top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Optical fibers
ISBN 1-5044-7259-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910447059803321
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Optical fibers
ISBN 1-5044-7259-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574629003316
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (406 p.)
Disciplina 621.366
Altri autori (Persone) MisawaHiroaki
JuodkazisSaulius
Soggetto topico Lasers - Industrial applications
Microfabrication
ISBN 1-280-72338-6
9786610723386
3-527-60846-X
3-527-60840-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing
2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation
2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration
3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force
3.4.1 Intensity Point-spread Function in Aqueous Solution
Record Nr. UNINA-9910144728303321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (406 p.)
Disciplina 621.366
Altri autori (Persone) MisawaHiroaki
JuodkazisSaulius
Soggetto topico Lasers - Industrial applications
Microfabrication
ISBN 1-280-72338-6
9786610723386
3-527-60846-X
3-527-60840-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing
2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation
2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration
3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force
3.4.1 Intensity Point-spread Function in Aqueous Solution
Record Nr. UNINA-9910830437203321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D laser microfabrication : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
3D laser microfabrication : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2006
Descrizione fisica 1 online resource (406 p.)
Disciplina 621.366
Altri autori (Persone) MisawaHiroaki
JuodkazisSaulius
Soggetto topico Lasers - Industrial applications
Microfabrication
ISBN 9786610723386
9781280723384
1280723386
9783527608461
352760846X
9783527608409
3527608400
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing
2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation
2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration
3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force
3.4.1 Intensity Point-spread Function in Aqueous Solution
Altri titoli varianti Three-dimensional laser microfabrication
Record Nr. UNINA-9911019521303321
Weinheim, : Wiley-VCH, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advancement of selective laser melting by laser beam shaping / / Tim Marten Wischeropp
Advancement of selective laser melting by laser beam shaping / / Tim Marten Wischeropp
Autore Wischeropp Tim Marten
Pubbl/distr/stampa Berlin, Germany : , : Springer Vieweg, , [2021]
Descrizione fisica 1 online resource (200 pages)
Disciplina 621.366
Collana Light engineering für die Praxis
Soggetto topico Lasers - Industrial applications
Optical engineering
Photonics
ISBN 3-662-64585-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction --Fundamentals --Numerical Model --Experimental Set-Up --Effect of Laser Beam Profile on SLM Process --Industrial Relevance of Results --Summary and Outlook.
Record Nr. UNINA-9910512310303321
Wischeropp Tim Marten  
Berlin, Germany : , : Springer Vieweg, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in laser materials processing : technology, research and applications / / edited by Jonathan Lawrence
Advances in laser materials processing : technology, research and applications / / edited by Jonathan Lawrence
Edizione [Second edition.]
Pubbl/distr/stampa Duxford, England : , : Woodhead Publishing, , 2018
Descrizione fisica 1 online resource (781 pages) : illustrations
Disciplina 621.366
Collana Woodhead Publishing Series in Welding and Other Joining Technologies
Soggetto topico Lasers - Industrial applications
Manufacturing processes
ISBN 0-08-101253-5
0-08-101252-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910297399203321
Duxford, England : , : Woodhead Publishing, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calibration service for laser power and energy at 248 nm / / Rodney W. Leonhardt
Calibration service for laser power and energy at 248 nm / / Rodney W. Leonhardt
Autore Leonhardt Rodney W
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998
Descrizione fisica 1 online resource
Altri autori (Persone) LeonhardtRodney W
Collana NIST technical note
Soggetto topico Excimer lasers - Calibration
Lasers - Industrial applications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711207003321
Leonhardt Rodney W  
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chemical processing with lasers / Dieter Bäuerle
Chemical processing with lasers / Dieter Bäuerle
Autore Bäuerle, Dieter
Pubbl/distr/stampa Berlin : Springer-Verlag, 1986
Descrizione fisica ix, 245 p. : ill. ; 24 cm.
Disciplina 621.36/6
Collana Springer series in materials science ; 1
Soggetto topico Lasers - Industrial applications
Materials - Effect of radiation on
ISBN 0387171479
Classificazione 53.2.63
LC TA1677
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000849269707536
Bäuerle, Dieter  
Berlin : Springer-Verlag, 1986
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Semiconductor lasers - Mathematical models
ISBN 3-527-65536-0
3-527-65534-4
3-527-65537-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments
ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters
2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation
2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References
Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers
Record Nr. UNINA-9910132213903321
Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui