Analysis of carbon and sulfur in steel samples using bench top laser-induced breakdown spectroscopy (LIBS) [[electronic resource] /] / by Frank C De Lucia, Jr., Jennifer L. Gottfried, and Andrzej W. Miziolek |
Autore | De Lucia Frank C |
Pubbl/distr/stampa | Adelphi, MD : , : Army Research Laboratory, , [2009] |
Descrizione fisica | 1 online resource (iv, 12 pages) : color illustrations |
Altri autori (Persone) |
GottfriedJennifer L
MiziolekAndrej W |
Collana | ARL-TR |
Soggetto topico |
Steel - Analysis
Laser-induced breakdown spectroscopy |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Analysis of carbon and sulfur in steel samples using bench top laser-induced breakdown spectroscopy |
Record Nr. | UNINA-9910699284403321 |
De Lucia Frank C | ||
Adelphi, MD : , : Army Research Laboratory, , [2009] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chemometrics and numerical methods in LIBS / / edited by Vincenzo Palleschi |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] |
Descrizione fisica | 1 online resource (381 pages) |
Disciplina | 543.015195 |
Soggetto topico |
Chemometrics
Laser-induced breakdown spectroscopy |
ISBN |
1-119-75961-7
1-119-75957-9 1-119-75956-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Introduction and Brief Summary of the LIBS Development -- Part I Introduction to LIBS -- Chapter 1 LIBS Fundamentals -- 1.1 Interaction of Laser Beam with Matter -- 1.2 Basics of Laser-Matter Interaction -- 1.3 Processes in Laser-Produced Plasma -- 1.4 Factors Affecting Laser Ablation and Laser-Induced Plasma Formation -- 1.4.1 Influence of Laser Parameters on the Laser-Induced Plasmas -- 1.4.2 Laser Wavelength (λ) -- 1.4.3 Laser Pulse Duration (τ) -- 1.4.4 Laser Energy (E) -- 1.4.5 Influence of Ambient Gas -- 1.5 Plasma Properties and Plasma Emission Spectra -- References -- Chapter 2 LIBS Instrumentations -- 2.1 Basics of LIBS instrumentations -- 2.2 Lasers in LIBS Systems -- 2.3 Desirable Requirements for Atomic Emission Spectrometers/Detectors -- 2.4 Spectrometers -- 2.4.1 Czerny-Turner Optical Configuration -- 2.4.2 Paschen-Runge Design -- 2.4.3 Echelle Spectrometer Configuration -- 2.5 Detectors -- 2.5.1 Photomultiplier Detectors -- 2.5.2 Solid-State Detectors -- 2.5.3 The Interline CCD Detectors -- 2.5.3.1 The Image Intensifier -- References -- Chapter 3 Applications of LIBS -- 3.1 Industrial Applications -- 3.1.1 Metal Industry -- 3.1.2 Energy Production -- 3.2 Biomedical Applications -- 3.3 Geological and Environmental Applications -- 3.4 Cultural Heritage and Archaeology Applications -- 3.5 Other Applications -- References -- Part II Simplications of LIBS Information -- Chapter 4 LIBS Spectral Treatment -- 4.1 Introduction -- 4.2 Baseline Correction -- 4.2.1 Polynomial Algorithm -- 4.2.2 Model-free Algorithm -- 4.2.3 Wavelet Transform Model -- 4.3 Noise Filtering -- 4.3.1 Wavelet Threshold De-noising (WTD) -- 4.3.2 Baseline Correction and Noise Filtering -- 4.4 Overlapping Peak Resolution.
4.4.1 Curve Fitting Method -- 4.4.2 The Wavelet Transform -- 4.5 Features Selection -- 4.5.1 Principal Component Analysis -- 4.5.2 Genetic Algorithm (GA) -- 4.5.3 Wavelet Transformation (WT) -- References -- Chapter 5 Principal Component Analysis -- 5.1 Introduction -- 5.1.1 Laser-Induced Breakdown Spectroscopy (LIBS) -- 5.2 The Principal Component Analysis (PCA) -- 5.3 PCA in Some LIBS Applications -- 5.3.1 Geochemical Applications -- 5.3.2 Food and Feed Applications -- 5.3.3 Microbiological Applications -- 5.3.4 Forensic Applications -- 5.4 Conclusion -- References -- Chapter 6 Time-Dependent Spectral Analysis -- 6.1 Introduction -- 6.2 Time-Dependent LIBS Spectral Analysis -- 6.2.1 Independent Component Analysis -- 6.2.2 3D Boltzmann Plot -- 6.2.2.1 Principles of the Method -- 6.3 Applications -- 6.3.1 3D Boltzmann Plot Coupled with Independent Component Analysis -- 6.3.2 Analysis of a Carbon Plasma by 3D Boltzmann Plot Method -- 6.3.3 Assessment of the LTE Condition Through the 3D Boltzmann Plot Method -- 6.3.4 Evaluation of Self-Absorption -- 6.3.5 Determination of Transition Probabilities -- 6.3.6 3D Boltzmann Plot and Calibration-free Laser-induced Breakdown Spectroscopy -- 6.4 Conclusion -- References -- Part III Classification by LIBS -- Chapter 7 Distance-based Method -- 7.1 Cluster Analysis -- 7.1.1 Introduction -- 7.1.2 Theory -- 7.1.2.1 K-means Clustering -- 7.1.2.2 Hierarchical Clustering -- 7.1.3 Application -- 7.2 Independent Components Analysis -- 7.2.1 Introduction -- 7.2.2 Theory -- 7.2.3 Application -- 7.3 K-Nearest Neighbor -- 7.3.1 Introduction -- 7.3.2 Theory -- 7.3.3 Application -- 7.4 Linear Discriminant Analysis -- 7.4.1 Introduction -- 7.4.2 Theory -- 7.4.2.1 The Calculation Process of LDA .(Two Categories) -- 7.4.3 Application. 7.5 Partial Least Squares Discriminant Analysis -- 7.5.1 Introduction -- 7.5.2 Theory -- 7.5.3 Application -- 7.6 Principal Component Analysis -- 7.6.1 Introduction -- 7.6.2 Theory -- 7.6.3 Application -- 7.7 Soft Independent Modeling of Class Analogy -- 7.7.1 Introduction -- 7.7.2 Theory -- 7.7.3 Application -- 7.8 Conclusion and Expectation -- References -- Chapter 8 Blind Source Separation in LIBS -- 8.1 Introduction -- 8.2 Data Model -- 8.3 Analyzing LIBS Data via Blind Source Separation -- 8.3.1 Second-order BSS -- 8.3.2 Maximum Noise Fraction -- 8.3.3 Independent Component Analysis -- 8.3.4 ICA for Noisy Data -- 8.4 Numerical Examples -- 8.5 Final Remarks -- References -- Chapter 9 Artificial Neural Networks for Classification -- 9.1 Introduction and Scope -- 9.2 Artificial Neural Networks (ANNs) -- 9.3 Cost Functions and Training -- 9.4 Backpropagation -- 9.5 Convolutional Neural Networks -- 9.6 Evaluation and Tuning of ANNs -- 9.7 Regularization -- 9.8 State-of-the-art LIBS Classification Using ANNs -- 9.9 Summary -- Acknowledgments -- References -- Chapter 10 Data Fusion: LIBS + Raman -- 10.1 Introduction -- 10.2 Data Fusion Background -- 10.3 Data Treatment -- 10.4 Working with Images -- 10.4.1 Vectors Concatenation -- 10.4.2 Vectors Co-addition -- 10.4.3 Vectors Outer Sum -- 10.4.4 Vectors Outer Product -- 10.4.5 Data Analysis -- 10.5 Applications -- 10.6 Conclusion -- References -- Part IV Quantitative Analysis -- Chapter 11 Univariate Linear Methods -- 11.1 Standards -- 11.2 Matrix Effect -- 11.3 Normalization -- 11.4 Linear vs Nonlinear Calibration Curves -- 11.5 Figures of Merit of a Calibration Curve -- 11.5.1 Coefficient of Determination -- 11.5.2 Root Mean Squared Error of Calibration -- 11.5.3 Limit of Detection -- 11.6 Inverse Calibration -- 11.7 Conclusion -- References. Chapter 12 Partial Least Squares -- 12.1 Overview -- 12.2 Partial Least Squares Regression Algorithms -- 12.2.1 Nonlinear Iterative PLS -- 12.2.2 SIMPLS Algorithm -- 12.2.3 Kernel Partial Least Squares -- 12.2.4 Locally Weighted Partial Least Squares -- 12.2.5 Dominant Factor-based Partial Least Squares -- 12.3 Partial Least Squares Discriminant Analysis -- 12.4 Results of Partial Least Squares in LIBS -- 12.4.1 Coal Analysis -- 12.4.2 Metal Analysis -- 12.4.3 Rocks, Soils, and Minerals Analysis -- 12.4.4 Organics Analysis -- 12.5 Conclusion -- References -- Chapter 13 Nonlinear Methods -- 13.1 Introduction -- 13.2 Multivariate Nonlinear Algorithms -- 13.2.1 Artificial Neural Networks -- 13.2.1.1 Conventional Artificial Neural Networks -- 13.2.1.2 Convolutional Neural Networks -- 13.2.2 Other Nonlinear Multivariate Approaches -- 13.2.2.1 The Franzini-Leoni Method -- 13.2.2.2 The Kalman Filter Approach -- 13.2.2.3 Calibration-Free Methods -- 13.3 Conclusion -- References -- Chapter 14 Laser Ablation-based Techniques - Data Fusion -- 14.1 Introduction -- 14.2 Data Fusion of Multiple Analytical Techniques -- 14.2.1 Low-level Fusion -- 14.2.2 Mid-level Fusion -- 14.2.3 High-level Fusion -- 14.3 Data Fusion of Laser Ablation-Based Techniques -- 14.3.1 Introduction -- 14.3.2 Classification of Edible Salts -- 14.3.2.1 LIBS and LA-ICP-MS Measurements of the Salt Samples -- 14.3.2.2 Mid-Level Data Fusion of LIBS and LA-ICP-MS of Salt Samples -- 14.3.2.3 PLS-DA Classification Model for Salt Samples -- 14.3.3 Coal Discrimination Analysis -- 14.3.3.1 LIBS and LA-ICP-TOF-MS Measurements of the Coal Samples -- 14.3.3.2 Mid-Level Data Fusion of LIBS and LA-ICP-TOF-MS of Coal Samples -- 14.3.3.3 PCA Combined with K-means Cluster Analysis for Coal Samples -- 14.3.3.4 PLS-DA and SVM for Coal Samples Analysis. 14.4 Comments and Future Developments -- Acknowledgments -- References -- Part V Conclusions -- Chapter 15 Conclusion -- Index -- EULA. |
Record Nr. | UNINA-9910831166903321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Detection of energetic materials and explosive residues with laser-induced breakdown spectroscopy . 1 Laboratory measurements [[electronic resource] /] / Jennifer L. Gottfried ... [and others] |
Pubbl/distr/stampa | Aberdeen Proving Ground, Md. : , : Army Research Laboratory, , [2007] |
Descrizione fisica | 1 online resource (vi, 34 pages) : illustrations (some color) |
Altri autori (Persone) | GottfriedJennifer L |
Collana | ARL-TR |
Soggetto topico |
Explosives - Detection
Laser-induced breakdown spectroscopy |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910701497103321 |
Aberdeen Proving Ground, Md. : , : Army Research Laboratory, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of laser-induced breakdown spectroscopy [[electronic resource] /] / David A. Cremers, Leon J. Radziemski |
Autore | Cremers David A |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons, Ltd., 2013 |
Descrizione fisica | 1 online resource (437 p.) |
Disciplina | 543.52 |
Altri autori (Persone) | RadziemskiLeon J |
Soggetto topico |
Atomic emission spectroscopy
Laser-induced breakdown spectroscopy |
ISBN |
1-118-56737-4
1-118-56736-6 1-299-38761-6 1-118-56734-X |
Classificazione | SCI078000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Preface xiAcronyms, Constants, and Symbols xv1 Introduction 11.1 Atomic Optical Emission Spectrochemistry (OES) 11.1.1 Conventional OES 11.1.2 Laser OES 11.2 Laser-Induced Breakdown Spectroscopy (LIBS) 21.3 LIBS History 1960-1980 71.4 LIBS History 1981-1990 91.5 LIBS History 1991-2000 111.6 LIBS History 2001-2012 14References 182 Basics of the LIBS Plasma 292.1 LIBS Plasma Fundamentals 292.1.1 Spectral Lines and Line Profiles 322.1.2 Determining Electron Densities from Spectral Line Widths 342.1.3 Plasma Opacity 372.1.4 Temperature and Thermodynamic Equilibrium 382.2 Laser-Induced Breakdown 462.2.1 Breakdown in Gases 462.2.2 Post-Breakdown Phenomena in Gases 482.2.3 Breakdown in and on Solids, Aerosols, and Liquids 482.2.4 Post-Breakdown Phenomena on Solid Surfaces 502.3 Laser Ablation from Surfaces and Aerosols 532.4 Nanosecond and Femtosecond Double- or Multiple-Pulse LIBS 582.5 Summary 632.6 Problems 63References 643 LIBS Apparatus Fundamentals 693.1 Basic LIBS Apparatus 693.2 Lasers 703.2.1 Laser Fundamentals 703.2.2 Types of Lasers 723.2.3 Properties of Laser Light Important for LIBS 763.2.4 Generation of Additional Wavelengths 783.2.5 Double-Pulse Operation 783.3 Optical Systems 803.3.1 Focusing and Light Collection 803.3.2 Lenses 823.3.3 Fiber Optic Cables 823.4 Methods of Spectral Resolution 863.4.1 Introduction 863.4.2 Spectral Resolution Devices 883.5 Detectors 1023.6 Detection System Calibrations 1093.6.1 Wavelength Calibration 1093.6.2 Spectral Response Calibration 1103.7 Timing Considerations 1143.8 Methods of LIBS Deployment 1153.9 Problems 117References 1184 LIBS Analytical Figures of Merit and Calibration 1234.1 Introduction 1234.2 Basics of a LIBS Measurement 1234.3 Precision 1294.4 Calibration 1314.4.1 Calibration Curves 1314.4.2 Calibration Standards 1384.4.3 Calibration-Free LIBS 1404.5 Detection Limit 1444.6 Accuracy 1444.7 Problems 146References 148References for Detection Limits 1505 Qualitative LIBS Analysis 1515.1 Introduction 1515.2 Identifying Elements 1515.3 Material Identification 1565.4 Process Monitoring 1595.4.1 Introduction 1595.4.2 Experimental 1625.4.3 Results 1635.4.4 Conclusions 1695.5 Material Sorting/Distinguishing 1695.5.1 Surface Condition 1695.5.2 Type of Analysis 1715.5.3 Sorting Materials of Close Composition 1735.5.4 Other Examples of Material Identification 1745.6 Site Screening Using LIBS 1775.7 Semiquantitative Analysis 1785.8 Problems 180References 1826 Quantitative LIBS Analysis 1856.1 Introduction 1856.2 Effects of Sampling Geometry 1856.3 Other Sampling Considerations 1896.4 Incomplete Vaporization and Ablation Stoichiometry 1936.5 Use of Internal Standardization 1946.6 Chemical Matrix Effects 1966.7 Example of LIBS Measurement: Impurities in Lithium-ContainingSolutions 1986.7.1 Objective 1986.7.2 Experimental 1986.7.3 Results 2016.7.4 Discussion of Results 2056.8 Example of LIBS Measurement: Detection of Materials on Swipes 2066.8.1 Objective 2066.8.2 Experimental 2066.8.3 Results 2096.9 Reported Figures of Merit for LIBS Measurements and Comparisonwith Standard Methods 2116.10 Enhancing Quantitative Analysis via Sophisticated Signal Processing 2196.11 Conclusions 220References 2217 Chemometric Analysis in LIBS 2237.1 Introduction 2237.2 Chemometric Terms 2277.3 Chemometric Analysis/Model Development 2327.3.1 Data Collection 2327.3.2 Data Preprocessing: Selection of Variables 2347.3.3 Train the Model (Calibration) 2367.3.4 Selecting the Criteria for Classification 2387.3.5 Test the Model (Validation) 2397.3.6 Refine the Model Parameters 2397.3.7 Using the Model 2407.3.8 Improve the Training Data 2417.4 Summary 241References 2418 Remote LIBS Measurements 2578.1 Introduction 2578.2 Conventional Open-Path LIBS 2598.2.1 Apparatus 2598.2.2 Focusing the Laser Pulse 2608.2.3 Collecting the Plasma Light 2648.2.4 Results Using Conventional Open-Path LIBS 2658.3 Standoff LIBS Using Femtosecond Pulses 2708.3.1 Conventional Remote LIBS Using Femtosecond Laser Pulses 2708.3.2 Remote Analysis by Filamentation Produced by FemtosecondPulses 2718.4 Fiber Optic LIBS 2768.4.1 Fiber Optics for Light Collection 2768.4.2 Fibers for Laser Pulse Delivery 2778.4.3 Applications of Fiber Optics 280References 2849 Selected LIBS Applications 2899.1 Introduction 2899.2 LIBS and the CBRNE Threats 2899.2.1 Background 2899.2.2 Nuclear Material and Isotope Detection 2919.2.3 Detection of Explosives 2949.2.4 Chemical and Biological Agent Detection 2959.3 LIBS Analysis of Liquids and Solids in Liquids 2979.4 Transportable LIBS Instrument for Stand-off Analysis 3039.4.1 Instrument Design 3039.4.2 Instrument Capabilities 3079.4.3 Consideration of Detection Scenarios 3129.5 LIBS for Space Applications 3139.5.1 Background 3139.5.2 Laboratory Studies of LIBS for Space Missions 3139.5.3 ChemCam LIBS Instrument on MSL Rover 322References 325A Safety Considerations in LIBS 333B Major LIBS References 337C Detection Limits from the Literature 341D Examples of LIBS Spectra 377E Solutions to Problems 387Index 397. |
Record Nr. | UNINA-9910139040703321 |
Cremers David A | ||
Chichester, West Sussex, U.K., : John Wiley & Sons, Ltd., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of laser-induced breakdown spectroscopy / / David A. Cremers, Leon J. Radziemski |
Autore | Cremers David A |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons, Ltd., 2013 |
Descrizione fisica | 1 online resource (437 p.) |
Disciplina | 543.52 |
Altri autori (Persone) | RadziemskiLeon J |
Soggetto topico |
Atomic emission spectroscopy
Laser-induced breakdown spectroscopy |
ISBN |
1-118-56737-4
1-118-56736-6 1-299-38761-6 1-118-56734-X |
Classificazione | SCI078000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Preface xiAcronyms, Constants, and Symbols xv1 Introduction 11.1 Atomic Optical Emission Spectrochemistry (OES) 11.1.1 Conventional OES 11.1.2 Laser OES 11.2 Laser-Induced Breakdown Spectroscopy (LIBS) 21.3 LIBS History 1960-1980 71.4 LIBS History 1981-1990 91.5 LIBS History 1991-2000 111.6 LIBS History 2001-2012 14References 182 Basics of the LIBS Plasma 292.1 LIBS Plasma Fundamentals 292.1.1 Spectral Lines and Line Profiles 322.1.2 Determining Electron Densities from Spectral Line Widths 342.1.3 Plasma Opacity 372.1.4 Temperature and Thermodynamic Equilibrium 382.2 Laser-Induced Breakdown 462.2.1 Breakdown in Gases 462.2.2 Post-Breakdown Phenomena in Gases 482.2.3 Breakdown in and on Solids, Aerosols, and Liquids 482.2.4 Post-Breakdown Phenomena on Solid Surfaces 502.3 Laser Ablation from Surfaces and Aerosols 532.4 Nanosecond and Femtosecond Double- or Multiple-Pulse LIBS 582.5 Summary 632.6 Problems 63References 643 LIBS Apparatus Fundamentals 693.1 Basic LIBS Apparatus 693.2 Lasers 703.2.1 Laser Fundamentals 703.2.2 Types of Lasers 723.2.3 Properties of Laser Light Important for LIBS 763.2.4 Generation of Additional Wavelengths 783.2.5 Double-Pulse Operation 783.3 Optical Systems 803.3.1 Focusing and Light Collection 803.3.2 Lenses 823.3.3 Fiber Optic Cables 823.4 Methods of Spectral Resolution 863.4.1 Introduction 863.4.2 Spectral Resolution Devices 883.5 Detectors 1023.6 Detection System Calibrations 1093.6.1 Wavelength Calibration 1093.6.2 Spectral Response Calibration 1103.7 Timing Considerations 1143.8 Methods of LIBS Deployment 1153.9 Problems 117References 1184 LIBS Analytical Figures of Merit and Calibration 1234.1 Introduction 1234.2 Basics of a LIBS Measurement 1234.3 Precision 1294.4 Calibration 1314.4.1 Calibration Curves 1314.4.2 Calibration Standards 1384.4.3 Calibration-Free LIBS 1404.5 Detection Limit 1444.6 Accuracy 1444.7 Problems 146References 148References for Detection Limits 1505 Qualitative LIBS Analysis 1515.1 Introduction 1515.2 Identifying Elements 1515.3 Material Identification 1565.4 Process Monitoring 1595.4.1 Introduction 1595.4.2 Experimental 1625.4.3 Results 1635.4.4 Conclusions 1695.5 Material Sorting/Distinguishing 1695.5.1 Surface Condition 1695.5.2 Type of Analysis 1715.5.3 Sorting Materials of Close Composition 1735.5.4 Other Examples of Material Identification 1745.6 Site Screening Using LIBS 1775.7 Semiquantitative Analysis 1785.8 Problems 180References 1826 Quantitative LIBS Analysis 1856.1 Introduction 1856.2 Effects of Sampling Geometry 1856.3 Other Sampling Considerations 1896.4 Incomplete Vaporization and Ablation Stoichiometry 1936.5 Use of Internal Standardization 1946.6 Chemical Matrix Effects 1966.7 Example of LIBS Measurement: Impurities in Lithium-ContainingSolutions 1986.7.1 Objective 1986.7.2 Experimental 1986.7.3 Results 2016.7.4 Discussion of Results 2056.8 Example of LIBS Measurement: Detection of Materials on Swipes 2066.8.1 Objective 2066.8.2 Experimental 2066.8.3 Results 2096.9 Reported Figures of Merit for LIBS Measurements and Comparisonwith Standard Methods 2116.10 Enhancing Quantitative Analysis via Sophisticated Signal Processing 2196.11 Conclusions 220References 2217 Chemometric Analysis in LIBS 2237.1 Introduction 2237.2 Chemometric Terms 2277.3 Chemometric Analysis/Model Development 2327.3.1 Data Collection 2327.3.2 Data Preprocessing: Selection of Variables 2347.3.3 Train the Model (Calibration) 2367.3.4 Selecting the Criteria for Classification 2387.3.5 Test the Model (Validation) 2397.3.6 Refine the Model Parameters 2397.3.7 Using the Model 2407.3.8 Improve the Training Data 2417.4 Summary 241References 2418 Remote LIBS Measurements 2578.1 Introduction 2578.2 Conventional Open-Path LIBS 2598.2.1 Apparatus 2598.2.2 Focusing the Laser Pulse 2608.2.3 Collecting the Plasma Light 2648.2.4 Results Using Conventional Open-Path LIBS 2658.3 Standoff LIBS Using Femtosecond Pulses 2708.3.1 Conventional Remote LIBS Using Femtosecond Laser Pulses 2708.3.2 Remote Analysis by Filamentation Produced by FemtosecondPulses 2718.4 Fiber Optic LIBS 2768.4.1 Fiber Optics for Light Collection 2768.4.2 Fibers for Laser Pulse Delivery 2778.4.3 Applications of Fiber Optics 280References 2849 Selected LIBS Applications 2899.1 Introduction 2899.2 LIBS and the CBRNE Threats 2899.2.1 Background 2899.2.2 Nuclear Material and Isotope Detection 2919.2.3 Detection of Explosives 2949.2.4 Chemical and Biological Agent Detection 2959.3 LIBS Analysis of Liquids and Solids in Liquids 2979.4 Transportable LIBS Instrument for Stand-off Analysis 3039.4.1 Instrument Design 3039.4.2 Instrument Capabilities 3079.4.3 Consideration of Detection Scenarios 3129.5 LIBS for Space Applications 3139.5.1 Background 3139.5.2 Laboratory Studies of LIBS for Space Missions 3139.5.3 ChemCam LIBS Instrument on MSL Rover 322References 325A Safety Considerations in LIBS 333B Major LIBS References 337C Detection Limits from the Literature 341D Examples of LIBS Spectra 377E Solutions to Problems 387Index 397. |
Record Nr. | UNINA-9910823812903321 |
Cremers David A | ||
Chichester, West Sussex, U.K., : John Wiley & Sons, Ltd., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Laser induced breakdown spectroscopy (LIBS) . Volume 2. : concepts, instrumentation, data analysis and applications / / edited by Vivek K. Singh [and three others] |
Pubbl/distr/stampa | Chichester, England : , : John Wiley & Sons Ltd, , [2023] |
Descrizione fisica | 1 online resource (1004 pages) |
Disciplina | 543.52 |
Soggetto topico |
Laser-induced breakdown spectroscopy
Laser-plasma interactions |
ISBN |
1-119-75839-4
1-119-75842-4 1-119-75846-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Fundamental Aspects of LIBS and Laser‐Induced Plasma -- Chapter 1 Nanosecond and Femtosecond Laser‐Induced Breakdown Spectroscopy: Fundamentals and Applications -- 1.1 Introduction -- 1.2 LIBS: ns‐LIBS and fs‐LIBS -- 1.3 Plasma‐Plume Dynamics -- 1.4 Filamentation -- 1.5 Signal‐Enhancing Strategies in LIBS -- 1.6 Applications -- 1.7 Summary -- References -- Chapter 2 Elementary Processes and Emission Spectra in Laser‐Induced Plasma -- 2.1 Introduction -- 2.2 Laser‐Ablation Mechanism -- 2.3 Plasma Characteristics and Elementary Processes -- 2.4 Plasma in Thermodynamic Equilibrium -- 2.5 Plasma Emission Features -- 2.6 Conclusion -- References -- Chapter 3 Diagnostics of Laser‐Induced Plasma -- 3.1 Introduction -- 3.2 LIBS Plasmas and Its Characteristics -- 3.2.1 Laser‐Induced Plasma -- 3.2.2 Plasma Temperature Measurements -- 3.2.3 Electron Density Measurements -- 3.2.3.1 Nonlinear Stark Broadening -- 3.2.3.2 Linear Stark Broadening -- 3.2.4 Additional Comments on the Characteristics of LIBS Plasmas -- 3.2.4.1 Matrix Effect -- 3.2.4.2 McWhirter Criterion -- 3.3 Factors Affecting the LIBS Plasma -- 3.3.1 Laser Characteristics -- 3.3.2 Wavelength and Pulse Duration of Laser -- 3.3.3 Properties of Target Material -- 3.3.4 Time Window of Observation -- 3.3.5 Geometric Setup -- 3.3.6 Ambient Gas -- 3.4 Methods of Enhancing LIBS Sensitivity -- 3.5 LTE Plasmas and Non‐LTE Plasmas -- 3.6 Laser-Plasma Expansion in Gas and Liquids: Modeling and Validation -- 3.7 Chemistry in Laser Plasmas (Biological, Medical, and Isotopic Applications) -- 3.8 Conclusion -- References -- Chapter 4 Double and Multiple Pulse LIBS Techniques -- 4.1 Introduction -- 4.2 Double‐Pulse LIBS: Geometries and Configurations -- 4.2.1 Collinear DP‐LIBS -- 4.2.2 Orthogonal DP‐LIBS -- 4.2.3 Parallel DP‐LIBS.
4.2.4 Variable Pulse Duration in DP‐LIBS -- 4.2.5 Variable Pulse Wavelength in DP‐LIBS -- 4.2.6 Multiple Pulse LIBS -- 4.3 Signal Enhancement in DP‐LIBS: Principles and Theory -- 4.4 Applications of DP‐LIBS -- 4.4.1 DP‐LIBS of Archaeological Artifacts -- 4.4.2 DP‐LIBS for the Stand‐Off Detection of Explosives -- 4.4.3 DP‐LIBS for the Analysis of Biological Materials -- 4.4.4 DP‐μ‐LIBS Mapping -- 4.5 Conclusions -- References -- Chapter 5 Calibration‐Free Laser‐Induced Breakdown Spectroscopy -- 5.1 Introduction -- 5.2 Validity Conditions of the Physical Model -- 5.2.1 Congruent Mass Transfer from the Solid Sample Toward Plasma -- 5.2.2 Local Thermodynamic Equilibrium -- 5.2.3 Spatial Distribution of Plasma -- 5.2.4 Self‐Absorption -- 5.2.5 Chemical Reactions -- 5.3 Methods of Calibration‐Free Measurements -- 5.3.1 The Mathematical Problem of a Multielemental Equilibrium Plasma -- 5.3.2 First CF‐LIBS Method for Ideal Plasma -- 5.3.3 Amended Methods -- 5.3.4 Methods Based on Spectra Simulation -- 5.3.4.1 Calculation of Spectral Radiance -- 5.3.4.2 Implementation in Measurement Algorithm -- 5.3.4.3 Illustration for Alloy -- 5.4 Critical Review of Analytical Performance -- 5.4.1 Model Validity -- 5.4.2 Error Evaluation -- 5.4.2.1 Minor and Trace Element Quantification -- 5.4.2.2 Error due to Self‐Absorption -- 5.4.3 Recommendations -- 5.4.3.1 Apparatus Requirements -- 5.4.3.2 Setting the Experimental Conditions -- 5.4.3.3 Selection of Spectral Lines -- 5.4.4 Expected Improvements -- 5.4.4.1 Evolution of the Spectroscopic Database -- 5.4.4.2 Advanced Instrumentation -- 5.4.4.3 Improved Knowledge of Laser‐Induced Plasma -- 5.5 Conclusion -- References -- Part II Molecular LIBS and Instrumentation Developments -- Chapter 6 Molecular Species Formation in Laser‐Produced Plasma -- 6.1 Introduction -- 6.2 Atmospheric Contribution in LIBS Spectra. 6.3 CN and C2 Molecular Formation in LIP -- 6.4 Summary -- References -- Chapter 7 Recent Developments in Standoff Laser‐Induced Breakdown Spectroscopy -- 7.1 Introduction -- 7.2 Laser Systems Used -- 7.3 Instrumentation in Standoff LIBS -- 7.4 Gated and Non‐Gated CCDs/Spectrometers -- 7.5 Experimental Setup -- 7.6 Reviews on Standoff LIBS -- 7.7 Studies in Standoff LIBS -- 7.8 Variants in Standoff LIBS -- 7.9 Machine‐Learning for Data Analysis in Standoff Mode -- 7.10 Advancements in Standoff LIBS Methods -- 7.11 Ongoing Study at ACRHEM, University of Hyderabad -- 7.12 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Nanoparticle‐Enhanced Laser‐Induced Breakdown Spectroscopy -- 8.1 Introduction -- 8.2 Fundamentals -- 8.2.1 Plasmon Excitation in NPs During NELIBS -- 8.2.2 Broadening of the Plasmon Frequency due to Plasmon Coupling -- 8.2.3 Local Field Enhancement -- 8.2.4 Influence of Sample Properties on Laser Ablation Mechanism During NELIBS -- 8.2.5 Nanoparticles Under a Strong Electromagnetic Field and Consequently in the Plasma Phase -- 8.2.6 Origin of Plasma Emission Enhancement -- 8.3 Applications -- 8.3.1 Sample Preparation and Setup -- 8.3.2 Application in the Field of Analytical Chemistry -- 8.4 Conclusion -- References -- Chapter 9 Nanoparticle‐Enhanced Laser‐Induced Breakdown Spectroscopy for Sensing Applications -- 9.1 Introduction -- 9.2 Previous Reviews -- 9.3 Experimental Setup -- 9.4 Enhancement Via Different Conditions -- 9.5 Perspectives on the Mechanism(s) of Enhancement -- 9.6 Variations in NE‐LIBS -- 9.7 Beyond NE‐LIBS -- 9.8 Further Application of Nanoparticles in LIBS -- 9.9 Ongoing Study in the Lab -- 9.10 Conclusions -- References -- Part III Data Analysis and Chemometrics in LIBS -- Chapter 10 Full‐Spectrum Multivariate Analysis of LIBS Data -- 10.1 Introduction. 10.2 Full‐Spectrum Multivariate Analysis -- 10.3 Analysis of Geologic Samples -- 10.4 Identification of Pharmaceuticals -- 10.4.1 Methods -- 10.4.2 Acetaminophen -- 10.4.3 Aspirin -- 10.5 Conclusions -- References -- Chapter 11 Chemometrics for Data Analysis -- 11.1 Introduction -- 11.2 Data -- 11.3 Machine Learning -- 11.3.1 Principal Component Analysis -- 11.4 Classification of the Data -- 11.4.1 Artificial Neural Network -- 11.5 Conclusion -- References -- Chapter 12 Chemometric Processing of LIBS Data -- 12.1 Introduction -- 12.2 Exploratory Analysis Methods for Visualization -- 12.2.1 Principal Component Analysis -- 12.3 Quantitative Analysis Methods -- 12.3.1 Main Steps of Multivariate Calibration Before and After LIBS Measurements -- 12.3.2 Multiple Linear Regression -- 12.3.3 Principal Component Regression -- 12.3.4 Partial Least Squares -- 12.4 Classification -- 12.4.1 Soft Independent Modeling of Class Analogy -- 12.4.2 Partial Least Squares‐Discriminant Analysis -- 12.5 Data Preprocessing -- 12.5.1 Baseline Correction -- 12.5.2 Normalization -- 12.5.2.1 Normalization to the Background -- 12.5.2.2 Normalization to the Total Area -- 12.5.2.3 Normalization to an Internal Standard -- 12.5.2.4 Standard Normal Variate -- 12.5.3 Scaling -- 12.6 Validation and Generalization -- 12.6.1 Validation -- 12.6.2 Generalization -- 12.6.3 Figure of Merit -- 12.6.3.1 Figures of Merit for Quantitative Models -- 12.6.3.2 Figures of Merit for Classification Models -- 12.7 Conclusions -- Acknowledgments -- References -- Chapter 13 How Chemometrics Allowed the Development of LIBS in the Quantification and Detection of Isotopes: A Case Study of Uranium -- 13.1 Introduction -- 13.2 The LIBS Method -- 13.3 Detection and Quantification -- 13.4 Chemometrics Solution -- 13.4.1 LIBS Spectrum Processing -- 13.4.2 Spectra Preprocessing. 13.4.3 Identification and Classification of Samples -- 13.4.4 Concentration Measurement -- 13.4.4.1 Subsets of Data and Cross‐Validation -- 13.4.5 PLS Algorithm -- 13.4.6 Results Using Orange Software -- 13.5 Conclusions -- References -- Chapter 14 Application of Multivariate Analysis to the Problem of the Provenance of Gem Stones (Ruby, Sapphire, Emerald, Diamond) -- 14.1 Introduction -- 14.1.1 The Problem of Gem Provenance -- 14.1.2 Analytical Methods Employed in the Determination of Gem Provenance -- 14.2 Gem Mineral Genesis -- 14.2.1 Corundum: Ruby and Sapphire Genesis -- 14.2.2 Diamond Genesis -- 14.2.3 Emerald Genesis -- 14.2.4 Characteristics of a System to Determine Gem Provenance -- 14.3 Laser‐Induced Breakdown Spectroscopy and Multivariate Analysis -- 14.3.1 Laser‐Induced Breakdown Spectroscopy -- 14.3.2 Multivariate Data Analysis -- 14.4 Gem Provenance Studies -- 14.4.1 Ruby and Sapphire -- 14.4.2 Diamond -- 14.4.3 Emerald -- 14.5 Conclusions -- References -- Chapter 15 Machine Learning in the Context of Laser‐Induced Breakdown Spectroscopy -- 15.1 Introduction -- 15.2 Fundamental Concepts of Machine Learning -- 15.3 Decision Trees and Related Ensemble Methods -- 15.3.1 Decision Trees -- 15.3.2 Ensemble Models -- 15.4 Support Vector Machines -- 15.5 Artificial Neural Networks -- 15.5.1 Artificial Neuron -- 15.5.2 Fully Connected Multilayer Perceptrons -- 15.5.3 Convolutional Neural Networks -- 15.5.4 Training of Artificial Neural Networks -- 15.6 Unsupervised Learning -- 15.6.1 K‐Means Clustering -- 15.6.2 Autoencoder -- 15.7 Self‐Organizing Maps -- 15.8 Concluding Remarks -- Acknowledgement -- References -- Chapter 16 Analysis of LIBS Data from Coal and Biomass Using Artificial Intelligence Techniques -- 16.1 Introduction -- 16.2 LIBS Coal and Biomass Laboratory Experimental Results. 16.3 Application of Artificial Intelligence Techniques to LIBS Spectral Data. |
Record Nr. | UNINA-9910684596403321 |
Chichester, England : , : John Wiley & Sons Ltd, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Spectroscopic analysis of chemical species in carbon plasmas induced by high-power IR CO[subscript 2] laser [[electronic resource] /] / J.J. Camacho ... [et al.] |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 |
Descrizione fisica | 1 online resource (95 p.) |
Disciplina | 543/.5 |
Altri autori (Persone) |
CamachoJ. J
PoyatoJ. M. L DíazL SantosM |
Collana | Lasers and electro-optics research and technology series |
Soggetto topico |
Laser plasmas
Laser-induced breakdown spectroscopy Spectrum analysis High power lasers |
Soggetto genere / forma | Electronic books. |
ISBN | 1-62808-773-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910463348203321 |
Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Spectroscopic analysis of chemical species in carbon plasmas induced by high-power IR CO[subscript 2] laser [[electronic resource] /] / J.J. Camacho ... [et al.] |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 |
Descrizione fisica | 1 online resource (95 p.) |
Disciplina | 543/.5 |
Altri autori (Persone) |
CamachoJ. J
PoyatoJ. M. L DíazL SantosM |
Collana | Lasers and electro-optics research and technology series |
Soggetto topico |
Laser plasmas
Laser-induced breakdown spectroscopy Spectrum analysis High power lasers |
ISBN | 1-62808-773-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910787670303321 |
Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Spectroscopic analysis of chemical species in carbon plasmas induced by high-power IR CO[subscript 2] laser [[electronic resource] /] / J.J. Camacho ... [et al.] |
Pubbl/distr/stampa | Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 |
Descrizione fisica | 1 online resource (95 p.) |
Disciplina | 543/.5 |
Altri autori (Persone) |
CamachoJ. J
PoyatoJ. M. L DíazL SantosM |
Collana | Lasers and electro-optics research and technology series |
Soggetto topico |
Laser plasmas
Laser-induced breakdown spectroscopy Spectrum analysis High power lasers |
ISBN | 1-62808-773-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910825745203321 |
Hauppauge, N.Y., : Nova Science Publishers, Inc., c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|