top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lattice Boltzmann method and its applications in engineering / / Zhaoli Guo, Huazhong University of Science and Technology, China, Chang Shu, National University of Singapore, Singapore
Lattice Boltzmann method and its applications in engineering / / Zhaoli Guo, Huazhong University of Science and Technology, China, Chang Shu, National University of Singapore, Singapore
Autore Guo Zhaoli
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2013
Descrizione fisica 1 online resource (xiii, 404 pages) : illustrations (some color)
Disciplina 530.138
Collana Advances in computational fluid dynamics
Soggetto topico Lattice Boltzmann methods
Fluid dynamics - Mathematical models
Mechanics, Applied - Mathematical models
ISBN 981-4508-30-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Dedication; Preface; Contents; Chapter 1 Introduction; 1.1 Description of Fluid System at Different Scales; 1.1.1 Microscopic description: molecular dynamics; 1.1.2 Mesoscopic description: kinetic theory; 1.1.3 Macroscopic description: hydrodynamic equations; 1.2 Numerical Methods for Fluid Flows; 1.3 History of LBE; 1.3.1 Lattice gas automata; 1.3.2 From LGA to LBE; 1.3.3 From continuous Boltzmann equation to LBE; 1.4 Basic Models of LBE; 1.4.1 LBGK models; 1.4.2 From LBE to the Navier-Stokes equations: Chapman-Enskog expansion; 1.4.3 LBE models with multiple relaxation times; 1.5 Summary
Chapter 2 Initial and Boundary Conditions for Lattice Boltzmann Method2.1 Initial Conditions; 2.1.1 Equilibrium scheme; 2.1.2 Non-equilibrium scheme; 2.1.3 Iterative method; 2.2 Boundary Conditions for Flat Walls; 2.2.1 Heuristic schemes; 2.2.2 Hydrodynamic schemes; 2.2.3 Extrapolation schemes; 2.3 Boundary Conditions for Curved Walls; 2.3.1 Bounce-back schemes; 2.3.2 Fictitious equilibrium schemes; 2.3.3 Interpolation schemes; 2.3.4 Non-equilibrium extrapolation scheme; 2.4 Pressure Boundary Conditions; 2.4.1 Periodic boundary conditions; 2.4.2 Hydrodynamic schemes
2.4.3 Extrapolation schemes2.5 Summary; Chapter 3 Improved Lattice Boltzmann Models; 3.1 Incompressible Models; 3.2 Forcing Schemes with Reduced Discrete Lattice Effects; 3.2.1 Scheme with modified equilibrium distribution function; 3.2.2 Schemes with a forcing term; 3.2.3 Analysis of the forcing schemes; 3.2.4 Forcing scheme for MRT-LBE; 3.3 LBE with Nonuniform Grids; 3.3.1 Grid-refinement and multi-block methods; 3.3.2 Interpolation methods; 3.3.3 Finite-difference based LBE methods; 3.3.4 Finite-volume based LBE methods; 3.3.5 Finite-element based LBE methods
3.3.6 Taylor series expansion and least square based methods3.4 Accelerated LBE Methods for Steady Flows; 3.4.1 Spectrum analysis of the hydrodynamic equations of the standard LBE; 3.4.2 Time-independent methods; 3.4.3 Time-dependent methods; 3.5 Summary; Chapter 4 Sample Applications of LBE for Isothermal Flows; 4.1 Algorithm Structure of LBE; 4.2 Lid-Driven Cavity Flow; 4.3 Flow around a Fixed Circular Cylinder; 4.4 Flow around an Oscillating Circular Cylinder with a Fixed Downstream One; 4.5 Summary; Chapter 5 LBE for Low Speed Flows with Heat Transfer; 5.1 Multi-speed Models
5.1.1 Low-order models5.1.2 High-order models; 5.2 MS-LBE Models Based on Boltzmann Equation; 5.2.1 Hermite expansion of distribution function; 5.2.2 Temperature/flow-dependent discrete velocities; 5.2.3 Temperature-dependent discrete velocities; 5.2.4 Constant discrete velocities; 5.2.5 MS-LBGK models based on DVBE with constant discrete velocities; 5.3 Off-Lattice LBE Models; 5.4 MS-LBE Models with Adjustable Prandtl Number; 5.5 DDF-LBE Models without Viscous Dissipation and Compression Work; 5.5.1 DDF-LBE based on multi-component models; 5.5.2 DDF-LBE for non-ideal gases
5.5.3 DDF-LBE for incompressible flows
Record Nr. UNINA-9910786970903321
Guo Zhaoli  
Singapore ; ; Hackensack, NJ, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lattice Boltzmann method and its applications in engineering / / Zhaoli Guo, Huazhong University of Science and Technology, China, Chang Shu, National University of Singapore, Singapore
Lattice Boltzmann method and its applications in engineering / / Zhaoli Guo, Huazhong University of Science and Technology, China, Chang Shu, National University of Singapore, Singapore
Autore Guo Zhaoli
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2013
Descrizione fisica 1 online resource (xiii, 404 pages) : illustrations (some color)
Disciplina 530.138
Collana Advances in computational fluid dynamics
Soggetto topico Lattice Boltzmann methods
Fluid dynamics - Mathematical models
Mechanics, Applied - Mathematical models
ISBN 981-4508-30-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Dedication; Preface; Contents; Chapter 1 Introduction; 1.1 Description of Fluid System at Different Scales; 1.1.1 Microscopic description: molecular dynamics; 1.1.2 Mesoscopic description: kinetic theory; 1.1.3 Macroscopic description: hydrodynamic equations; 1.2 Numerical Methods for Fluid Flows; 1.3 History of LBE; 1.3.1 Lattice gas automata; 1.3.2 From LGA to LBE; 1.3.3 From continuous Boltzmann equation to LBE; 1.4 Basic Models of LBE; 1.4.1 LBGK models; 1.4.2 From LBE to the Navier-Stokes equations: Chapman-Enskog expansion; 1.4.3 LBE models with multiple relaxation times; 1.5 Summary
Chapter 2 Initial and Boundary Conditions for Lattice Boltzmann Method2.1 Initial Conditions; 2.1.1 Equilibrium scheme; 2.1.2 Non-equilibrium scheme; 2.1.3 Iterative method; 2.2 Boundary Conditions for Flat Walls; 2.2.1 Heuristic schemes; 2.2.2 Hydrodynamic schemes; 2.2.3 Extrapolation schemes; 2.3 Boundary Conditions for Curved Walls; 2.3.1 Bounce-back schemes; 2.3.2 Fictitious equilibrium schemes; 2.3.3 Interpolation schemes; 2.3.4 Non-equilibrium extrapolation scheme; 2.4 Pressure Boundary Conditions; 2.4.1 Periodic boundary conditions; 2.4.2 Hydrodynamic schemes
2.4.3 Extrapolation schemes2.5 Summary; Chapter 3 Improved Lattice Boltzmann Models; 3.1 Incompressible Models; 3.2 Forcing Schemes with Reduced Discrete Lattice Effects; 3.2.1 Scheme with modified equilibrium distribution function; 3.2.2 Schemes with a forcing term; 3.2.3 Analysis of the forcing schemes; 3.2.4 Forcing scheme for MRT-LBE; 3.3 LBE with Nonuniform Grids; 3.3.1 Grid-refinement and multi-block methods; 3.3.2 Interpolation methods; 3.3.3 Finite-difference based LBE methods; 3.3.4 Finite-volume based LBE methods; 3.3.5 Finite-element based LBE methods
3.3.6 Taylor series expansion and least square based methods3.4 Accelerated LBE Methods for Steady Flows; 3.4.1 Spectrum analysis of the hydrodynamic equations of the standard LBE; 3.4.2 Time-independent methods; 3.4.3 Time-dependent methods; 3.5 Summary; Chapter 4 Sample Applications of LBE for Isothermal Flows; 4.1 Algorithm Structure of LBE; 4.2 Lid-Driven Cavity Flow; 4.3 Flow around a Fixed Circular Cylinder; 4.4 Flow around an Oscillating Circular Cylinder with a Fixed Downstream One; 4.5 Summary; Chapter 5 LBE for Low Speed Flows with Heat Transfer; 5.1 Multi-speed Models
5.1.1 Low-order models5.1.2 High-order models; 5.2 MS-LBE Models Based on Boltzmann Equation; 5.2.1 Hermite expansion of distribution function; 5.2.2 Temperature/flow-dependent discrete velocities; 5.2.3 Temperature-dependent discrete velocities; 5.2.4 Constant discrete velocities; 5.2.5 MS-LBGK models based on DVBE with constant discrete velocities; 5.3 Off-Lattice LBE Models; 5.4 MS-LBE Models with Adjustable Prandtl Number; 5.5 DDF-LBE Models without Viscous Dissipation and Compression Work; 5.5.1 DDF-LBE based on multi-component models; 5.5.2 DDF-LBE for non-ideal gases
5.5.3 DDF-LBE for incompressible flows
Record Nr. UNINA-9910807295603321
Guo Zhaoli  
Singapore ; ; Hackensack, NJ, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase lattice Boltzmann methods : theory and application / / Haibo Huang, Michael C. Sukop, Xi-Yun Lu
Multiphase lattice Boltzmann methods : theory and application / / Haibo Huang, Michael C. Sukop, Xi-Yun Lu
Autore Huang Haibo (Engineering professor)
Pubbl/distr/stampa Chichester, [England] : , : Wiley Blackwell, , 2015
Descrizione fisica 1 online resource (390 p.)
Disciplina 530.132
Soggetto topico Lattice Boltzmann methods
Multiphase flow
Fluid dynamics
Fluid dynamics - Mathematical models
ISBN 1-118-97134-5
1-118-97145-0
1-118-97144-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; About the companion website; Chapter 1 Introduction; 1.1 History of the Lattice Boltzmann method; 1.2 The Lattice Boltzmann method; 1.3 Multiphase LBM; 1.3.1 Color-gradient model; 1.3.2 Shan-Chen model; 1.3.3 Free-energy model; 1.3.4 Interface tracking model; 1.4 Comparison of models; 1.5 Units in this book and parameter conversion; 1.6 Appendix: Einstein summation convention; 1.6.1 Kronecker δ function; 1.6.2 Lattice tensors; 1.7 Use of the Fortran code in the book; Chapter 2 Single-component multiphase Shan-Chen-type model; 2.1 Introduction
2.1.1 ""Equilibrium"" velocity in the SC model 2.1.2 Inter-particle forces in the SC SCMP LBM; 2.2 Typical equations of state; 2.2.1 Parameters in EOS; 2.3 Thermodynamic consistency; 2.3.1 The SCMP LBM EOS; 2.3.2 Incorporating other EOS into the SC model; 2.4 Analytical surface tension; 2.4.1 Inter-particle Force Model A; 2.4.2 Inter-particle Force Model B; 2.5 Contact angle; 2.6 Capillary rise; 2.7 Parallel flow and relative permeabilities; 2.8 Forcing term in the SC model; 2.8.1 Schemes to incorporate the body force; 2.8.2 Scheme overview; 2.8.3 Theoretical analysis
2.8.4 Numerical results and discussion 2.9 Multirange pseudopotential (Inter-particle Force Model B); 2.10 Conclusions; 2.11 Appendix A: Analytical solution for layered multiphase flow in a channel; 2.12 Appendix B: FORTRAN code to simulate single component multiphase droplet contacting a wall, as shown in Figure 2.7(c); Chapter 3 Shan and Chen-type multi-component multiphase models; 3.1 Multi-component multiphase SC LBM; 3.1.1 Fluid-fluid cohesion and fluid-solid adhesion; 3.2 Derivation of the pressure; 3.2.1 Pressure in popular papers (2D); 3.2.2 Pressure in popular papers (3D)
3.3 Determining Gc and the surface tension 3.4 Contact angle; 3.4.1 Application of Young's equation to MCMP LBM; 3.4.2 Contact angle measurement; 3.4.3 Verification of proposed equation; 3.5 Flow through capillary tubes; 3.6 Layered two-phase flow in a 2D channel; 3.7 Pressure or velocity boundary conditions; 3.7.1 Boundary conditions for 2D simulations; 3.7.2 Boundary conditions for 3D simulations; 3.8 Displacement in a 3D porous medium; Chapter 4 Rothman-Keller multiphase Lattice Boltzmann model; 4.1 Introduction; 4.2 RK color-gradient model
4.3 Theoretical analysis (Chapman-Enskog expansion)4.3.1 Discussion of above formulae; 4.4 Layered two-phase flow in a 2D channel; 4.4.1 Cases of two fluids with identical densities; 4.4.2 Cases of two fluids with different densities; 4.5 Interfacial tension and isotropy of the RK model; 4.5.1 Interfacial tension; 4.5.2 Isotropy; 4.6 Drainage and capillary filling; 4.7 MRT RK model; 4.8 Contact angle; 4.8.1 Spurious currents; 4.9 Tests of inlet/outlet boundary conditions; 4.10 Immiscible displacements in porous media; 4.11 Appendix A; 4.12 Appendix B
Chapter 5 Free-energy-based multiphase Lattice Boltzmann model
Record Nr. UNINA-9910131378303321
Huang Haibo (Engineering professor)  
Chichester, [England] : , : Wiley Blackwell, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase lattice Boltzmann methods : theory and application / / Haibo Huang, Michael C. Sukop, Xi-Yun Lu
Multiphase lattice Boltzmann methods : theory and application / / Haibo Huang, Michael C. Sukop, Xi-Yun Lu
Autore Huang Haibo (Engineering professor)
Pubbl/distr/stampa Chichester, [England] : , : Wiley Blackwell, , 2015
Descrizione fisica 1 online resource (390 p.)
Disciplina 530.132
Soggetto topico Lattice Boltzmann methods
Multiphase flow
Fluid dynamics
Fluid dynamics - Mathematical models
ISBN 1-118-97134-5
1-118-97145-0
1-118-97144-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; About the companion website; Chapter 1 Introduction; 1.1 History of the Lattice Boltzmann method; 1.2 The Lattice Boltzmann method; 1.3 Multiphase LBM; 1.3.1 Color-gradient model; 1.3.2 Shan-Chen model; 1.3.3 Free-energy model; 1.3.4 Interface tracking model; 1.4 Comparison of models; 1.5 Units in this book and parameter conversion; 1.6 Appendix: Einstein summation convention; 1.6.1 Kronecker δ function; 1.6.2 Lattice tensors; 1.7 Use of the Fortran code in the book; Chapter 2 Single-component multiphase Shan-Chen-type model; 2.1 Introduction
2.1.1 ""Equilibrium"" velocity in the SC model 2.1.2 Inter-particle forces in the SC SCMP LBM; 2.2 Typical equations of state; 2.2.1 Parameters in EOS; 2.3 Thermodynamic consistency; 2.3.1 The SCMP LBM EOS; 2.3.2 Incorporating other EOS into the SC model; 2.4 Analytical surface tension; 2.4.1 Inter-particle Force Model A; 2.4.2 Inter-particle Force Model B; 2.5 Contact angle; 2.6 Capillary rise; 2.7 Parallel flow and relative permeabilities; 2.8 Forcing term in the SC model; 2.8.1 Schemes to incorporate the body force; 2.8.2 Scheme overview; 2.8.3 Theoretical analysis
2.8.4 Numerical results and discussion 2.9 Multirange pseudopotential (Inter-particle Force Model B); 2.10 Conclusions; 2.11 Appendix A: Analytical solution for layered multiphase flow in a channel; 2.12 Appendix B: FORTRAN code to simulate single component multiphase droplet contacting a wall, as shown in Figure 2.7(c); Chapter 3 Shan and Chen-type multi-component multiphase models; 3.1 Multi-component multiphase SC LBM; 3.1.1 Fluid-fluid cohesion and fluid-solid adhesion; 3.2 Derivation of the pressure; 3.2.1 Pressure in popular papers (2D); 3.2.2 Pressure in popular papers (3D)
3.3 Determining Gc and the surface tension 3.4 Contact angle; 3.4.1 Application of Young's equation to MCMP LBM; 3.4.2 Contact angle measurement; 3.4.3 Verification of proposed equation; 3.5 Flow through capillary tubes; 3.6 Layered two-phase flow in a 2D channel; 3.7 Pressure or velocity boundary conditions; 3.7.1 Boundary conditions for 2D simulations; 3.7.2 Boundary conditions for 3D simulations; 3.8 Displacement in a 3D porous medium; Chapter 4 Rothman-Keller multiphase Lattice Boltzmann model; 4.1 Introduction; 4.2 RK color-gradient model
4.3 Theoretical analysis (Chapman-Enskog expansion)4.3.1 Discussion of above formulae; 4.4 Layered two-phase flow in a 2D channel; 4.4.1 Cases of two fluids with identical densities; 4.4.2 Cases of two fluids with different densities; 4.5 Interfacial tension and isotropy of the RK model; 4.5.1 Interfacial tension; 4.5.2 Isotropy; 4.6 Drainage and capillary filling; 4.7 MRT RK model; 4.8 Contact angle; 4.8.1 Spurious currents; 4.9 Tests of inlet/outlet boundary conditions; 4.10 Immiscible displacements in porous media; 4.11 Appendix A; 4.12 Appendix B
Chapter 5 Free-energy-based multiphase Lattice Boltzmann model
Record Nr. UNINA-9910818260103321
Huang Haibo (Engineering professor)  
Chichester, [England] : , : Wiley Blackwell, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui