A (terse) introduction to Lebesgue integration / John Franks
| A (terse) introduction to Lebesgue integration / John Franks |
| Autore | Franks, John M. |
| Pubbl/distr/stampa | Providence, R. I. : American Mathematical Society, c2009 |
| Descrizione fisica | xiv, 202 p. : ill. ; 22 cm |
| Disciplina | 515.43 |
| Collana | Student mathematical library, 1520-9121 ; 48 |
| Soggetto topico | Lebesgue integral |
| ISBN | 9780821848623 |
| Classificazione |
AMS 28A20
AMS 28A25 AMS 42B05 LC QA312.F698 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Terse introduction to Lebesgue integration |
| Record Nr. | UNISALENTO-991000589489707536 |
Franks, John M.
|
||
| Providence, R. I. : American Mathematical Society, c2009 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Henstock-Kurzweil integration on euclidean spaces [[electronic resource] /] / Lee Tuo Yeong
| Henstock-Kurzweil integration on euclidean spaces [[electronic resource] /] / Lee Tuo Yeong |
| Autore | Lee Tuo Yeong <1967-> |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
| Descrizione fisica | 1 online resource (325 p.) |
| Disciplina | 515.43 |
| Collana | Series in real analysis |
| Soggetto topico |
Henstock-Kurzweil integral
Lebesgue integral Calculus, Integral |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-23477-7
9786613234773 981-4324-59-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; 1. The one-dimensional Henstock-Kurzweil integral; 1.1 Introduction and Cousin's Lemma; 1.2 Definition of the Henstock-Kurzweil integral; 1.3 Simple properties; 1.4 Saks-Henstock Lemma; 1.5 Notes and Remarks; 2. The multiple Henstock-Kurzweil integral; 2.1 Preliminaries; 2.2 The Henstock-Kurzweil integral; 2.3 Simple properties; 2.4 Saks-Henstock Lemma; 2.5 Fubini's Theorem; 2.6 Notes and Remarks; 3. Lebesgue integrable functions; 3.1 Introduction; 3.2 Some convergence theorems for Lebesgue integrals; 3.3 μm-measurable sets; 3.4 A characterization of μm-measurable sets
3.5 μm-measurable functions3.6 Vitali Covering Theorem; 3.7 Further properties of Lebesgue integrable functions; 3.8 The Lp spaces; 3.9 Lebesgue's criterion for Riemann integrability; 3.10 Some characterizations of Lebesgue integrable functions; 3.11 Some results concerning one-dimensional Lebesgue integral; 3.12 Notes and Remarks; 4. Further properties of Henstock-Kurzweil integrable functions; 4.1 A necessary condition for Henstock-Kurzweil integrability; 4.2 A result of Kurzweil and Jarn ́ık; 4.3 Some necessary and su cient conditions for Henstock- Kurzweil integrability 4.4 Harnack extension for one-dimensional Henstock-Kurzweil integrals4.5 Other results concerning one-dimensional Henstock- Kurzweil integral; 4.6 Notes and Remarks; 5. The Henstock variational measure; 5.1 Lebesgue outer measure; 5.2 Basic properties of the Henstock variational measure; 5.3 Another characterization of Lebesgue integrable functions; 5.4 A result of Kurzweil and Jarn ́ık revisited; 5.5 A measure-theoretic characterization of the Henstock- Kurzweil integral; 5.6 Product variational measures; 5.7 Notes and Remarks; 6. Multipliers for the Henstock-Kurzweil integral 6.1 One-dimensional integration by parts6.2 On functions of bounded variation in the sense of Vitali; 6.3 The m-dimensional Riemann-Stieltjes integral; 6.4 A multiple integration by parts for the Henstock-Kurzweil integral; 6.5 Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral; 6.6 Riesz Representation Theorems; 6.7 Characterization of multipliers for the Henstock-Kurzweil integral; 6.8 A Banach-Steinhaus Theorem for the space of Henstock- Kurzweil integrable functions; 6.9 Notes and Remarks; 7. Some selected topics in trigonometric series 7.1 A generalized Dirichlet test7.2 Fourier series; 7.3 Some examples of Fourier series; 7.4 Some Lebesgue integrability theorems for trigonometric series; 7.5 Boas' results; 7.6 On a result of Hardy and Littlewood concerning Fourier series; 7.7 Notes and Remarks; 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series; 8.1 Regularly convergent double series; 8.2 Double Fourier series; 8.3 Some examples of double Fourier series; 8.4 A Lebesgue integrability theorem for double cosine series; 8.5 A Lebesgue integrability theorem for double sine series 8.6 A convergence theorem for Henstock-Kurzweil integrals |
| Record Nr. | UNINA-9910464534003321 |
Lee Tuo Yeong <1967->
|
||
| Singapore ; ; Hackensack, N.J., : World Scientific, c2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Henstock-Kurzweil integration on euclidean spaces [[electronic resource] /] / Lee Tuo Yeong
| Henstock-Kurzweil integration on euclidean spaces [[electronic resource] /] / Lee Tuo Yeong |
| Autore | Lee Tuo Yeong <1967-> |
| Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
| Descrizione fisica | 1 online resource (325 p.) |
| Disciplina | 515.43 |
| Collana | Series in real analysis |
| Soggetto topico |
Henstock-Kurzweil integral
Lebesgue integral Calculus, Integral |
| ISBN |
1-283-23477-7
9786613234773 981-4324-59-0 |
| Classificazione |
SK 430
SK 620 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Contents; 1. The one-dimensional Henstock-Kurzweil integral; 1.1 Introduction and Cousin's Lemma; 1.2 Definition of the Henstock-Kurzweil integral; 1.3 Simple properties; 1.4 Saks-Henstock Lemma; 1.5 Notes and Remarks; 2. The multiple Henstock-Kurzweil integral; 2.1 Preliminaries; 2.2 The Henstock-Kurzweil integral; 2.3 Simple properties; 2.4 Saks-Henstock Lemma; 2.5 Fubini's Theorem; 2.6 Notes and Remarks; 3. Lebesgue integrable functions; 3.1 Introduction; 3.2 Some convergence theorems for Lebesgue integrals; 3.3 μm-measurable sets; 3.4 A characterization of μm-measurable sets
3.5 μm-measurable functions3.6 Vitali Covering Theorem; 3.7 Further properties of Lebesgue integrable functions; 3.8 The Lp spaces; 3.9 Lebesgue's criterion for Riemann integrability; 3.10 Some characterizations of Lebesgue integrable functions; 3.11 Some results concerning one-dimensional Lebesgue integral; 3.12 Notes and Remarks; 4. Further properties of Henstock-Kurzweil integrable functions; 4.1 A necessary condition for Henstock-Kurzweil integrability; 4.2 A result of Kurzweil and Jarn ́ık; 4.3 Some necessary and su cient conditions for Henstock- Kurzweil integrability 4.4 Harnack extension for one-dimensional Henstock-Kurzweil integrals4.5 Other results concerning one-dimensional Henstock- Kurzweil integral; 4.6 Notes and Remarks; 5. The Henstock variational measure; 5.1 Lebesgue outer measure; 5.2 Basic properties of the Henstock variational measure; 5.3 Another characterization of Lebesgue integrable functions; 5.4 A result of Kurzweil and Jarn ́ık revisited; 5.5 A measure-theoretic characterization of the Henstock- Kurzweil integral; 5.6 Product variational measures; 5.7 Notes and Remarks; 6. Multipliers for the Henstock-Kurzweil integral 6.1 One-dimensional integration by parts6.2 On functions of bounded variation in the sense of Vitali; 6.3 The m-dimensional Riemann-Stieltjes integral; 6.4 A multiple integration by parts for the Henstock-Kurzweil integral; 6.5 Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral; 6.6 Riesz Representation Theorems; 6.7 Characterization of multipliers for the Henstock-Kurzweil integral; 6.8 A Banach-Steinhaus Theorem for the space of Henstock- Kurzweil integrable functions; 6.9 Notes and Remarks; 7. Some selected topics in trigonometric series 7.1 A generalized Dirichlet test7.2 Fourier series; 7.3 Some examples of Fourier series; 7.4 Some Lebesgue integrability theorems for trigonometric series; 7.5 Boas' results; 7.6 On a result of Hardy and Littlewood concerning Fourier series; 7.7 Notes and Remarks; 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series; 8.1 Regularly convergent double series; 8.2 Double Fourier series; 8.3 Some examples of double Fourier series; 8.4 A Lebesgue integrability theorem for double cosine series; 8.5 A Lebesgue integrability theorem for double sine series 8.6 A convergence theorem for Henstock-Kurzweil integrals |
| Record Nr. | UNINA-9910788961403321 |
Lee Tuo Yeong <1967->
|
||
| Singapore ; ; Hackensack, N.J., : World Scientific, c2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
An introduction to measure and integration / Inder K. Rana
| An introduction to measure and integration / Inder K. Rana |
| Autore | Rana, Inder K. |
| Pubbl/distr/stampa | London : Narosa Publ. House, c1997 |
| Descrizione fisica | xviii, 380 p. : ill. ; 24 cm. |
| Disciplina | 515.42 |
| Soggetto topico |
Lebesgue integral
Measure theory |
| ISBN | 8173191204 |
| Classificazione | AMS 28-01 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001022129707536 |
Rana, Inder K.
|
||
| London : Narosa Publ. House, c1997 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Lebesgue and Sobolev spaces with variable exponents / / Lars Diening ... [et al.]
| Lebesgue and Sobolev spaces with variable exponents / / Lars Diening ... [et al.] |
| Autore | Diening Lars |
| Edizione | [1st ed. 2011.] |
| Pubbl/distr/stampa | Berlin, : Springer-Verlag, 2011 |
| Descrizione fisica | 1 online resource (IX, 509 p. 10 illus.) |
| Disciplina | 515 |
| Collana | Lecture notes in mathematics |
| Soggetto topico |
Sobolev spaces
Lebesgue integral |
| ISBN |
9783642183638
3642183638 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Lebesgue spaces -- pt. 2. Sobolev spaces -- pt. 3. Applications to partial differential equations. |
| Record Nr. | UNINA-9910484299403321 |
Diening Lars
|
||
| Berlin, : Springer-Verlag, 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lebesgue integral / / Liviu C. Florescu
| Lebesgue integral / / Liviu C. Florescu |
| Autore | Florescu Liviu C. |
| Pubbl/distr/stampa | Cham, Switzerland : , : BirkhaÌuser, , [2021] |
| Descrizione fisica | 1 online resource (224 pages) : illustrations |
| Disciplina | 515.43 |
| Soggetto topico |
Lebesgue integral
Integral de Lebesgue |
| ISBN | 3-030-60163-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910484080903321 |
Florescu Liviu C.
|
||
| Cham, Switzerland : , : BirkhaÌuser, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lebesgue integral / / Liviu C. Florescu
| Lebesgue integral / / Liviu C. Florescu |
| Autore | Florescu Liviu C. |
| Pubbl/distr/stampa | Cham, Switzerland : , : BirkhaÌuser, , [2021] |
| Descrizione fisica | 1 online resource (224 pages) : illustrations |
| Disciplina | 515.43 |
| Soggetto topico |
Lebesgue integral
Integral de Lebesgue |
| ISBN | 3-030-60163-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466544603316 |
Florescu Liviu C.
|
||
| Cham, Switzerland : , : BirkhaÌuser, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Lebesgue integration / Soo Bong Chae
| Lebesgue integration / Soo Bong Chae |
| Autore | Chae, Soo Bong |
| Edizione | [2nd ed] |
| Pubbl/distr/stampa | New York : Springer-Verlag, c1995 |
| Descrizione fisica | xiii, 264 p. : ill. ; 23 cm. |
| Disciplina | 515.42 |
| Collana | Universitext |
| Soggetto topico | Lebesgue integral |
| ISBN | 0387943579 (New York : acid-free paper) |
| Classificazione |
AMS 28-01
AMS 28A25 QA312.C47 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001060459707536 |
Chae, Soo Bong
|
||
| New York : Springer-Verlag, c1995 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Lebesgue integration and measure / Alan J. Weir
| Lebesgue integration and measure / Alan J. Weir |
| Autore | Weir, Alan J. |
| Pubbl/distr/stampa | Cambridge : Cambridge University Press, 1973 |
| Descrizione fisica | 281 p. ; 23 cm. |
| Disciplina | 515.42 |
| Soggetto topico |
Integrals of Riemann
Lebesgue integral Measure theory |
| ISBN | 0521087287 |
| Classificazione | AMS 26A42 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001060549707536 |
Weir, Alan J.
|
||
| Cambridge : Cambridge University Press, 1973 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Lebesgue measure and integration [[electronic resource] ] : an introduction / / Frank Burk
| Lebesgue measure and integration [[electronic resource] ] : an introduction / / Frank Burk |
| Autore | Burk Frank |
| Pubbl/distr/stampa | New York, : Wiley, c1998 |
| Descrizione fisica | 1 online resource (314 p.) |
| Disciplina | 515/.42 |
| Collana | Pure and applied mathematics |
| Soggetto topico |
Lebesgue integral
Measure theory |
| ISBN |
1-283-30619-0
9786613306197 1-118-03273-X 1-118-03098-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910139571803321 |
Burk Frank
|
||
| New York, : Wiley, c1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||