5.2.5 Longitudinal LMMs -- 3.6 Hasse Diagrams -- 3.6.1 Building a Hasse Diagram -- 3.7 Validation -- 3.7.1 Classical Tests Revisited -- 3.7.2 Expected Mean Squares from Hasse Diagrams -- 3.7.3 Permutation Tests -- 3.7.3.1 Exact Tests -- 3.7.3.2 Approximate Tests -- 3.8 Miscellaneous Models -- 3.8.1 Multivariate Analysis of Variance -- 3.8.1.1 Traditional Multivariate Analysis of Variance -- 3.8.1.2 Significance Testing in MANOVA -- 3.8.1.3 Regression Formulation of MANOVA -- 3.8.2 Multivariate LMMs -- 3.A.1 Proof -- 3.A.2 Relationships Between Codings -- 3.A.3 Practical Aspects of Codings -- Chapter 4 ASCA and Related Methods -- 4.1 ASCA -- 4.1.1 Basic Idea of ASCA -- 4.1.2 Properties of ASCA -- 4.1.3 Permutation Tests for ASCA -- 4.1.4 Back‐Projection -- 4.1.5 Scaling in ASCA -- 4.1.6 Group‐wise ASCA -- 4.1.7 Variable‐Selection ASCA -- 4.1.8 REP‐ASCA -- 4.1.9 ASCA as a Multivariate Multiple Regression Model -- 4.1.10 Geometry of ASCA -- 4.1.10.1 Geometry of ASCA in Row‐Space -- 4.1.10.2 Geometry of ASCA in Column‐Space -- 4.2 APCA -- 4.2.1 Basic Idea of APCA -- 4.2.2 Comparing APCA with ASCA -- 4.3 ASCA+ -- 4.3.1 Confidence Ellipsoids for ASCA.
4.3.2 ASCA and ASCA+ as RDA Models -- 4.4 Principal Response Curves -- 4.5 SMART -- 4.6 ASCA, PRC, and SMART Compared -- 4.7 MSCA -- 4.A.1 Proof of Equation -- 4.A.2 Proof of Equation -- Chapter 5 Alternative Methods -- 5.1 General Introduction -- 5.2 PLSR‐Based Methods -- 5.2.1 ANOVA‐TP -- 5.2.2 ANOVA Multiblock Orthogonal Partial Least Squares (AMOPLS) -- 5.3 LMM‐Based Methods -- 5.3.1 RM‐ASCA+ with Qualitative Time Models -- 5.3.2 Validation of the RM‐ASCA+ Model -- 5.3.2.1 Validation of RM‐ASCA+ Models with Nonparametric Bootstrap -- 5.3.2.2 Validation of RM‐ASCA+ Models with Permutation Testing -- 5.3.2.3 Visualization -- 5.3.2.4 RM‐ASCA+ with Quantitative Time Models -- 5.3.3 LiMM‐PCA -- 5.3.3.1 Validation -- 5.3.3.2 Visualization of Effects in LiMM‐PCA -- 5.4 Miscellaneous Methods -- 5.4.1 PC‐ANOVA -- 5.4.1.1 Basic Idea of PC‐ANOVA -- 5.4.1.2 Comparing PC‐ANOVA with ASCA -- 5.4.2 PARAFASCA -- 5.4.3 PE‐ASCA -- 5.4.4 rMANOVA -- 5.4.5 Fifty-Fifty MANOVA -- 5.4.6 AComDim -- 5.4.7 General Effect Modeling (GEM) -- Chapter 6 Distance‐based Methods -- 6.1 Introduction -- 6.1.1 Double Zeros -- 6.1.2 Horseshoe Effect -- 6.1.3 Compositionality -- 6.2 Methods -- 6.2.1 Principal Coordinate Analysis -- 6.2.2 PERMANOVA -- 6.2.2.1 PERMANOVA Calculated from the Gower Matrix -- 6.2.2.2 PERMANOVA of Non‐Euclidean Dissimilarity Matrices -- 6.2.3 Effect Sizes in PERMANOVA -- 6.2.4 Permutations in PERMANOVA -- 6.2.5 Assumptions for PERMANOVA -- 6.3 ANOSIM -- Chapter 7 Reviews and Reflections -- 7.1 Reviews -- 7.1.1 Metabolomics -- 7.1.1.1 Plant Science -- 7.1.1.2 Microbiology and Biotechnology -- 7.1.1.3 Animal Science -- 7.1.1.4 Human Science -- 7.1.2 Microbiome -- 7.1.3 Genomics -- 7.1.4 Proteomics -- 7.1.5 Food Science -- 7.1.6 Sensory Science -- 7.1.7 Chemistry -- 7.2 Reflections -- 7.2.1 Summary of Reviews -- 7.2.2 Overview of Methods.
7.2.3 Remaining Challenges -- 7.2.3.1 ASCA+ and Partial RDA -- 7.2.3.2 Permutations: Correlations and Unbalancedness -- 7.2.3.3 PERMANOVA and Effect Sizes -- 7.2.3.4 Back‐Projection Approach -- 7.2.3.5 Inferential Statistics -- 7.2.3.6 Advanced HD‐ANOVA Methods -- Chapter 8 Software -- 8.1 HD‐ANOVA Software -- 8.2 R Package HDANOVA -- 8.3 Installing and Starting the Package -- 8.4 Data Handling -- 8.4.1 Read from File -- 8.4.2 Data Pre‐processing -- 8.4.2.1 Re‐coding Categorical data -- 8.4.3 Data Structures for Analysis Including Blocks -- 8.4.3.1 Create List of Blocks -- 8.4.3.2 Create data.frame of Blocks -- 8.5 Analysis of Variance (ANOVA) -- 8.5.1 Simulated Data -- 8.5.2 Fixed Effect Models -- 8.5.2.1 One‐Way ANOVA -- 8.5.2.2 Two‐Way Crossed Effects ANOVA -- 8.5.2.3 Types of Sums of Squares -- 8.5.2.4 Coding Schemes -- 8.5.2.5 Fixed Effect Nested ANOVA -- 8.5.3 Linear Mixed Models -- 8.5.3.1 Least Squares − mixlm -- 8.5.3.2 Restrictions -- 8.5.3.3 Repeated Measures -- 8.5.3.4 REML -- 8.5.4 Multivariate ANOVA (MANOVA) -- 8.6 Basic ASCA Family -- 8.6.1 Fit ASCA Model -- 8.6.1.1 Permutation Testing -- 8.6.1.2 Random Effects -- 8.6.1.3 Scores and Loadings -- 8.6.1.4 Data Ellipsoids and Confidence Ellipsoids -- 8.6.1.5 Combined Effects -- 8.6.1.6 Quantitative Effects -- 8.6.2 ANOVA‐PCA (APCA) -- 8.6.3 PC‐ANOVA -- 8.6.4 MSCA -- 8.6.5 LiMM‐PCA -- 8.6.6 Repeated Measures ASCA -- 8.7 Alternative Methods -- 8.7.1 Principal Response Curves (PRC) -- 8.7.2 Permutation‐Based MANOVA (PERMANOVA) -- 8.8 Software Packages -- 8.8.1 R Packages -- 8.8.2 MATLAB Toolboxes -- 8.8.3 Python -- References -- Index -- EULA.
Record Nr. UNINA-9911020059203321
Smilde Age K  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics
Bioinformatics
Pubbl/distr/stampa Oxford : , : Oxford University Press, , 1998-
Descrizione fisica 1 online resource (volumes)
Disciplina 570.285
Soggetto topico Life sciences - Data processing
Genomes - Data processing
Computational Biology
Genome
Sciences de la vie - Informatique
Génomes - Informatique
Bio-informatique
Génomes
Biologie
Informatietechnologie
Soggetto genere / forma Periodical
Periodicals.
Soggetto non controllato BIOINFORMATICS
ISSN 1367-4811
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Bioinformatics online
Record Nr. UNISA-996217543703316
Oxford : , : Oxford University Press, , 1998-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bioinformatics
Bioinformatics
Pubbl/distr/stampa Oxford : , : Oxford University Press, , 1998-
Descrizione fisica 1 online resource (volumes)
Disciplina 570.285
Soggetto topico Bioinformatics
Life sciences - Data processing
Genomes - Data processing
Computational Biology
Genome
Sciences de la vie - Informatique
Génomes - Informatique
Bio-informatique
Génomes
Biologie
Informatietechnologie
Soggetto genere / forma Periodical
Periodicals.
ISSN 1367-4811
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Bioinformatics online
Record Nr. UNINA-9910145557903321
Oxford : , : Oxford University Press, , 1998-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Blockchain in life sciences / / Wendy Charles
Blockchain in life sciences / / Wendy Charles
Autore Charles Wendy
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (349 pages)
Disciplina 005.74
Collana Blockchain Technologies
Soggetto topico Blockchains (Databases)
Life sciences - Data processing
ISBN 9789811929762
9789811929755
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Editor -- Abbreviations -- List of Figures -- List of Tables -- Blockchain Uses and Real World Evidence -- Introduction to Blockchain -- 1 Introduction -- 2 Blockchain Core Characteristics -- 2.1 Ledgers -- 2.2 Cryptography -- 2.3 Immutability (Tamper Evidence and Tamper Resistance) -- 2.4 Distribution -- 3 Blockchain Features -- 3.1 Permissionless Versus Permissioned -- 3.2 Permissionless -- 3.3 Off-Chain Versus On-Chain Storage -- 3.4 Smart Contracts -- 4 Blockchain Benefits for Life Sciences -- 4.1 Trust -- 4.2 Audit Trails-Provenance -- 4.3 Data Transparency Versus Privacy -- 4.4 Security -- 4.5 Performance -- 5 Conclusions -- 6 Key Terminology and Definitions -- References -- Blockchain in Pharmaceutical Research and the Pharmaceutical Value Chain -- 1 Brief Overview of Pharmaceutical Research -- 1.1 Drug Delivery and Discovery -- 1.2 Challenges Associated with Drug Delivery and Discovery -- 1.3 Challenges Associated with Preclinical (i.e., In Vitro, In Vivo) and Phase 0/I-IV Studies -- 2 Introduction of the End-To-End Pharmaceutical Value Chain -- 2.1 Five Main Categories: (1) Research and Discovery, (2) Clinical Development, (3) Manufacturing and Supply Chain, (4) Launch and Commercial Considerations, and (5) Monitoring and Health Records -- 2.2 Differentiating Pharmaceutical Value Chain from Pharmaceutical Supply Chain -- 3 Blockchain Efforts Within Pharmaceutical Industry -- 3.1 Pharmaceutical Users Software Exchange (PhUSE) Blockchain Project -- 3.2 Innovative Medicines Initiative (IMI) Blockchain-Enabled Healthcare -- 3.3 The MELLODDY Project and Millions of Molecules Blockchain + Smart Contracts for Human Participant Regulations and Consent Management -- 3.4 Information Exchange and Data Transformation (INFORMED) Initiative -- 3.5 Moneyball Medicine.
4 Mapping Blockchain Characteristics to Pain Points in the Pharmaceutical Value Chain -- 4.1 Adapted Fit-For-Purpose Framework and Design Elements -- 4.2 Matching Characteristics (e.g., Decentralized, Distributed, Conditionally Immutable, Scalable, Cryptographically Secured) to Identified Pain Points in Each of the 5 Categories -- 5 Blockchain-But Not in a Vacuum -- 5.1 Blockchain-Complementary Established and Emerging (e.g., Machine Learning, Artificial Intelligence) Technologies for the Pharmaceutical Value Chain -- 6 Debunking Myths Around Challenges with Blockchain -- 6.1 The Myth of the Technical Challenge -- 6.2 The Reality of Challenges Tied to Change Management, Resource Allocation, Paradigm Shift, and Reaching Consensus -- 7 Blockchain and The Idea Pipeline -- 7.1 Pharmacogenomics -- 7.2 Collaborative Pharmaceutical Development -- 7.3 Patient Access, Medication Reclamation, and Prescription Waste Reduction -- 7.4 The Evolution of the Traditional Retail Pharmacy -- 8 Future Directions -- 9 Conclusions -- References -- Blockchain-Based Scalable Network for Bioinformatics and Internet of Medical Things (IoMT) -- 1 Introduction -- 1.1 Data Ownership -- 1.2 Data in Blockchain-Based Network -- 2 Case Implementation of Internet of Medical Things (IoMT) with Real Ownership -- 2.1 The Synsal Network -- 2.2 Sensors, Device Engineering, and Scaling in the Synsal Network -- 3 Tokenization and Value Scaling in the Blockchain-Based Network of Hardware Devices -- 3.1 Tokenization and Value Scaling -- 3.2 Basic Stabilization Tokenomics -- 4 Future Directions -- 5 Conclusions -- References -- Blockchains and Genomics: Promises and Limits of Technology -- 1 Introduction: A Brief History of Capitalization on Genes -- 2 The Scientific and Market Value of Genomic Data -- 2.1 On the Nature of Data, and the Data of Nature -- 2.2 Fair and Sustainable Data Use.
3 Democratize, Decentralize, and Disintermediate Data (The Three Ds) -- 3.1 Blockchain Genomics: The Current Slate -- 4 Why Genomes Cannot Be Owned -- 5 How Shall We Treat Genes? -- 6 What About Non-Fungible Tokens, NFTs? -- 6.1 The Need for Regulation -- 7 Future Directions -- 8 Conclusions -- References -- Convergence of Blockchain and AI for IoT in Connected Life Sciences -- 1 Introduction -- 1.1 Fueling the Digital Transformation in Health and Life Sciences -- 1.2 Technology Unification -- 2 Harnessing the Power of Data-Driven Technologies in Life Sciences -- 2.1 Data-Driven Technologies in Life Sciences -- 3 Innovating in a Highly Regulated Industry -- 4 Essential Elements for Data Strategy in Life Sciences -- 4.1 Data Building Blocks -- 5 Prioritizing Risk Management in Life Sciences -- 6 Opportunities and Challenges for Emerging Digital Technologies in Life Sciences -- 6.1 Major Milestones in Life Sciences Product Development -- 7 Strategic Planning Frameworks -- 7.1 Blockchain and AI to Mitigate Risks of IoT/BYOD -- 7.2 Blockchain-AI Platforms and Infrastructures -- 8 Future Directions -- 8.1 Human as a Platform -- 8.2 Thinking Beyond the Adoption of Technology -- 9 Conclusions -- References -- A Blockchain-Empowered Federated Learning System and the Promising Use in Drug Discovery -- 1 Introduction -- 2 Overview of Federated Learning and Blockchain -- 2.1 Federated Learning -- 2.2 Barriers and Challenges in Drug Discovery -- 2.3 Challenges in Federated Learning -- 2.4 Blockchain Benefit for Federated Learning -- 2.5 The Benefits of Blockchain-Empowered Federated Learning for Drug Discovery -- 3 The Rahasak-ML Platform -- 3.1 Overview -- 3.2 Key Components -- 4 Rahasak-ML Federated Learning Process -- 4.1 Overview -- 4.2 Incremental Training Flow -- 4.3 Finalizing Model.
4.4 The Use Case of Blockchain-Empowered Federated Learning in the Medical Field -- 5 Future Directions -- 5.1 Data Heterogeneity -- 5.2 Efficiency and Effectiveness -- 5.3 Model Interpretation -- 6 Conclusions -- References -- Considerations for Ensuring Success of Blockchain in Life Sciences Research -- Valuing Research Data: Blockchain-Based Management Methods -- 1 Introduction -- 1.1 Nature of Health Data -- 1.2 Health Data Management -- 2 Data as an Asset -- 2.1 How to Value Data Assets -- 3 Data Sales Methods -- 3.1 Data Brokers -- 3.2 Centralized Data Marketplaces -- 3.3 Decentralized Data Marketplaces -- 3.4 Non-Fungible Tokens -- 4 Considerations -- 4.1 Ethical Considerations -- 4.2 Ownership -- 4.3 Data Considerations -- 5 Recommendations -- 5.1 Ethical Recommendations -- 5.2 Data Recommendations -- 5.3 Legal Recommendations -- 6 Future Directions -- 6.1 Regulations -- 6.2 Future Research -- 7 Conclusions -- 7.1 Key Terminology and Definitions -- References -- Blockchain Adoption in Life Sciences Organizations: Socio-organizational Barriers and Adoption Strategies -- 1 Introduction -- 2 Background Literature -- 3 Research Methods -- 4 Findings -- 4.1 The State of the Blockchain + Life Sciences Ecosystem -- 4.2 Socio-organizational Barriers for Blockchain Adoption in Life Sciences -- 4.3 Barrier 4: The Lack of an "Ecosystem" Mindset -- 4.4 Adoption Strategies -- 5 Discussion -- 5.1 Limitations and Future Directions -- 6 Conclusion -- References -- Blockchain Governance Strategies -- 1 Introduction -- 2 Defining Governance -- 3 A Deeper Dive: Blockchain Governance -- 3.1 On-Chain Governance -- 3.2 Off-Chain Governance -- 4 Types of Ecosystem Governance Decisions -- 5 Common Blockchain Governance Strategies -- 5.1 Founder Led/Benevolent Dictator -- 5.2 Core Development Team -- 5.3 Federations or Alliances -- 6 Ecosystem Roles.
7 Typical Ecosystem for Life Sciences Blockchain -- 7.1 Special Considerations for Life Sciences -- 8 Recommendations -- 9 Future Directions -- 10 Conclusions -- References -- Life Sciences Intellectual Property Through the Blockchain Lens -- 1 Introduction -- 2 The Emergence of Blockchain in Life Sciences -- 3 The Intersection of Blockchain and Life Sciences IP Rights in the United States -- 3.1 Patents -- 3.2 Trademarks and Trade Dress -- 3.3 Trade Secrets -- 3.4 Copyrights -- 4 Transferring IP Rights Through Blockchains -- 5 Managing IP Rights Through Blockchain -- 6 Blockchain in Adversarial Proceedings Involving IP Rights -- 6.1 Anticounterfeiting -- 7 Future Directions -- 8 Conclusions -- References -- Regulatory Compliance Considerations for Blockchain in Life Sciences Research -- 1 Introduction -- 1.1 Regulatory Agency Uses of Blockchain -- 1.2 Regulatory Applicability -- 2 Regulatory Review and Documentation -- 2.1 System Design and Documentation -- 2.2 System Protection Features -- 2.3 Record and Signature Integrity -- 2.4 Verification and Validation -- 2.5 Training -- 3 Outsourcing -- 4 Future Directions -- 4.1 Standards -- 4.2 Blockchain Education -- 4.3 Research -- 5 Conclusions -- 5.1 Key Terminology and Definitions -- References -- The Art of Ethics in Blockchain for Life Sciences -- 1 Introduction -- 2 Digital Ethics Programs Design for Blockchain in Life Sciences -- 2.1 General Application of Digital Ethics Across the Life Sciences Continuum -- 2.2 Research -- 2.3 Genomics and Precision Medicine -- 2.4 Digital Identity -- 3 Cultural, Legal, and Socioeconomic Influences -- 4 Blockchain Ethics and Purpose in Life Sciences -- 5 Future Directions: Disruption, Innovation, Evolution -- 6 Conclusions -- References -- Cybersecurity Considerations in Blockchain-Based Solutions -- 1 Introduction -- 2 Blockchain Solution Architecture.
2.1 Network and Architecture Types.
Record Nr. UNISA-996485665203316
Charles Wendy  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Blockchain in life sciences / / Wendy Charles
Blockchain in life sciences / / Wendy Charles
Autore Charles Wendy
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (349 pages)
Disciplina 005.74
Collana Blockchain Technologies
Soggetto topico Blockchains (Databases)
Life sciences - Data processing
ISBN 9789811929762
9789811929755
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Editor -- Abbreviations -- List of Figures -- List of Tables -- Blockchain Uses and Real World Evidence -- Introduction to Blockchain -- 1 Introduction -- 2 Blockchain Core Characteristics -- 2.1 Ledgers -- 2.2 Cryptography -- 2.3 Immutability (Tamper Evidence and Tamper Resistance) -- 2.4 Distribution -- 3 Blockchain Features -- 3.1 Permissionless Versus Permissioned -- 3.2 Permissionless -- 3.3 Off-Chain Versus On-Chain Storage -- 3.4 Smart Contracts -- 4 Blockchain Benefits for Life Sciences -- 4.1 Trust -- 4.2 Audit Trails-Provenance -- 4.3 Data Transparency Versus Privacy -- 4.4 Security -- 4.5 Performance -- 5 Conclusions -- 6 Key Terminology and Definitions -- References -- Blockchain in Pharmaceutical Research and the Pharmaceutical Value Chain -- 1 Brief Overview of Pharmaceutical Research -- 1.1 Drug Delivery and Discovery -- 1.2 Challenges Associated with Drug Delivery and Discovery -- 1.3 Challenges Associated with Preclinical (i.e., In Vitro, In Vivo) and Phase 0/I-IV Studies -- 2 Introduction of the End-To-End Pharmaceutical Value Chain -- 2.1 Five Main Categories: (1) Research and Discovery, (2) Clinical Development, (3) Manufacturing and Supply Chain, (4) Launch and Commercial Considerations, and (5) Monitoring and Health Records -- 2.2 Differentiating Pharmaceutical Value Chain from Pharmaceutical Supply Chain -- 3 Blockchain Efforts Within Pharmaceutical Industry -- 3.1 Pharmaceutical Users Software Exchange (PhUSE) Blockchain Project -- 3.2 Innovative Medicines Initiative (IMI) Blockchain-Enabled Healthcare -- 3.3 The MELLODDY Project and Millions of Molecules Blockchain + Smart Contracts for Human Participant Regulations and Consent Management -- 3.4 Information Exchange and Data Transformation (INFORMED) Initiative -- 3.5 Moneyball Medicine.
4 Mapping Blockchain Characteristics to Pain Points in the Pharmaceutical Value Chain -- 4.1 Adapted Fit-For-Purpose Framework and Design Elements -- 4.2 Matching Characteristics (e.g., Decentralized, Distributed, Conditionally Immutable, Scalable, Cryptographically Secured) to Identified Pain Points in Each of the 5 Categories -- 5 Blockchain-But Not in a Vacuum -- 5.1 Blockchain-Complementary Established and Emerging (e.g., Machine Learning, Artificial Intelligence) Technologies for the Pharmaceutical Value Chain -- 6 Debunking Myths Around Challenges with Blockchain -- 6.1 The Myth of the Technical Challenge -- 6.2 The Reality of Challenges Tied to Change Management, Resource Allocation, Paradigm Shift, and Reaching Consensus -- 7 Blockchain and The Idea Pipeline -- 7.1 Pharmacogenomics -- 7.2 Collaborative Pharmaceutical Development -- 7.3 Patient Access, Medication Reclamation, and Prescription Waste Reduction -- 7.4 The Evolution of the Traditional Retail Pharmacy -- 8 Future Directions -- 9 Conclusions -- References -- Blockchain-Based Scalable Network for Bioinformatics and Internet of Medical Things (IoMT) -- 1 Introduction -- 1.1 Data Ownership -- 1.2 Data in Blockchain-Based Network -- 2 Case Implementation of Internet of Medical Things (IoMT) with Real Ownership -- 2.1 The Synsal Network -- 2.2 Sensors, Device Engineering, and Scaling in the Synsal Network -- 3 Tokenization and Value Scaling in the Blockchain-Based Network of Hardware Devices -- 3.1 Tokenization and Value Scaling -- 3.2 Basic Stabilization Tokenomics -- 4 Future Directions -- 5 Conclusions -- References -- Blockchains and Genomics: Promises and Limits of Technology -- 1 Introduction: A Brief History of Capitalization on Genes -- 2 The Scientific and Market Value of Genomic Data -- 2.1 On the Nature of Data, and the Data of Nature -- 2.2 Fair and Sustainable Data Use.
3 Democratize, Decentralize, and Disintermediate Data (The Three Ds) -- 3.1 Blockchain Genomics: The Current Slate -- 4 Why Genomes Cannot Be Owned -- 5 How Shall We Treat Genes? -- 6 What About Non-Fungible Tokens, NFTs? -- 6.1 The Need for Regulation -- 7 Future Directions -- 8 Conclusions -- References -- Convergence of Blockchain and AI for IoT in Connected Life Sciences -- 1 Introduction -- 1.1 Fueling the Digital Transformation in Health and Life Sciences -- 1.2 Technology Unification -- 2 Harnessing the Power of Data-Driven Technologies in Life Sciences -- 2.1 Data-Driven Technologies in Life Sciences -- 3 Innovating in a Highly Regulated Industry -- 4 Essential Elements for Data Strategy in Life Sciences -- 4.1 Data Building Blocks -- 5 Prioritizing Risk Management in Life Sciences -- 6 Opportunities and Challenges for Emerging Digital Technologies in Life Sciences -- 6.1 Major Milestones in Life Sciences Product Development -- 7 Strategic Planning Frameworks -- 7.1 Blockchain and AI to Mitigate Risks of IoT/BYOD -- 7.2 Blockchain-AI Platforms and Infrastructures -- 8 Future Directions -- 8.1 Human as a Platform -- 8.2 Thinking Beyond the Adoption of Technology -- 9 Conclusions -- References -- A Blockchain-Empowered Federated Learning System and the Promising Use in Drug Discovery -- 1 Introduction -- 2 Overview of Federated Learning and Blockchain -- 2.1 Federated Learning -- 2.2 Barriers and Challenges in Drug Discovery -- 2.3 Challenges in Federated Learning -- 2.4 Blockchain Benefit for Federated Learning -- 2.5 The Benefits of Blockchain-Empowered Federated Learning for Drug Discovery -- 3 The Rahasak-ML Platform -- 3.1 Overview -- 3.2 Key Components -- 4 Rahasak-ML Federated Learning Process -- 4.1 Overview -- 4.2 Incremental Training Flow -- 4.3 Finalizing Model.
4.4 The Use Case of Blockchain-Empowered Federated Learning in the Medical Field -- 5 Future Directions -- 5.1 Data Heterogeneity -- 5.2 Efficiency and Effectiveness -- 5.3 Model Interpretation -- 6 Conclusions -- References -- Considerations for Ensuring Success of Blockchain in Life Sciences Research -- Valuing Research Data: Blockchain-Based Management Methods -- 1 Introduction -- 1.1 Nature of Health Data -- 1.2 Health Data Management -- 2 Data as an Asset -- 2.1 How to Value Data Assets -- 3 Data Sales Methods -- 3.1 Data Brokers -- 3.2 Centralized Data Marketplaces -- 3.3 Decentralized Data Marketplaces -- 3.4 Non-Fungible Tokens -- 4 Considerations -- 4.1 Ethical Considerations -- 4.2 Ownership -- 4.3 Data Considerations -- 5 Recommendations -- 5.1 Ethical Recommendations -- 5.2 Data Recommendations -- 5.3 Legal Recommendations -- 6 Future Directions -- 6.1 Regulations -- 6.2 Future Research -- 7 Conclusions -- 7.1 Key Terminology and Definitions -- References -- Blockchain Adoption in Life Sciences Organizations: Socio-organizational Barriers and Adoption Strategies -- 1 Introduction -- 2 Background Literature -- 3 Research Methods -- 4 Findings -- 4.1 The State of the Blockchain + Life Sciences Ecosystem -- 4.2 Socio-organizational Barriers for Blockchain Adoption in Life Sciences -- 4.3 Barrier 4: The Lack of an "Ecosystem" Mindset -- 4.4 Adoption Strategies -- 5 Discussion -- 5.1 Limitations and Future Directions -- 6 Conclusion -- References -- Blockchain Governance Strategies -- 1 Introduction -- 2 Defining Governance -- 3 A Deeper Dive: Blockchain Governance -- 3.1 On-Chain Governance -- 3.2 Off-Chain Governance -- 4 Types of Ecosystem Governance Decisions -- 5 Common Blockchain Governance Strategies -- 5.1 Founder Led/Benevolent Dictator -- 5.2 Core Development Team -- 5.3 Federations or Alliances -- 6 Ecosystem Roles.
7 Typical Ecosystem for Life Sciences Blockchain -- 7.1 Special Considerations for Life Sciences -- 8 Recommendations -- 9 Future Directions -- 10 Conclusions -- References -- Life Sciences Intellectual Property Through the Blockchain Lens -- 1 Introduction -- 2 The Emergence of Blockchain in Life Sciences -- 3 The Intersection of Blockchain and Life Sciences IP Rights in the United States -- 3.1 Patents -- 3.2 Trademarks and Trade Dress -- 3.3 Trade Secrets -- 3.4 Copyrights -- 4 Transferring IP Rights Through Blockchains -- 5 Managing IP Rights Through Blockchain -- 6 Blockchain in Adversarial Proceedings Involving IP Rights -- 6.1 Anticounterfeiting -- 7 Future Directions -- 8 Conclusions -- References -- Regulatory Compliance Considerations for Blockchain in Life Sciences Research -- 1 Introduction -- 1.1 Regulatory Agency Uses of Blockchain -- 1.2 Regulatory Applicability -- 2 Regulatory Review and Documentation -- 2.1 System Design and Documentation -- 2.2 System Protection Features -- 2.3 Record and Signature Integrity -- 2.4 Verification and Validation -- 2.5 Training -- 3 Outsourcing -- 4 Future Directions -- 4.1 Standards -- 4.2 Blockchain Education -- 4.3 Research -- 5 Conclusions -- 5.1 Key Terminology and Definitions -- References -- The Art of Ethics in Blockchain for Life Sciences -- 1 Introduction -- 2 Digital Ethics Programs Design for Blockchain in Life Sciences -- 2.1 General Application of Digital Ethics Across the Life Sciences Continuum -- 2.2 Research -- 2.3 Genomics and Precision Medicine -- 2.4 Digital Identity -- 3 Cultural, Legal, and Socioeconomic Influences -- 4 Blockchain Ethics and Purpose in Life Sciences -- 5 Future Directions: Disruption, Innovation, Evolution -- 6 Conclusions -- References -- Cybersecurity Considerations in Blockchain-Based Solutions -- 1 Introduction -- 2 Blockchain Solution Architecture.
2.1 Network and Architecture Types.
Record Nr. UNINA-9910590074503321
Charles Wendy  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational life sciences : first international symposium, CompLife 2005, Konstanz, Germany, September 25-27, 2005 : proceedings / / Michael R. Berthold ... [et al.] (eds.)
Computational life sciences : first international symposium, CompLife 2005, Konstanz, Germany, September 25-27, 2005 : proceedings / / Michael R. Berthold ... [et al.] (eds.)
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2005
Descrizione fisica 1 online resource (XII, 280 p.)
Disciplina 572.80285
Altri autori (Persone) BertholdM (Michael)
Collana Lecture notes in computer science,Lecture notes in bioinformatics
Soggetto topico Life sciences - Data processing
Bioinformatics
Computational biology
Molecular biology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Systems Biology -- Structural Protein Interactions Predict Kinase-Inhibitor Interactions in Upregulated Pancreas Tumour Genes Expression Data -- Biochemical Pathway Analysis via Signature Mining -- Recurrent Neuro-fuzzy Network Models for Reverse Engineering Gene Regulatory Interactions -- Data Analysis and Integration -- Some Applications of Dummy Point Scatterers for Phasing in Macromolecular X-Ray Crystallography -- BioRegistry: A Structured Metadata Repository for Bioinformatic Databases -- Robust Perron Cluster Analysis for Various Applications in Computational Life Science -- Structural Biology -- Multiple Alignment of Protein Structures in Three Dimensions -- Protein Annotation by Secondary Structure Based Alignments (PASSTA) -- MAPPIS: Multiple 3D Alignment of Protein-Protein Interfaces -- Genomics -- Frequent Itemsets for Genomic Profiling -- Gene Selection Through Sensitivity Analysis of Support Vector Machines -- The Breakpoint Graph in Ciliates -- Computational Proteomics -- ProSpect: An R Package for Analyzing SELDI Measurements Identifying Protein Biomarkers -- Algorithms for the Automated Absolute Quantification of Diagnostic Markers in Complex Proteomics Samples -- Detection of Protein Assemblies in Crystals -- Molecular Informatics -- Molecular Similarity Searching Using COSMO Screening Charges (COSMO/3PP) -- Increasing Diversity in In-silico Screening with Target Flexibility -- Multiple Semi-flexible 3D Superposition of Drug-Sized Molecules -- Molecular Structure Determination and Simulation -- Efficiency Considerations in Solving Smoluchowski Equations for Rough Potentials -- Fast and Accurate Structural RNA Alignment by Progressive Lagrangian Optimization -- Visual Analysis of Molecular Conformations by Means of a Dynamic Density Mixture Model -- Distributed Data Mining -- Distributed BLAST in a Grid Computing Context -- Parallel Tuning of Support Vector Machine Learning Parameters for Large and Unbalanced Data Sets -- The Architecture of a Proteomic Network in the Yeast.
Altri titoli varianti CompLife 2005
Record Nr. UNINA-9910484709503321
Berlin ; ; New York, : Springer, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational life sciences II : Second International Symposium, CompLife 2006, Cambridge, UK, September 27-29, 2006 : proceedings / / Michael R. Berthold, Robert Glen, Ingrid Fischer (eds.)
Computational life sciences II : Second International Symposium, CompLife 2006, Cambridge, UK, September 27-29, 2006 : proceedings / / Michael R. Berthold, Robert Glen, Ingrid Fischer (eds.)
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin, : Springer, 2006
Descrizione fisica 1 online resource (XIII, 269 p.)
Disciplina 572.80285
Altri autori (Persone) BertholdM (Michael)
GlenRobert (Robert Charles)
FischerIngrid
Collana LNCS sublibrary. SL 8, Bioinformatics
Lecture notes in computer science,Lecture notes in bioinformatics
Soggetto topico Life sciences - Data processing
Bioinformatics
Computational biology
Molecular biology
ISBN 3-540-45768-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Genomics -- Improved Robustness in Time Series Analysis of Gene Expression Data by Polynomial Model Based Clustering -- A Hybrid Grid and Its Application to Orthologous Groups Clustering -- Promoter Prediction Using Physico-Chemical Properties of DNA -- Parametric Spectral Analysis of Malaria Gene Expression Time Series Data -- An Efficient Algorithm for Finding Long Conserved Regions Between Genes -- The Reversal Median Problem, Common Intervals, and Mitochondrial Gene Orders -- Data Mining -- Building Structure-Property Predictive Models Using Data Assimilation -- Set-Oriented Dimension Reduction: Localizing Principal Component Analysis Via Hidden Markov Models -- Relational Subgroup Discovery for Descriptive Analysis of Microarray Data -- Applicability of Loop Recombination in Ciliates Using the Breakpoint Graph -- High-Throughput Identification of Chemistry in Life Science Texts -- Beating the Noise: New Statistical Methods for Detecting Signals in MALDI-TOF Spectra Below Noise Level -- Molecular Simulation -- Dynamic Complexity of Chaotic Transitions in High-Dimensional Classical Dynamics: Leu-Enkephalin Folding -- Solvent Effects and Conformational Stability of a Tripeptide -- Grid Assisted Ensemble Molecular Dynamics Simulations of HIV-1 Proteases Reveal Novel Conformations of the Inhibitor Saquinavir -- Molecular Informatics -- A Structure-Based Analysis of Single Molecule Force Spectroscopy (SMFS) Data for Bacteriorhodopsin and Four Mutants -- Classifying the World Anti-Doping Agency’s 2005 Prohibited List Using the Chemistry Development Kit Fingerprint -- A Point-Matching Based Algorithm for 3D Surface Alignment of Drug-Sized Molecules -- Systems Biology -- Adaptive Approach for Modelling Variability in Pharmacokinetics -- A New Approach to Flux Coupling Analysis of Metabolic Networks -- Biological Networks / Metabolism -- Software Supported Modelling in Pharmacokinetics -- On the Interpretation of High Throughput MS Based Metabolomics Fingerprints with Random Forest -- Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients -- Computational Neuroscience -- The Language of Cortical Dynamics -- A Simple Method to Simultaneously Track the Numbers of Expressed Channel Proteins in a Neuron.
Altri titoli varianti CompLife 2006
Computational life sciences 2
Computational life sciences two
Record Nr. UNINA-9910767506003321
Berlin, : Springer, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational science and techniques
Computational science and techniques
Pubbl/distr/stampa Klaipeda, Lithuania : , : Klaipeda University, , 2013-
Descrizione fisica 1 online resource
Soggetto topico Computer science
Computational complexity
Mathematical models
Life sciences - Data processing
Soggetto genere / forma Periodicals.
Soggetto non controllato Computer Science
ISSN 2029-9966
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996321072303316
Klaipeda, Lithuania : , : Klaipeda University, , 2013-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational science and techniques
Computational science and techniques
Pubbl/distr/stampa Klaipeda, Lithuania : , : Klaipeda University, , 2013-
Descrizione fisica 1 online resource
Soggetto topico Computer science
Computational complexity
Mathematical models
Life sciences - Data processing
Soggetto genere / forma Periodicals.
ISSN 2029-9966
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910132346603321
Klaipeda, Lithuania : , : Klaipeda University, , 2013-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computer applications in the biosciences : CABIOS
Computer applications in the biosciences : CABIOS
Pubbl/distr/stampa Oxford, : Oxford University Press
Soggetto topico Life sciences - Data processing
Life sciences - Computer programs
Biology
Computers
Soggetto genere / forma Periodical
Periodicals.
ISSN 1460-2059
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti CABIOS
Record Nr. UNISA-996221339803316
Oxford, : Oxford University Press
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui