Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin
| Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin |
| Autore | Valdinoci Enrico <1974-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (158 p.) |
| Disciplina |
510 s
515/.39 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geometry, Differential
Laplacian operator Level set methods |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0462-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Modifications of the potential and of one-dimensional solutions""; ""Chapter 3. Geometry of the touching points""; ""Chapter 4. Measure theoretic results""; ""Chapter 5. Estimates on the measure of the projection of the contact set""; ""Chapter 6. Proof of Theorem 1.1""; ""Chapter 7. Proof of Theorem 1.2""; ""Chapter 8. Proof of Theorem 1.3""; ""Chapter 9. Proof of Theorem 1.4""; ""Appendix A. Proof of the measure theoretic results""; ""A.1. Proof of Lemma 4.1""; ""A.2. Proof of Lemma 4.2""; ""A.3. Proof of Lemma 4.3""
""Appendix B. Summary of elementary lemmata""""Bibliography"" |
| Record Nr. | UNINA-9910481007103321 |
Valdinoci Enrico <1974->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin
| Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin |
| Autore | Valdinoci Enrico <1974-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (158 p.) |
| Disciplina |
510 s
515/.39 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geometry, Differential
Laplacian operator Level set methods |
| ISBN | 1-4704-0462-1 |
| Classificazione | 31.52 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Modifications of the potential and of one-dimensional solutions""; ""Chapter 3. Geometry of the touching points""; ""Chapter 4. Measure theoretic results""; ""Chapter 5. Estimates on the measure of the projection of the contact set""; ""Chapter 6. Proof of Theorem 1.1""; ""Chapter 7. Proof of Theorem 1.2""; ""Chapter 8. Proof of Theorem 1.3""; ""Chapter 9. Proof of Theorem 1.4""; ""Appendix A. Proof of the measure theoretic results""; ""A.1. Proof of Lemma 4.1""; ""A.2. Proof of Lemma 4.2""; ""A.3. Proof of Lemma 4.3""
""Appendix B. Summary of elementary lemmata""""Bibliography"" |
| Record Nr. | UNINA-9910788742103321 |
Valdinoci Enrico <1974->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin
| Flat level set regularity of p-Laplace phase transitions / / Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin |
| Autore | Valdinoci Enrico <1974-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
| Descrizione fisica | 1 online resource (158 p.) |
| Disciplina |
510 s
515/.39 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geometry, Differential
Laplacian operator Level set methods |
| ISBN | 1-4704-0462-1 |
| Classificazione | 31.52 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Modifications of the potential and of one-dimensional solutions""; ""Chapter 3. Geometry of the touching points""; ""Chapter 4. Measure theoretic results""; ""Chapter 5. Estimates on the measure of the projection of the contact set""; ""Chapter 6. Proof of Theorem 1.1""; ""Chapter 7. Proof of Theorem 1.2""; ""Chapter 8. Proof of Theorem 1.3""; ""Chapter 9. Proof of Theorem 1.4""; ""Appendix A. Proof of the measure theoretic results""; ""A.1. Proof of Lemma 4.1""; ""A.2. Proof of Lemma 4.2""; ""A.3. Proof of Lemma 4.3""
""Appendix B. Summary of elementary lemmata""""Bibliography"" |
| Record Nr. | UNINA-9910828648703321 |
Valdinoci Enrico <1974->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Level set methods and dynamic implicit surfaces / Stanley Osher, Ronald Fedkiw
| Level set methods and dynamic implicit surfaces / Stanley Osher, Ronald Fedkiw |
| Autore | Osher, Stanley |
| Pubbl/distr/stampa | New York : Springer, c2003 |
| Descrizione fisica | xiii, 273 p., [16] p. of plates : ill. (some col.) ; 24 cm |
| Disciplina | 515.8 |
| Altri autori (Persone) | Fedkiw, Ronald P. |
| Collana | Applied mathematical sciences, 0066-5452 ; 153 |
| Soggetto topico |
Level set methods
Implicit functions |
| ISBN | 0387954821 |
| Classificazione |
AMS 65M
LC QA1.A647 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000633459707536 |
Osher, Stanley
|
||
| New York : Springer, c2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Level sets and extrema of random processes and fields / / Jean-Marc Azais, Mario Wschebor
| Level sets and extrema of random processes and fields / / Jean-Marc Azais, Mario Wschebor |
| Autore | Azais Jean-Marc <1957-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2009 |
| Descrizione fisica | 1 online resource (407 p.) |
| Disciplina | 519.2/3 |
| Altri autori (Persone) | WscheborMario |
| Soggetto topico |
Gaussian processes
Level set methods Random fields Stochastic processes |
| ISBN |
9786612687235
9781282687233 1282687239 9780470434642 0470434643 9780470434635 0470434635 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
LEVEL SETS AND EXTREMA OF RANDOM PROCESSES AND FIELDS; CONTENTS; PREFACE; INTRODUCTION; 1 CLASSICAL RESULTS ON THE REGULARITY OF PATHS; 1.1 Kolmogorov's Extension Theorem; 1.2 Reminder on the Normal Distribution; 1.3 0-1 Law for Gaussian Processes; 1.4 Regularity of Paths; Exercises; 2 BASIC INEQUALITIES FOR GAUSSIAN PROCESSES; 2.1 Slepian Inequalities; 2.2 Ehrhard's Inequality; 2.3 Gaussian Isoperimetric Inequality; 2.4 Inequalities for the Tails of the Distribution of the Supremum; 2.5 Dudley's Inequality; Exercises; 3 CROSSINGS AND RICE FORMULAS FOR ONE-DIMENSIONAL PARAMETER PROCESSES
3.1 Rice Formulas3.2 Variants and Examples; Exercises; 4 SOME STATISTICAL APPLICATIONS; 4.1 Elementary Bounds for P{M >u}; 4.2 More Detailed Computation of the First Two Moments; 4.3 Maximum of the Absolute Value; 4.4 Application to Quantitative Gene Detection; 4.5 Mixtures of Gaussian Distributions; Exercises; 5 THE RICE SERIES; 5.1 The Rice Series; 5.2 Computation of Moments; 5.3 Numerical Aspects of the Rice Series; 5.4 Processes with Continuous Paths; 6 RICE FORMULAS FOR RANDOM FIELDS; 6.1 Random Fields from R(d) to R(d); 6.2 Random Fields from R(d) to R(d ́), d > d ́; Exercises 7 REGULARITY OF THE DISTRIBUTION OF THE MAXIMUM7.1 Implicit Formula for the Density of the Maximum; 7.2 One-Parameter Processes; 7.3 Continuity of the Density of the Maximum of Random Fields; Exercises; 8 THE TAIL OF THE DISTRIBUTION OF THE MAXIMUM; 8.1 One-Dimensional Parameter: Asymptotic Behavior of the Derivatives of F(M); 8.2 An Application to Unbounded Processes; 8.3 A General Bound for p(M); 8.4 Computing (x) for Stationary Isotropic Gaussian Fields; 8.5 Asymptotics as x +; 8.6 Examples; Exercises; 9 THE RECORD METHOD; 9.1 Smooth Processes with One-Dimensional Parameters 9.2 Nonsmooth Gaussian Processes9.3 Two-Parameter Gaussian Processes; Exercises; 10 ASYMPTOTIC METHODS FOR AN INFINITE TIME HORIZON; 10.1 Poisson Character of High Up-Crossings; 10.2 Central Limit Theorem for Nonlinear Functionals; Exercises; 11 GEOMETRIC CHARACTERISTICS OF RANDOM SEA WAVES; 11.1 Gaussian Model for an Infinitely Deep Sea; 11.2 Some Geometric Characteristics of Waves; 11.3 Level Curves, Crests, and Velocities for Space Waves; 11.4 Real Data; 11.5 Generalizations of the Gaussian Model; Exercises; 12 SYSTEMS OF RANDOM EQUATIONS; 12.1 The Shub-Smale Model 12.2 More General Models12.3 Noncentered Systems (Smoothed Analysis); 12.4 Systems Having a Law Invariant Under Orthogonal Transformations and Translations; 13 RANDOM FIELDS AND CONDITION NUMBERS OF RANDOM MATRICES; 13.1 Condition Numbers of Non-Gaussian Matrices; 13.2 Condition Numbers of Centered Gaussian Matrices; 13.3 Noncentered Gaussian Matrices; REFERENCES AND SUGGESTED READING; NOTATION; INDEX |
| Record Nr. | UNINA-9910826818803321 |
Azais Jean-Marc <1957->
|
||
| Hoboken, N.J., : Wiley, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Level sets and extrema of random processes and fields [[electronic resource] /] / Jean-Marc Azaïs, Mario Wschebor
| Level sets and extrema of random processes and fields [[electronic resource] /] / Jean-Marc Azaïs, Mario Wschebor |
| Autore | Azaïs Jean-Marc <1957-> |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2009 |
| Descrizione fisica | 1 online resource (407 p.) |
| Disciplina | 519.2/3 |
| Altri autori (Persone) | WscheborMario |
| Soggetto topico |
Gaussian processes
Level set methods Random fields Stochastic processes |
| ISBN |
1-282-68723-9
9786612687235 0-470-43464-3 0-470-43463-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
LEVEL SETS AND EXTREMA OF RANDOM PROCESSES AND FIELDS; CONTENTS; PREFACE; INTRODUCTION; 1 CLASSICAL RESULTS ON THE REGULARITY OF PATHS; 1.1 Kolmogorov's Extension Theorem; 1.2 Reminder on the Normal Distribution; 1.3 0-1 Law for Gaussian Processes; 1.4 Regularity of Paths; Exercises; 2 BASIC INEQUALITIES FOR GAUSSIAN PROCESSES; 2.1 Slepian Inequalities; 2.2 Ehrhard's Inequality; 2.3 Gaussian Isoperimetric Inequality; 2.4 Inequalities for the Tails of the Distribution of the Supremum; 2.5 Dudley's Inequality; Exercises; 3 CROSSINGS AND RICE FORMULAS FOR ONE-DIMENSIONAL PARAMETER PROCESSES
3.1 Rice Formulas3.2 Variants and Examples; Exercises; 4 SOME STATISTICAL APPLICATIONS; 4.1 Elementary Bounds for P{M >u}; 4.2 More Detailed Computation of the First Two Moments; 4.3 Maximum of the Absolute Value; 4.4 Application to Quantitative Gene Detection; 4.5 Mixtures of Gaussian Distributions; Exercises; 5 THE RICE SERIES; 5.1 The Rice Series; 5.2 Computation of Moments; 5.3 Numerical Aspects of the Rice Series; 5.4 Processes with Continuous Paths; 6 RICE FORMULAS FOR RANDOM FIELDS; 6.1 Random Fields from R(d) to R(d); 6.2 Random Fields from R(d) to R(d ́), d > d ́; Exercises 7 REGULARITY OF THE DISTRIBUTION OF THE MAXIMUM7.1 Implicit Formula for the Density of the Maximum; 7.2 One-Parameter Processes; 7.3 Continuity of the Density of the Maximum of Random Fields; Exercises; 8 THE TAIL OF THE DISTRIBUTION OF THE MAXIMUM; 8.1 One-Dimensional Parameter: Asymptotic Behavior of the Derivatives of F(M); 8.2 An Application to Unbounded Processes; 8.3 A General Bound for p(M); 8.4 Computing (x) for Stationary Isotropic Gaussian Fields; 8.5 Asymptotics as x +; 8.6 Examples; Exercises; 9 THE RECORD METHOD; 9.1 Smooth Processes with One-Dimensional Parameters 9.2 Nonsmooth Gaussian Processes9.3 Two-Parameter Gaussian Processes; Exercises; 10 ASYMPTOTIC METHODS FOR AN INFINITE TIME HORIZON; 10.1 Poisson Character of High Up-Crossings; 10.2 Central Limit Theorem for Nonlinear Functionals; Exercises; 11 GEOMETRIC CHARACTERISTICS OF RANDOM SEA WAVES; 11.1 Gaussian Model for an Infinitely Deep Sea; 11.2 Some Geometric Characteristics of Waves; 11.3 Level Curves, Crests, and Velocities for Space Waves; 11.4 Real Data; 11.5 Generalizations of the Gaussian Model; Exercises; 12 SYSTEMS OF RANDOM EQUATIONS; 12.1 The Shub-Smale Model 12.2 More General Models12.3 Noncentered Systems (Smoothed Analysis); 12.4 Systems Having a Law Invariant Under Orthogonal Transformations and Translations; 13 RANDOM FIELDS AND CONDITION NUMBERS OF RANDOM MATRICES; 13.1 Condition Numbers of Non-Gaussian Matrices; 13.2 Condition Numbers of Centered Gaussian Matrices; 13.3 Noncentered Gaussian Matrices; REFERENCES AND SUGGESTED READING; NOTATION; INDEX |
| Record Nr. | UNINA-9910145955303321 |
Azaïs Jean-Marc <1957->
|
||
| Hoboken, N.J., : Wiley, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||