top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Continuous "system-level" scale for comparing laser gain media [[electronic resource] /] / Jeffrey O. White
Continuous "system-level" scale for comparing laser gain media [[electronic resource] /] / Jeffrey O. White
Autore White Jeffrey O (Jeffrey Owen)
Pubbl/distr/stampa Adelphi, MD : , : Army Research Laboratory, , [2008]
Descrizione fisica iv, 18 pages : digital, PDF file
Collana ARL-TR
Soggetto topico Laser interferometers
Helium-neon lasers
Lasers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910698037203321
White Jeffrey O (Jeffrey Owen)  
Adelphi, MD : , : Army Research Laboratory, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Laser metrology in fluid mechanics [[electronic resource] ] : granulometry, temperature and concentration measurements / / edited by Alain Boutier
Laser metrology in fluid mechanics [[electronic resource] ] : granulometry, temperature and concentration measurements / / edited by Alain Boutier
Pubbl/distr/stampa Hoboken, N.J., : ISTE Ltd./John Wiley and Sons Inc., 2013
Descrizione fisica 1 online resource (348 p.)
Disciplina 532
Altri autori (Persone) BoutierA (Alain)
Collana Waves series
Soggetto topico Lasers - Industrial applications
Laser interferometers
Measurement
Optical measurements - Industrial applications
Fluid mechanics
ISBN 1-118-57684-5
1-299-24212-X
1-118-57688-8
1-118-57695-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Preface; Introduction; Chapter 1. Basics on Light Scattering by Particles; 1.1. Introduction; 1.2. A brief synopsis of electromagnetic theory; 1.2.1. Maxwell's equations; 1.2.2. Harmonic electromagnetic plane waves; 1.2.3. Optical constants; 1.2.4. Light scattering by a single particle; 1.3. Methods using separation of variables; 1.3.1. Lorenz-Mie (or Mie) theory; 1.3.2. Debye and complex angular momentum theories; 1.4. Rayleigh theory and the discrete dipole approximation; 1.4.1. Rayleigh theory; 1.4.2. Discrete dipole approximation; 1.5. The T-matrix method
1.6. Physical (or wave) optics models1.6.1. Huygens-Fresnel integral; 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section; 1.6.3. Airy theory of the rainbow; 1.6.4. Marston's physical-optics approximation; 1.7. Geometrical optics; 1.7.1. Calculation of the scattering angle; 1.7.2. Calculation of the intensity of rays; 1.7.3. Calculation of the phase and amplitude of rays; 1.8. Multiple scattering and Monte Carlo models; 1.8.1. Scattering by an optically diluted particle system; 1.8.2. Multiple scattering; 1.8.3. Monte Carlo method; 1.9. Conclusion
1.10. BibliographyChapter 2. Optical Particle Characterization; 2.1. Introduction; 2.2. Particles in flows; 2.2.1. Diameter, shape and concentration; 2.2.2. Statistical representation of particle size data; 2.2.3. Concentrations and fluxes; 2.3. An attempt to classify OPC techniques; 2.3.1. Physical principles and measured quantities; 2.3.2. Nature and procedure to achieve statistics; 2.4. Phase Doppler interferometry (or anemometry); 2.4.1. Principle; 2.4.2. Modeling the phase-diameter relationship; 2.4.3. Experimental setup and typical results; 2.4.4. Conclusion; 2.5. Ellipsometry
2.6. Forward (or "laser") diffraction2.6.1. Principle; 2.6.2. Modeling and inversion of diffraction patterns; 2.6.3. Typical experimental setup and results; 2.6.4. Conclusion; 2.7. Rainbow and near-critical-angle diffractometry techniques; 2.7.1. Similarities to forward diffraction; 2.7.2. Rainbow diffractometry; 2.7.3. Near-critical-angle diffractometry; 2.8. Classical shadowgraph imaging; 2.8.1. Principle and classical setup; 2.8.2. One-dimensional shadow Doppler technique; 2.8.3. Calculation of particle images using the point spread function; 2.8.4. Conclusion
2.9. Out-of-focus interferometric imaging2.9.1. Principle; 2.9.2. Modeling the diameter-angular frequency relationship; 2.9.3. Conclusion; 2.10. Holography of particles; 2.10.1. Gabor holography for holographic films; 2.10.2. Inline digital holography; 2.10.3. Conclusion; 2.11. Light extinction spectrometry; 2.11.1. Principle; 2.11.2. Algebraic inverse method; 2.11.3. Experimental setup and conclusion; 2.12. Photon correlation spectroscopy; 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio; 2.13.1. Principle; 2.13.2. Experimental setup and results; 2.13.3. Conclusion
2.14. Laser-induced incandescence
Record Nr. UNINA-9910141598303321
Hoboken, N.J., : ISTE Ltd./John Wiley and Sons Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Laser metrology in fluid mechanics : granulometry, temperature and concentration measurements / / edited by Alain Boutier
Laser metrology in fluid mechanics : granulometry, temperature and concentration measurements / / edited by Alain Boutier
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : ISTE Ltd./John Wiley and Sons Inc., 2013
Descrizione fisica 1 online resource (348 p.)
Disciplina 532
Altri autori (Persone) BoutierA (Alain)
Collana Waves series
Soggetto topico Lasers - Industrial applications
Laser interferometers
Measurement
Optical measurements - Industrial applications
Fluid mechanics
ISBN 1-118-57684-5
1-299-24212-X
1-118-57688-8
1-118-57695-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Preface; Introduction; Chapter 1. Basics on Light Scattering by Particles; 1.1. Introduction; 1.2. A brief synopsis of electromagnetic theory; 1.2.1. Maxwell's equations; 1.2.2. Harmonic electromagnetic plane waves; 1.2.3. Optical constants; 1.2.4. Light scattering by a single particle; 1.3. Methods using separation of variables; 1.3.1. Lorenz-Mie (or Mie) theory; 1.3.2. Debye and complex angular momentum theories; 1.4. Rayleigh theory and the discrete dipole approximation; 1.4.1. Rayleigh theory; 1.4.2. Discrete dipole approximation; 1.5. The T-matrix method
1.6. Physical (or wave) optics models1.6.1. Huygens-Fresnel integral; 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section; 1.6.3. Airy theory of the rainbow; 1.6.4. Marston's physical-optics approximation; 1.7. Geometrical optics; 1.7.1. Calculation of the scattering angle; 1.7.2. Calculation of the intensity of rays; 1.7.3. Calculation of the phase and amplitude of rays; 1.8. Multiple scattering and Monte Carlo models; 1.8.1. Scattering by an optically diluted particle system; 1.8.2. Multiple scattering; 1.8.3. Monte Carlo method; 1.9. Conclusion
1.10. BibliographyChapter 2. Optical Particle Characterization; 2.1. Introduction; 2.2. Particles in flows; 2.2.1. Diameter, shape and concentration; 2.2.2. Statistical representation of particle size data; 2.2.3. Concentrations and fluxes; 2.3. An attempt to classify OPC techniques; 2.3.1. Physical principles and measured quantities; 2.3.2. Nature and procedure to achieve statistics; 2.4. Phase Doppler interferometry (or anemometry); 2.4.1. Principle; 2.4.2. Modeling the phase-diameter relationship; 2.4.3. Experimental setup and typical results; 2.4.4. Conclusion; 2.5. Ellipsometry
2.6. Forward (or "laser") diffraction2.6.1. Principle; 2.6.2. Modeling and inversion of diffraction patterns; 2.6.3. Typical experimental setup and results; 2.6.4. Conclusion; 2.7. Rainbow and near-critical-angle diffractometry techniques; 2.7.1. Similarities to forward diffraction; 2.7.2. Rainbow diffractometry; 2.7.3. Near-critical-angle diffractometry; 2.8. Classical shadowgraph imaging; 2.8.1. Principle and classical setup; 2.8.2. One-dimensional shadow Doppler technique; 2.8.3. Calculation of particle images using the point spread function; 2.8.4. Conclusion
2.9. Out-of-focus interferometric imaging2.9.1. Principle; 2.9.2. Modeling the diameter-angular frequency relationship; 2.9.3. Conclusion; 2.10. Holography of particles; 2.10.1. Gabor holography for holographic films; 2.10.2. Inline digital holography; 2.10.3. Conclusion; 2.11. Light extinction spectrometry; 2.11.1. Principle; 2.11.2. Algebraic inverse method; 2.11.3. Experimental setup and conclusion; 2.12. Photon correlation spectroscopy; 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio; 2.13.1. Principle; 2.13.2. Experimental setup and results; 2.13.3. Conclusion
2.14. Laser-induced incandescence
Record Nr. UNINA-9910809259803321
Hoboken, N.J., : ISTE Ltd./John Wiley and Sons Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui