top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied latent class analysis / / edited by Jacques A. Hagenaars, Allan L. McCutcheon [[electronic resource]]
Applied latent class analysis / / edited by Jacques A. Hagenaars, Allan L. McCutcheon [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2002
Descrizione fisica 1 online resource (xxii, 454 pages) : digital, PDF file(s)
Disciplina 519.5/35
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-107-12755-6
1-280-41726-9
9786610417261
1-139-14563-0
0-511-18067-5
0-511-06594-9
0-511-05963-9
0-511-32640-8
0-511-49953-1
0-511-06807-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface / Jacques A. Hagenaars and Allan L. McCutcheon -- 1. Latent Class Analysis: The Empirical Study of Latent Types, Latent Variables, and Latent Structures / Leo A. Goodman -- 2. Basic Concepts and Procedures in Single- and Multiple-Group Latent Class Analysis / Allan L. McCutcheon -- 3. Latent Class Cluster Analysis / Jeroen K. Vermunt and Jay Magidson -- 4. Some Examples of Latent Budget Analysis and Its Extensions / Peter G.M. van der Heijden, L. Andries van der Ark and Ab Mooijaart -- 5. Ordering the Classes / Marcel Croon -- 6. Comparison and Choice: Analyzing Discrete Preference Data by Latent Class Scaling Models / Ulf Bockenholt -- 7. Three-Parameter Linear Logistic Latent Class Analysis / Anton K. Formann and Thomas Kohlmann -- 8. Use of Categorical and Continuous Covariates in Latent Class Analysis / C. Mitchell Dayton and George B. Macready -- 9. Directed Loglinear Modeling with Latent Variables: Causal Models for Categorical Data with Nonsystematic and Systematic Measurement Errors / Jacques A. Hagenaars -- 10. Latent Class Models for Longitudinal Data / Linda M. Collins and Brian P. Flaherty -- 11. Latent Markov Chains / Rolf Langeheine and Frank van de Pol -- 12. A Latent Class Approach to Measuring the Fit of a Statistical Model / Tamas Rudas -- 13. Mixture Regression Models / Michel Wedel and Wayne S. DeSarbo -- 14. A General Latent Class Approach to Unobserved Heterogeneity in the Analysis of Event History Data / Jeroen K. Vermunt -- 15. Latent Class Models for Contingency Tables with Missing Data / Christopher Winship, Robert D. Mare and John Robert Warren.
Record Nr. UNINA-9910450089003321
Cambridge : , : Cambridge University Press, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied latent class analysis / / edited by Jacques A. Hagenaars, Allan L. McCutcheon [[electronic resource]]
Applied latent class analysis / / edited by Jacques A. Hagenaars, Allan L. McCutcheon [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2002
Descrizione fisica 1 online resource (xxii, 454 pages) : digital, PDF file(s)
Disciplina 519.5/35
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-107-12755-6
1-280-41726-9
9786610417261
1-139-14563-0
0-511-18067-5
0-511-06594-9
0-511-05963-9
0-511-32640-8
0-511-49953-1
0-511-06807-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface / Jacques A. Hagenaars and Allan L. McCutcheon -- 1. Latent Class Analysis: The Empirical Study of Latent Types, Latent Variables, and Latent Structures / Leo A. Goodman -- 2. Basic Concepts and Procedures in Single- and Multiple-Group Latent Class Analysis / Allan L. McCutcheon -- 3. Latent Class Cluster Analysis / Jeroen K. Vermunt and Jay Magidson -- 4. Some Examples of Latent Budget Analysis and Its Extensions / Peter G.M. van der Heijden, L. Andries van der Ark and Ab Mooijaart -- 5. Ordering the Classes / Marcel Croon -- 6. Comparison and Choice: Analyzing Discrete Preference Data by Latent Class Scaling Models / Ulf Bockenholt -- 7. Three-Parameter Linear Logistic Latent Class Analysis / Anton K. Formann and Thomas Kohlmann -- 8. Use of Categorical and Continuous Covariates in Latent Class Analysis / C. Mitchell Dayton and George B. Macready -- 9. Directed Loglinear Modeling with Latent Variables: Causal Models for Categorical Data with Nonsystematic and Systematic Measurement Errors / Jacques A. Hagenaars -- 10. Latent Class Models for Longitudinal Data / Linda M. Collins and Brian P. Flaherty -- 11. Latent Markov Chains / Rolf Langeheine and Frank van de Pol -- 12. A Latent Class Approach to Measuring the Fit of a Statistical Model / Tamas Rudas -- 13. Mixture Regression Models / Michel Wedel and Wayne S. DeSarbo -- 14. A General Latent Class Approach to Unobserved Heterogeneity in the Analysis of Event History Data / Jeroen K. Vermunt -- 15. Latent Class Models for Contingency Tables with Missing Data / Christopher Winship, Robert D. Mare and John Robert Warren.
Record Nr. UNINA-9910783312803321
Cambridge : , : Cambridge University Press, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Pubbl/distr/stampa New York : , : Routledge, , 2013
Descrizione fisica 1 online resource (297 p.)
Disciplina 519.5/35
Altri autori (Persone) EdwardsMichael C <1977-> (Michael Charles)
MacCallumRobert C
Soggetto topico Latent structure analysis
Latent variables
Soggetto genere / forma Electronic books.
ISBN 0-203-81340-5
1-283-89358-4
1-136-69980-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Complexities in latent variable modeling -- pt. 2. Drawing meaning from latent variable models.
Record Nr. UNINA-9910452978103321
New York : , : Routledge, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Pubbl/distr/stampa New York : , : Routledge, , 2013
Descrizione fisica 1 online resource (297 p.)
Disciplina 519.5/35
Altri autori (Persone) EdwardsMichael C <1977-> (Michael Charles)
MacCallumRobert C
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-136-69979-1
0-203-81340-5
1-283-89358-4
1-136-69980-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Complexities in latent variable modeling -- pt. 2. Drawing meaning from latent variable models.
Record Nr. UNINA-9910779306503321
New York : , : Routledge, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Current topics in the theory and application of latent variable models / / edited by Michael C. Edwards and Robert C. MacCallum
Edizione [1st ed.]
Pubbl/distr/stampa New York : , : Routledge, , 2013
Descrizione fisica 1 online resource (297 p.)
Disciplina 519.5/35
Altri autori (Persone) EdwardsMichael C <1977-> (Michael Charles)
MacCallumRobert C
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-136-69979-1
0-203-81340-5
1-283-89358-4
1-136-69980-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Complexities in latent variable modeling -- pt. 2. Drawing meaning from latent variable models.
Record Nr. UNINA-9910964916603321
New York : , : Routledge, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Latent class and latent transition analysis : with applications in the social, behavioral, and health sciences / / Linda M. Collins, Stephanie T. Lanza
Latent class and latent transition analysis : with applications in the social, behavioral, and health sciences / / Linda M. Collins, Stephanie T. Lanza
Autore Collins Linda M
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2010
Descrizione fisica 1 online resource (331 p.)
Disciplina 300.15195
519.535
Altri autori (Persone) LanzaStephanie T. <1969->
Collana Wiley Series in Probability and Statistics
Soggetto topico Latent structure analysis
Latent variables
Statistics
ISBN 9786612687150
9781118210765
111821076X
9781282687158
1282687158
9780470567333
0470567333
9780470567326
0470567325
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; CONTENTS; List of Figures; List of Tables; Acknowledgments; Acronyms; PART I FUNDAMENTALS; 1 General Introduction; 1.1 Overview; 1.2 Conceptual foundation and brief history of the latent class model; 1.2.1 LCA and other latent variable models; 1.2.2 Some historical milestones in LCA; 1.2.3 LCA as a person-oriented approach; 1.3 Why select a categorical latent variable approach?; 1.4 Scope of this book; 1.5 Empirical example of LCA: Adolescent delinquency
1.6 Empirical example of LTA: Adolescent delinquency1.7 About this book; 1.7.1 Using this book; 1.8 The examples in this book; 1.8.1 Empirical data sets; 1.9 Software; 1.10 Additional resources: The book's web site; 1.11 Suggested supplemental readings; 1.12 Points to remember; 1.13 What's next; 2 The latent class model; 2.1 Overview; 2.2 Empirical example: Pubertal development; 2.2.1 An initial look at the data; 2.2.2 Why conduct LCA on the pubertal development data?; 2.2.3 Latent classes in the pubertal development data
2.3 The role of item-response probabilities in interpreting latent classes2.3.1 A hypothetical example; 2.3.2 Interpreting the item-response probabilities to label the latent classes in the pubertal development example; 2.3.3 Qualitative and quantitative differences among the pubertal development latent classes; 2.4 Empirical example: Health risk behaviors; 2.4.1 An initial look at the data; 2.4.2 LCA of the health risk behavior data; 2.5 LCA: Model and notation; 2.5.1 Fundamental expressions; 2.5.2 The local independence assumption; 2.6 Suggested supplemental readings; 2.7 Points to remember
2.8 What's next3 The relation between the latent variable and its indicators; 3.1 Overview; 3.2 The latent class measurement model; 3.2.1 Parallels with factor analysis; 3.2.2 Two criteria for evaluating item-response probabilities for a single variable; 3.2.3 Hypothetical and empirical examples of independence and weak relations; 3.2.4 Hypothetical and empirical examples of strong relations; 3.3 Homogeneity and latent class separation; 3.3.1 Homogeneity; 3.3.2 Latent class separation; 3.3.3 Hypothetical examples of homogeneity and latent class separation
3.3.4 How homogeneity and latent class separation are related3.3.5 Homogeneity, latent class separation, and the number of response patterns observed; 3.3.6 Homogeneity and latent class separation in empirical examples; 3.4 The precision with which the observed variables measure the latent variable; 3.4.1 Why posterior probabilities of latent class membership are of interest; 3.4.2 Bayes' theorem; 3.4.3 What homogeneity and latent class separation imply about posterior probabilities and classification uncertainty
3.4.4 Posterior classification uncertainty even with a high degree of homogeneity and latent class separation
Record Nr. UNINA-9910139489803321
Collins Linda M  
Hoboken, NJ, : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Latent curve models [[electronic resource] ] : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Latent curve models [[electronic resource] ] : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Autore Bollen Kenneth A
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (307 p.)
Disciplina 519.5/35
621.384135015118
Altri autori (Persone) CurranPatrick J. <1965->
Collana Wiley series in probability and statistics
Soggetto topico Latent structure analysis
Latent variables
Soggetto genere / forma Electronic books.
ISBN 1-280-40940-1
9786610409402
0-470-32167-9
0-471-74609-6
0-471-74608-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Latent Curve Models; Contents; Preface; 1 Introduction; 1.1 Conceptualization and Analysis of Trajectories; 1.1.1 Trajectories of Crime Rates; 1.1.2 Data Requirements; 1.1.3 Summary; 1.2 Three Initial Questions About Trajectories; 1.2.1 Question 1: What Is the Trajectory for the Entire Group?; 1.2.2 Question 2: Do We Need Distinct Trajectories for Each Case?; 1.2.3 Question 3: If Distinct Trajectories Are Needed, Can We Identify Variables to Predict These Individual Trajectories?; 1.2.4 Summary; 1.3 Brief History of Latent Curve Models; 1.3.1 Early Developments: The Nineteenth Century
1.3.2 Fitting Group Trajectories: 1900-19371.3.3 Fitting Individual and Group Trajectories: 1938-1950s; 1.3.4 Trajectory Modeling with Latent Variables: 1950s-1984; 1.3.5 Current Latent Curve Modeling: 1984-present; 1.3.6 Summary; 1.4 Organization of the Remainder of the Book; 2 Unconditional Latent Curve Model; 2.1 Repeated Measures; 2.2 General Model and Assumptions; 2.3 Identification; 2.4 Case-By-Case Approach; 2.4.1 Assessing Model Fit; 2.4.2 Limitations of Case-by-Case Approach; 2.5 Structural Equation Model Approach; 2.5.1 Matrix Expression of the Latent Curve Model
2.5.2 Maximum Likelihood Estimation2.5.3 Empirical Example; 2.5.4 Assessing Model Fit; 2.5.5 Components of Fit; 2.6 Alternative Approaches to the SEM; 2.7 Conclusions; Appendix 2A: Test Statistics, Nonnormality, and Statistical Power; 3 Missing Data and Alternative Metrics of Time; 3.1 Missing Data; 3.1.1 Types of Missing Data; 3.1.2 Treatment of Missing Data; 3.1.3 Empirical Example; 3.1.4 Summary; 3.2 Missing Data and Alternative Metrics of Time; 3.2.1 Numerical Measure of Time; 3.2.2 When Wave of Assessment and Alternative Metrics of Time Are Equivalent
3.2.3 When Wave of Assessment and Alternative Metrics of Time Are Different3.2.4 Reorganizing Data as a Function of Alternative Metrics of Time; 3.2.5 Individually Varying Values of Time; 3.2.6 Summary; 3.2.7 Empirical Example: Reading Achievement; 3.3 Conclusions; 4 Nonlinear Trajectories and the Coding of Time; 4.1 Modeling Nonlinear Functions of Time; 4.1.1 Polynomial Trajectories: Quadratic Trajectory Model; 4.1.2 Polynomial Trajectories: Cubic Trajectory Models; 4.1.3 Summary; 4.2 Nonlinear Curve Fitting: Estimated Factor Loadings; 4.2.1 Selecting the Metric of Change
4.3 Piecewise Linear Trajectory Models4.3.1 Identification; 4.3.2 Interpretation; 4.4 Alternative Parametric Functions; 4.4.1 Exponential Trajectory; 4.4.2 Parametric Functions with Cycles; 4.4.3 Nonlinear Transformations of the Metric of Time; 4.4.4 Nonlinear Transformations of the Repeated Measures; 4.5 Linear Transformations of the Metric of Time; 4.5.1 Logic of Recoding the Metric of Time; 4.5.2 General Framework for Transforming Time; 4.5.3 Summary; 4.6 Conclusions; Appendix 4A: Identification of Quadratic and Piecewise Latent Curve Models; 4A.1 Quadratic LCM; 4A.2 Piecewise LCM
5 Conditional Latent Curve Models
Record Nr. UNINA-9910143577103321
Bollen Kenneth A  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Latent curve models [[electronic resource] ] : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Latent curve models [[electronic resource] ] : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Autore Bollen Kenneth A
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (307 p.)
Disciplina 519.5/35
621.384135015118
Altri autori (Persone) CurranPatrick J. <1965->
Collana Wiley series in probability and statistics
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-280-40940-1
9786610409402
0-470-32167-9
0-471-74609-6
0-471-74608-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Latent Curve Models; Contents; Preface; 1 Introduction; 1.1 Conceptualization and Analysis of Trajectories; 1.1.1 Trajectories of Crime Rates; 1.1.2 Data Requirements; 1.1.3 Summary; 1.2 Three Initial Questions About Trajectories; 1.2.1 Question 1: What Is the Trajectory for the Entire Group?; 1.2.2 Question 2: Do We Need Distinct Trajectories for Each Case?; 1.2.3 Question 3: If Distinct Trajectories Are Needed, Can We Identify Variables to Predict These Individual Trajectories?; 1.2.4 Summary; 1.3 Brief History of Latent Curve Models; 1.3.1 Early Developments: The Nineteenth Century
1.3.2 Fitting Group Trajectories: 1900-19371.3.3 Fitting Individual and Group Trajectories: 1938-1950s; 1.3.4 Trajectory Modeling with Latent Variables: 1950s-1984; 1.3.5 Current Latent Curve Modeling: 1984-present; 1.3.6 Summary; 1.4 Organization of the Remainder of the Book; 2 Unconditional Latent Curve Model; 2.1 Repeated Measures; 2.2 General Model and Assumptions; 2.3 Identification; 2.4 Case-By-Case Approach; 2.4.1 Assessing Model Fit; 2.4.2 Limitations of Case-by-Case Approach; 2.5 Structural Equation Model Approach; 2.5.1 Matrix Expression of the Latent Curve Model
2.5.2 Maximum Likelihood Estimation2.5.3 Empirical Example; 2.5.4 Assessing Model Fit; 2.5.5 Components of Fit; 2.6 Alternative Approaches to the SEM; 2.7 Conclusions; Appendix 2A: Test Statistics, Nonnormality, and Statistical Power; 3 Missing Data and Alternative Metrics of Time; 3.1 Missing Data; 3.1.1 Types of Missing Data; 3.1.2 Treatment of Missing Data; 3.1.3 Empirical Example; 3.1.4 Summary; 3.2 Missing Data and Alternative Metrics of Time; 3.2.1 Numerical Measure of Time; 3.2.2 When Wave of Assessment and Alternative Metrics of Time Are Equivalent
3.2.3 When Wave of Assessment and Alternative Metrics of Time Are Different3.2.4 Reorganizing Data as a Function of Alternative Metrics of Time; 3.2.5 Individually Varying Values of Time; 3.2.6 Summary; 3.2.7 Empirical Example: Reading Achievement; 3.3 Conclusions; 4 Nonlinear Trajectories and the Coding of Time; 4.1 Modeling Nonlinear Functions of Time; 4.1.1 Polynomial Trajectories: Quadratic Trajectory Model; 4.1.2 Polynomial Trajectories: Cubic Trajectory Models; 4.1.3 Summary; 4.2 Nonlinear Curve Fitting: Estimated Factor Loadings; 4.2.1 Selecting the Metric of Change
4.3 Piecewise Linear Trajectory Models4.3.1 Identification; 4.3.2 Interpretation; 4.4 Alternative Parametric Functions; 4.4.1 Exponential Trajectory; 4.4.2 Parametric Functions with Cycles; 4.4.3 Nonlinear Transformations of the Metric of Time; 4.4.4 Nonlinear Transformations of the Repeated Measures; 4.5 Linear Transformations of the Metric of Time; 4.5.1 Logic of Recoding the Metric of Time; 4.5.2 General Framework for Transforming Time; 4.5.3 Summary; 4.6 Conclusions; Appendix 4A: Identification of Quadratic and Piecewise Latent Curve Models; 4A.1 Quadratic LCM; 4A.2 Piecewise LCM
5 Conditional Latent Curve Models
Record Nr. UNINA-9910830947003321
Bollen Kenneth A  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Latent curve models : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Latent curve models : a structural equation perspective / / Kenneth A. Bollen, Patrick J. Curran
Autore Bollen Kenneth A
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (307 p.)
Disciplina 519.5/35
Altri autori (Persone) CurranPatrick J. <1965->
Collana Wiley series in probability and statistics
Soggetto topico Latent structure analysis
Latent variables
ISBN 1-280-40940-1
9786610409402
0-470-32167-9
0-471-74609-6
0-471-74608-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Latent Curve Models; Contents; Preface; 1 Introduction; 1.1 Conceptualization and Analysis of Trajectories; 1.1.1 Trajectories of Crime Rates; 1.1.2 Data Requirements; 1.1.3 Summary; 1.2 Three Initial Questions About Trajectories; 1.2.1 Question 1: What Is the Trajectory for the Entire Group?; 1.2.2 Question 2: Do We Need Distinct Trajectories for Each Case?; 1.2.3 Question 3: If Distinct Trajectories Are Needed, Can We Identify Variables to Predict These Individual Trajectories?; 1.2.4 Summary; 1.3 Brief History of Latent Curve Models; 1.3.1 Early Developments: The Nineteenth Century
1.3.2 Fitting Group Trajectories: 1900-19371.3.3 Fitting Individual and Group Trajectories: 1938-1950s; 1.3.4 Trajectory Modeling with Latent Variables: 1950s-1984; 1.3.5 Current Latent Curve Modeling: 1984-present; 1.3.6 Summary; 1.4 Organization of the Remainder of the Book; 2 Unconditional Latent Curve Model; 2.1 Repeated Measures; 2.2 General Model and Assumptions; 2.3 Identification; 2.4 Case-By-Case Approach; 2.4.1 Assessing Model Fit; 2.4.2 Limitations of Case-by-Case Approach; 2.5 Structural Equation Model Approach; 2.5.1 Matrix Expression of the Latent Curve Model
2.5.2 Maximum Likelihood Estimation2.5.3 Empirical Example; 2.5.4 Assessing Model Fit; 2.5.5 Components of Fit; 2.6 Alternative Approaches to the SEM; 2.7 Conclusions; Appendix 2A: Test Statistics, Nonnormality, and Statistical Power; 3 Missing Data and Alternative Metrics of Time; 3.1 Missing Data; 3.1.1 Types of Missing Data; 3.1.2 Treatment of Missing Data; 3.1.3 Empirical Example; 3.1.4 Summary; 3.2 Missing Data and Alternative Metrics of Time; 3.2.1 Numerical Measure of Time; 3.2.2 When Wave of Assessment and Alternative Metrics of Time Are Equivalent
3.2.3 When Wave of Assessment and Alternative Metrics of Time Are Different3.2.4 Reorganizing Data as a Function of Alternative Metrics of Time; 3.2.5 Individually Varying Values of Time; 3.2.6 Summary; 3.2.7 Empirical Example: Reading Achievement; 3.3 Conclusions; 4 Nonlinear Trajectories and the Coding of Time; 4.1 Modeling Nonlinear Functions of Time; 4.1.1 Polynomial Trajectories: Quadratic Trajectory Model; 4.1.2 Polynomial Trajectories: Cubic Trajectory Models; 4.1.3 Summary; 4.2 Nonlinear Curve Fitting: Estimated Factor Loadings; 4.2.1 Selecting the Metric of Change
4.3 Piecewise Linear Trajectory Models4.3.1 Identification; 4.3.2 Interpretation; 4.4 Alternative Parametric Functions; 4.4.1 Exponential Trajectory; 4.4.2 Parametric Functions with Cycles; 4.4.3 Nonlinear Transformations of the Metric of Time; 4.4.4 Nonlinear Transformations of the Repeated Measures; 4.5 Linear Transformations of the Metric of Time; 4.5.1 Logic of Recoding the Metric of Time; 4.5.2 General Framework for Transforming Time; 4.5.3 Summary; 4.6 Conclusions; Appendix 4A: Identification of Quadratic and Piecewise Latent Curve Models; 4A.1 Quadratic LCM; 4A.2 Piecewise LCM
5 Conditional Latent Curve Models
Record Nr. UNINA-9911020148103321
Bollen Kenneth A  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Latent variable models and factor analysis : a unified approach / / David Bartholomew, Martin Knott, Irini Moustaki
Latent variable models and factor analysis : a unified approach / / David Bartholomew, Martin Knott, Irini Moustaki
Autore Bartholomew David J
Edizione [3rd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica xiii, 277 p. : ill
Disciplina 519.5/35
Altri autori (Persone) KnottM (Martin)
MoustakiIrini
Collana Wiley series in probability and statistics
Soggetto topico Latent variables
Latent structure analysis
Factor analysis
ISBN 9786613177698
9781283177696
1283177692
9781119970590
1119970598
9781119970583
111997058X
9781119973706
1119973708
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Latent Variable Models and Factor Analysis -- Contents -- Preface -- Acknowledgements -- 1 Basic ideas and examples -- 1.1 The statistical problem -- 1.2 The basic idea -- 1.3 Two examples -- 1.3.1 Binary manifest variables and a single binary latent variable -- 1.3.2 A model based on normal distributions -- 1.4 A broader theoretical view -- 1.5 Illustration of an alternative approach -- 1.6 An overview of special cases -- 1.7 Principal components -- 1.8 The historical context -- 1.9 Closely related fields in statistics -- 2 The general linear latent variable model -- 2.1 Introduction -- 2.2 The model -- 2.3 Some properties of the model -- 2.4 A special case -- 2.5 The sufficiency principle -- 2.6 Principal special cases -- 2.7 Latent variable models with non-linear terms -- 2.8 Fitting the models -- 2.9 Fitting by maximum likelihood -- 2.10 Fitting by Bayesian methods -- 2.11 Rotation -- 2.12 Interpretation -- 2.13 Sampling error of parameter estimates -- 2.14 The prior distribution -- 2.15 Posterior analysis -- 2.16 A further note on the prior -- 2.17 Psychometric inference -- 3 The normal linear factor model -- 3.1 The model -- 3.2 Some distributional properties -- 3.3 Constraints on the model -- 3.4 Maximum likelihood estimation -- 3.5 Maximum likelihood estimation by the E-M algorithm -- 3.6 Sampling variation of estimators -- 3.7 Goodness of fit and choice of q -- 3.7.1 Model selection criteria -- 3.8 Fitting without normality assumptions: least squares methods -- 3.9 Other methods of fitting -- 3.10 Approximate methods for estimating -- 3.11 Goodness of fit and choice of q for least squares methods -- 3.12 Further estimation issues -- 3.12.1 Consistency -- 3.12.2 Scale-invariant estimation -- 3.12.3 Heywood cases -- 3.13 Rotation and related matters -- 3.13.1 Orthogonal rotation -- 3.13.2 Oblique rotation -- 3.13.3 Related matters.
3.14 Posterior analysis: the normal case -- 3.15 Posterior analysis: least squares -- 3.16 Posterior analysis: a reliability approach -- 3.17 Examples -- 4 Binary data: latent trait models -- 4.1 Preliminaries -- 4.2 The logit/normal model -- 4.3 The probit/normal model -- 4.4 The equivalence of the response function and underlying variable approaches -- 4.5 Fitting the logit/normal model: the E-M algorithm -- 4.5.1 Fitting the probit/normal model -- 4.5.2 Other methods for approximating the integral -- 4.6 Sampling properties of the maximum likelihood estimators -- 4.7 Approximate maximum likelihood estimators -- 4.8 Generalised least squares methods -- 4.9 Goodness of fit -- 4.10 Posterior analysis -- 4.11 Fitting the logit/normal and probit/normal models: Markov chain Monte Carlo -- 4.11.1 Gibbs sampling -- 4.11.2 Metropolis-Hastings -- 4.11.3 Choosing prior distributions -- 4.11.4 Convergence diagnostics in MCMC -- 4.12 Divergence of the estimation algorithm -- 4.13 Examples -- 5 Polytomous data: latent trait models -- 5.1 Introduction -- 5.2 A response function model based on the sufficiency principle -- 5.3 Parameter interpretation -- 5.4 Rotation -- 5.5 Maximum likelihood estimation of the polytomous logit model -- 5.6 An approximation to the likelihood -- 5.6.1 One factor -- 5.6.2 More than one factor -- 5.7 Binary data as a special case -- 5.8 Ordering of categories -- 5.8.1 A response function model for ordinal variables -- 5.8.2 Maximum likelihood estimation of the model with ordinal variables -- 5.8.3 The partial credit model -- 5.8.4 An underlying variable model -- 5.9 An alternative underlying variable model -- 5.10 Posterior analysis -- 5.11 Further observations -- 5.12 Examples of the analysis of polytomous data using the logit model -- 6 Latent class models -- 6.1 Introduction.
6.2 The latent class model with binary manifest variables -- 6.3 The latent class model for binary data as a latent trait model -- 6.4 K latent classes within the GLLVM -- 6.5 Maximum likelihood estimation -- 6.6 Standard errors -- 6.7 Posterior analysis of the latent class model with binary manifest variables -- 6.8 Goodness of fit -- 6.9 Examples for binary data -- 6.10 Latent class models with unordered polytomous manifest variables -- 6.11 Latent class models with ordered polytomous manifest variables -- 6.12 Maximum likelihood estimation -- 6.12.1 Allocation of individuals to latent classes -- 6.13 Examples for unordered polytomous data -- 6.14 Identifiability -- 6.15 Starting values -- 6.16 Latent class models with metrical manifest variables -- 6.16.1 Maximum likelihood estimation -- 6.16.2 Other methods -- 6.16.3 Allocation to categories -- 6.17 Models with ordered latent classes -- 6.18 Hybrid models -- 6.18.1 Hybrid model with binary manifest variables -- 6.18.2 Maximum likelihood estimation -- 7 Models and methods for manifest variables of mixed type -- 7.1 Introduction -- 7.2 Principal results -- 7.3 Other members of the exponential family -- 7.3.1 The binomial distribution -- 7.3.2 The Poisson distribution -- 7.3.3 The gamma distribution -- 7.4 Maximum likelihood estimation -- 7.4.1 Bernoulli manifest variables -- 7.4.2 Normal manifest variables -- 7.4.3 A general E-M approach to solving the likelihood equations -- 7.4.4 Interpretation of latent variables -- 7.5 Sampling properties and goodness of fit -- 7.6 Mixed latent class models -- 7.7 Posterior analysis -- 7.8 Examples -- 7.9 Ordered categorical variables and other generalisations -- 8 Relationships between latent variables -- 8.1 Scope -- 8.2 Correlated latent variables -- 8.3 Procrustes methods -- 8.4 Sources of prior knowledge -- 8.5 Linear structural relations models.
8.6 The LISREL model -- 8.6.1 The structural model -- 8.6.2 The measurement model -- 8.6.3 The model as a whole -- 8.7 Adequacy of a structural equation model -- 8.8 Structural relationships in a general setting -- 8.9 Generalisations of the LISREL model -- 8.10 Examples of models which are indistinguishable -- 8.11 Implications for analysis -- 9 Related techniques for investigating dependency -- 9.1 Introduction -- 9.2 Principal components analysis -- 9.2.1 A distributional treatment -- 9.2.2 A sample-based treatment -- 9.2.3 Unordered categorical data -- 9.2.4 Ordered categorical data -- 9.3 An alternative to the normal factor model -- 9.4 Replacing latent variables by linear functions of the manifest variables -- 9.5 Estimation of correlations and regressions between latent variables -- 9.6 Q-Methodology -- 9.7 Concluding reflections of the role of latent variables in statistical modelling -- Software appendix -- References -- Author index -- Subject index.
Record Nr. UNINA-9910208838003321
Bartholomew David J  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui