163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
| 163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource |
| Disciplina | 621.366 |
| Soggetto topico |
Lasers - Industrial applications
Optical fibers |
| ISBN | 1-5044-7259-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910447059803321 |
| [Place of publication not identified] : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE
| 163_2065-2020 - IEEE guide for parameter requirements and test method for industrial fiber laser / / IEEE |
| Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2021 |
| Descrizione fisica | 1 online resource |
| Disciplina | 621.366 |
| Soggetto topico |
Lasers - Industrial applications
Optical fibers |
| ISBN | 1-5044-7259-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996574629003316 |
| [Place of publication not identified] : , : IEEE, , 2021 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
| 3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (406 p.) |
| Disciplina | 621.366 |
| Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
| Soggetto topico |
Lasers - Industrial applications
Microfabrication |
| ISBN |
1-280-72338-6
9786610723386 3-527-60846-X 3-527-60840-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
| Record Nr. | UNINA-9910144728303321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
| 3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (406 p.) |
| Disciplina | 621.366 |
| Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
| Soggetto topico |
Lasers - Industrial applications
Microfabrication |
| ISBN |
1-280-72338-6
9786610723386 3-527-60846-X 3-527-60840-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
| Record Nr. | UNINA-9910830437203321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
3D laser microfabrication : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis
| 3D laser microfabrication : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2006 |
| Descrizione fisica | 1 online resource (406 p.) |
| Disciplina | 621.366 |
| Altri autori (Persone) |
MisawaHiroaki
JuodkazisSaulius |
| Soggetto topico |
Lasers - Industrial applications
Microfabrication |
| ISBN |
9786610723386
9781280723384 1280723386 9783527608461 352760846X 9783527608409 3527608400 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing 2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation 2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration 3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force 3.4.1 Intensity Point-spread Function in Aqueous Solution |
| Altri titoli varianti | Three-dimensional laser microfabrication |
| Record Nr. | UNINA-9911019521303321 |
| Weinheim, : Wiley-VCH, c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advancement of selective laser melting by laser beam shaping / / Tim Marten Wischeropp
| Advancement of selective laser melting by laser beam shaping / / Tim Marten Wischeropp |
| Autore | Wischeropp Tim Marten |
| Pubbl/distr/stampa | Berlin, Germany : , : Springer Vieweg, , [2021] |
| Descrizione fisica | 1 online resource (200 pages) |
| Disciplina | 621.366 |
| Collana | Light engineering für die Praxis |
| Soggetto topico |
Lasers - Industrial applications
Optical engineering Photonics |
| ISBN | 3-662-64585-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction --Fundamentals --Numerical Model --Experimental Set-Up --Effect of Laser Beam Profile on SLM Process --Industrial Relevance of Results --Summary and Outlook. |
| Record Nr. | UNINA-9910512310303321 |
Wischeropp Tim Marten
|
||
| Berlin, Germany : , : Springer Vieweg, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in laser materials processing : technology, research and applications / / edited by Jonathan Lawrence
| Advances in laser materials processing : technology, research and applications / / edited by Jonathan Lawrence |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Duxford, England : , : Woodhead Publishing, , 2018 |
| Descrizione fisica | 1 online resource (781 pages) : illustrations |
| Disciplina | 621.366 |
| Collana | Woodhead Publishing Series in Welding and Other Joining Technologies |
| Soggetto topico |
Lasers - Industrial applications
Manufacturing processes |
| ISBN |
0-08-101253-5
0-08-101252-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910297399203321 |
| Duxford, England : , : Woodhead Publishing, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Calibration service for laser power and energy at 248 nm / / Rodney W. Leonhardt
| Calibration service for laser power and energy at 248 nm / / Rodney W. Leonhardt |
| Autore | Leonhardt Rodney W |
| Pubbl/distr/stampa | Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998 |
| Descrizione fisica | 1 online resource |
| Altri autori (Persone) | LeonhardtRodney W |
| Collana | NIST technical note |
| Soggetto topico |
Excimer lasers - Calibration
Lasers - Industrial applications |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910711207003321 |
Leonhardt Rodney W
|
||
| Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemical processing with lasers / Dieter Bäuerle
| Chemical processing with lasers / Dieter Bäuerle |
| Autore | Bäuerle, Dieter |
| Pubbl/distr/stampa | Berlin : Springer-Verlag, 1986 |
| Descrizione fisica | ix, 245 p. : ill. ; 24 cm. |
| Disciplina | 621.36/6 |
| Collana | Springer series in materials science ; 1 |
| Soggetto topico |
Lasers - Industrial applications
Materials - Effect of radiation on |
| ISBN | 0387171479 |
| Classificazione |
53.2.63
LC TA1677 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000849269707536 |
Bäuerle, Dieter
|
||
| Berlin : Springer-Verlag, 1986 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
| Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz |
| Pubbl/distr/stampa | Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014 |
| Descrizione fisica | 1 online resource (343 p.) |
| Disciplina | 621.366 |
| Soggetto topico |
Lasers - Industrial applications
Semiconductor lasers - Mathematical models |
| ISBN |
3-527-65536-0
3-527-65534-4 3-527-65537-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters 2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation 2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers |
| Record Nr. | UNINA-9910132213903321 |
| Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||